Analyzing Sea Surface Wind Distribution Characteristics of Tropical Cyclone Based on Sentinel-1 SAR Images
"> Figure 1
<p>The comparison between VV- and VH- polarization NRCS simulated by the CMOD5 model and the MMS1A model in different wind speeds and incident angles of 20<math display="inline"><semantics> <mo>°</mo> </semantics></math>, 30<math display="inline"><semantics> <mrow> <mo>°</mo> <mo>,</mo> </mrow> </semantics></math> and 40<math display="inline"><semantics> <mo>°</mo> </semantics></math>. <math display="inline"><semantics> <mi>ϕ</mi> </semantics></math> is the relative wind direction.</p> "> Figure 2
<p>The locations of 41 TC cases investigated in this work and their categories (Saffir–Simpson hurricane wind scale) provided by the best tracks from the NHC and the JTWC.</p> "> Figure 3
<p>Maximum wind speeds retrieved by the MMS1A model from the Sentinel-1 EW mode images and TC motion speeds calculated using time and center locations provided by best tracks. Red, blue and green dots stand for the cases observed in the Atlantic, Eastern Pacific and Western Pacific, respectively.</p> "> Figure 4
<p>Sentinel-1 SAR images of (<b>a</b>) Typhoon Jebi on 31 August 2018 and (<b>b</b>) Hurricane Gaston on 13 October 2018. Corresponding MMS1A wind retrievals of (<b>c</b>) Typhoon Jebi and (<b>d</b>) Hurricane Gaston. Black arrow represents the storm motion direction computed from best tracks.</p> "> Figure 5
<p>Radial wind distributions of (<b>a</b>) Typhoon Jebi; and (<b>b</b>) Hurricane Gaston. The black curve stands for the fitting function of the relationship between wind retrieval and the radius, ranging from <span class="html-italic">r</span><sub>m</sub> to 200 km.</p> "> Figure 6
<p>Simulated symmetric wind fields within a 200 km radius for (<b>a</b>) Typhoon Jebi and (<b>b</b>) Hurricane Gaston. The spatial resolution is 1 km. Straight borders are same as those in SAR images.</p> "> Figure 7
<p>The dependences of decay index on (<b>a</b>) maximum wind speed and (<b>b</b>) correlation coefficient of wind speed and radius. Black curve is the trend line. Red, blue and green dots stand for the cases observed in the Atlantic, Eastern Pacific and Western Pacific, respectively.</p> "> Figure 8
<p>The dependence of symmetry index on maximum wind speed, based on 41 TC cases’ wind field simulations and SAR retrievals. Black curve is the trend line. Red, blue and green dots stand for cases observed in the Atlantic, Eastern Pacific and Western Pacific, respectively.</p> "> Figure 9
<p>(<b>a</b>) Maximum and averaged surface wind in three TC sections: right side, back side, and left side. Twenty-two TC cases are arranged in ascending order of TC intensity; (<b>b</b>) motion speed and averaged wind difference between the right and left side sections. TC cases are arranged in the ascending order of storm motion speed.</p> ">
Abstract
:1. Introduction
2. Dataset
3. Methods
3.1. Wind Field Retrieval and Decay Index
3.2. Wind Field Simulation and Symmetry Index
4. Results
5. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Irish, J.L.; Resio, D.T.; Ratcliff, J.J. The Influence of Storm Size on Hurricane Surge. J. Phys. Oceanogr. 2006, 38, 2003–2013. [Google Scholar] [CrossRef]
