Spatial Variability and Temporal Heterogeneity of Surface Urban Heat Island Patterns and the Suitability of Local Climate Zones for Land Surface Temperature Characterization
<p>Location of study area and its composition according to China’s land use status remote sensing monitoring database (<a href="http://www.resdc.cn" target="_blank">http://www.resdc.cn</a>, accessed on 19 October 2021).</p> "> Figure 2
<p>Distribution of local climate zones in the study area.</p> "> Figure 3
<p>Monthly (instantaneous) land surface temperature variations and the identification of heat/cool island phenomenon from 2018 to 2020.</p> "> Figure 4
<p>Monthly LST and SUHII variations of the three-ring area in buffer 50%, buffer 100% and buffer 0% scenarios from 2018 to 2020.</p> "> Figure 5
<p>Monthly LST and SUHII variations of the built-up area in buffer 50%, buffer 100% and buffer 0% scenarios from 2018 to 2020.</p> "> Figure 6
<p>Deviation of the LST of different types of LCZs from the average LST of whole study area from 2018 to 2020 (°C).</p> "> Figure 7
<p>Difference of land surface temperatures of local climate zone types within the whole study area (Circle denotes significant difference at <span class="html-italic">p</span> < 0.05 level, blank demotes no significant difference).</p> "> Figure 8
<p>Difference of land surface temperatures of local climate zone types within an urban context (Circle denotes significant difference at <span class="html-italic">p</span> < 0.05 level, blank demotes no significant difference).</p> "> Figure 9
<p>Difference of land surface temperatures of local climate zone types within a rural context (Circle denotes significant difference at <span class="html-italic">p</span> < 0.05 level, blank demotes no significant difference).</p> "> Figure A1
<p>Deviation of the LST of Different Types of LCZs from the Average LST within an Urban Context (°C).</p> "> Figure A2
<p>Deviation of the LST of Different Types of LCZs from the Average LST within a Rural Context (°C).</p> ">
Abstract
:1. Introduction
2. Study Area
3. Data and Methodology
3.1. Data Pre-Processing and Date Selection
3.2. Retrieval of LST
3.3. Local Climate Zone Classification
3.4. Data Analysis
4. Results and Analysis
4.1. Monthly LST Variation
4.2. Monthly Variation of Urban Heat/Cool Island Intensity
4.3. Temporal Variation of Land Surface Temperature with Local Climate Zones
4.4. Spatial Variation of the Responses of Land Surface Temperature to Local Climate Zones
4.5. Land Surface Temperature Difference among Different Local Climate Zones
5. Discussion and Implications
5.1. Spatiotemporal Variations of Urban Thermal Environments and the Proper Month and Method Selection for Accurate Assessment
5.2. Spatiotemporal Variations of the Responses of Land Surface Temperature to Local Climate Zone
5.3. Suitability of Local Climate Zone Scheme for Urban Temperature Differentiation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
LCZ | December | January | February | March | ||||
Range | Mean | Range | Mean | Range | Mean | Range | Mean | |
LCZ-1 (Compact high-rise) | −20.28~1.63 | −4.69 | −16.26~−0.13 | −4.87 | −9.04~12.74 | 6.12 | −4.89~17.95 | 10.65 |
LCZ-2 (Compact midrise) | −18.43~2.81 | −4.15 | −14.45~1.46 | −4.22 | −6.30~16.34 | 7.23 | −1.08~21.18 | 12.00 |
LCZ-3 (Compact low-rise) | −24.17~3.74 | −4.36 | −20.47~3.72 | −4.01 | −11.48~15.19 | 8.22 | −9.37~21.75 | 13.29 |
LCZ-4 (Open high-rise) | −9.54~1.62 | −4.74 | −8.45~1.97 | −4.82 | 1.02~14.49 | 6.22 | 2.96~19.05 | 10.97 |
LCZ-5 (Open midrise) | −19.14~0.70 | −4.57 | −17.30~0.49 | −4.40 | −6.30~13.82 | 7.16 | −3.01~20.11 | 12.18 |
LCZ-6 (Open low-rise) | −9.28~1.02 | −4.55 | −8.38~0.54 | −4.07 | 1.21~14.21 | 7.69 | 5.30~19.39 | 12.68 |
LCZ-7 (Lightweight low-rise) | −21.00~3.56 | −3.92 | −18.69~4.35 | −3.70 | −8.51~18.41 | 9.00 | −3.57~25.09 | 14.28 |
LCZ-8 (Large low-rise) | −25.42~3.35 | −3.86 | −22.25~2.02 | −3.80 | −12.47~18.88 | 8.60 | −9.83~25.71 | 13.91 |
LCZ-9 (Sparsely built) | −26.81~1.58 | −4.32 | −21.74~2.07 | −3.83 | −12.69~16.74 | 8.11 | −9.58~20.13 | 13.13 |
LCZ-10 (Heavy industry) | −17.34~4.66 | −4.11 | −13.72~3.21 | −3.75 | −6.36~19.79 | 8.47 | −2.35~24.74 | 13.60 |
LCZ-A (Dense trees) | −7.35~−0.48 | −3.89 | −6.63