- Price, C.; Asfur, M.; Yair, Y. Maximum hurricane intensity preceded by increase in lightning frequency. Nat. Geosci. 2009, 2, 329–332. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, J. Energy Production, Frictional Dissipation, and Maximum Intensity of a Numerically Simulated Tropical Cyclone. J. Atmos. Sci. 2010, 67, 97–116. [Google Scholar] [CrossRef]
- Chan, K.T.F.; Chan, J.C.L. Angular Momentum Transports and Synoptic Flow Patterns Associated with Tropical Cyclone Size Change. Mon. Weather Rev. 2013, 141, 3985–4007. [Google Scholar] [CrossRef]
- Kilroy, G.; Smith, R.K.; Montgomery, M.T. Why Do Model Tropical Cyclones Grow Progressively in Size and Decay in Intensity after Reaching Maturity? J. Atmos. Sci. 2016, 73, 487–503. [Google Scholar] [CrossRef]
- Landsea, C.W.; Franklin, J.L. Atlantic Hurricane Database Uncertainty and Presentation of a New Database Format. Mon. Weather Rev. 2013, 141, 3576–3592. [Google Scholar] [CrossRef]
- Guo, X.; Tan, Z.M. Tropical Cyclone Fullness: A New Concept for Interpreting Storm Intensity. Geophys. Res. Lett. 2017, 44, 4324–4331. [Google Scholar] [CrossRef]
- Zhang, G.; Perrie, W.; Li, X.; Zhang, J.A. A Hurricane Morphology and Sea Surface Wind Vector Estimation Model Based on C-Band Cross-Polarization SAR Imagery. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1743–1751. [Google Scholar] [CrossRef]
- Croxford, M.; Barnes, G.M. Inner Core Strength of Atlantic Tropical Cyclones. Mon. Weather Rev. 2002, 130, 127–139. [Google Scholar] [CrossRef]
- Xie, L.; Bao, S.; Pietrafesa, L.J.; Foley, K.; Fuentes, M. A Real-Time Hurricane Surface Wind Forecasting Model: Formulation and Verification. Mon. Weather Rev. 2006, 134, 1355–1370. [Google Scholar] [CrossRef]
- Mallen, K.J.; Montgomery, M.T.; Wang, B. Reexamining the Near-Core Radial Structure of the Tropical Cyclone Primary Circulation: Implications for Vortex Resiliency. J. Atmos. Sci. 2005, 62, 408–425. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Guan, C.; Sun, J.; Xie, L. A New Hurricane Wind Direction Retrieval Method for SAR Images without Hurricane Eye. J. Atmos. Ocean. Technol. 2018, 35, 2229–2239. [Google Scholar] [CrossRef]
- Mouche, A.; Chapron, B.; Knaff, J.; Zhao, Y.; Zhang, B.; Combot, C. Copolarized and Cross-Polarized SAR Measurements for High-Resolution Description of Major Hurricane Wind Structures: Application to Irma Category 5 Hurricane. J. Geophys. Res. Oceans 2019, 124, 3905–3922. [Google Scholar] [CrossRef]
- Ye, X.; Lin, M.; Zheng, Q.; Yuan, X.; Liang, C.; Zhang, B.; Zhang, J. A Typhoon Wind-Field Retrieval Method for the Dual-Polarization SAR Imagery. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1511–1515. [Google Scholar] [CrossRef]
- Shao, W.; Hu, Y.; Nunziata, F.; Corcione, V.; Li, X. Cyclone Wind Retrieval Based on X-Band SAR-Derived Wave Parameter Estimation. J. Atmos. Ocean. Technol. 2020, 37, 1907–1924. [Google Scholar] [CrossRef]
- Zhou, X.; Yang, X.F.; Li, Z.W.; Yu, Y.; Bi, H.B.; Ma, S.; Li, X.F. Estimation of tropical cyclone parameters and wind fields from SAR images. Sci. China Earth Sci. 2013, 56, 1977–1987. [Google Scholar] [CrossRef]
- Hersbach, H.; Stoffelen, A.; de Haan, S. An improved C-band scatterometer ocean geophysical model function: CMOD5. J. Geophys. Res. Oceans 2007, 112, C03006. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, J.; Sun, J.; Guan, C. Application of SAR Data for Tropical Cyclone Intensity Parameters Retrieval and Symmetric Wind Field Model Development. Remote Sens. 2021, 13, 2902. [Google Scholar] [CrossRef]
- Vachon, P.W.; Wolfe, J. C-Band Cross-Polarization Wind Speed Retrieval. IEEE Geosci. Remote Sens. Lett. 2011, 8, 456–459. [Google Scholar] [CrossRef]
- Zhang, B.; Perrie, W. Recent progress on high wind-speed retrieval from multi-polarization SAR imagery: A review. Int. J. Remote Sens. 2014, 35, 4031–4045. [Google Scholar] [CrossRef]
- Shao, W.; Yuan, X.; Sheng, Y.; Sun, J.; Zhou, W.; Zhang, Q. Development of Wind Speed Retrieval from Cross-Polarization Chinese Gaofen-3 Synthetic Aperture Radar in Typhoons. Sensors 2018, 18, 412. [Google Scholar] [CrossRef] [Green Version]
- Katsaros, K.B.; Vachon, P.W.; Liu, W.T.; Black, P.G. Microwave Remote Sensing of Tropical Cyclones from Space. J. Oceanogr. 2002, 58, 137–151. [Google Scholar] [CrossRef]
- Li, X. The first Sentinel-1 SAR image of a typhoon. Acta Oceanol. Sin. 2015, 34, 1–2. [Google Scholar] [CrossRef]
- Zhu, L.; Geng, X.; Xie, T.; Hu, L.; Yan, X.-H. Comparison of the application of co- and cross-polarized sentinel-1 synthetic aperture radar data to tropical cyclone evaluation. Remote Sens. Lett. 2021, 12, 229–238. [Google Scholar] [CrossRef]
- Zhang, G.; Perrie, W.; Zhang, B.; Yang, J.; He, Y. Monitoring of tropical cyclone structures in ten years of RADARSAT-2 SAR images. Remote Sens. Environ. 2020, 236, 111449. [Google Scholar] [CrossRef]
- Mouche, A.A.; Chapron, B.; Zhang, B.; Husson, R. Combined Co- and Cross-Polarized SAR Measurements Under Extreme Wind Conditions. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6746–6755. [Google Scholar] [CrossRef]
- Shao, W.; Li, X.; Hwang, P.; Zhang, B.; Yang, X. Bridging the gap between cyclone wind and wave by C-band SAR measurements. J. Geophys. Res. Oceans 2017, 122, 6714–6724. [Google Scholar] [CrossRef]
- Gao, Y.; Sun, J.; Zhang, J.; Guan, C. Extreme Wind Speeds Retrieval Using Sentinel-1 IW Mode SAR Data. Remote Sens. 2021, 13, 1867. [Google Scholar] [CrossRef]
- Li, X.; Zhang, J.A.; Yang, X.; Pichel, W.G.; Demaria, M.; Long, D.; Li, Z. Tropical Cyclone Morphology from Spaceborne Synthetic Aperture Radar. Bull. Am. Meteorol. Soc. 2013, 94, 215–230. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Zhang, J.; Guan, C.; Sun, J. Analyzing Sea Surface Wind Distribution Characteristics of Tropical Cyclone Based on Sentinel-1 SAR Images. Remote Sens. 2021, 13, 4501. https://doi.org/10.3390/rs13224501
Gao Y, Zhang J, Guan C, Sun J. Analyzing Sea Surface Wind Distribution Characteristics of Tropical Cyclone Based on Sentinel-1 SAR Images. Remote Sensing. 2021; 13(22):4501. https://doi.org/10.3390/rs13224501
Chicago/Turabian StyleGao, Yuan, Jie Zhang, Changlong Guan, and Jian Sun. 2021. "Analyzing Sea Surface Wind Distribution Characteristics of Tropical Cyclone Based on Sentinel-1 SAR Images" Remote Sensing 13, no. 22: 4501. https://doi.org/10.3390/rs13224501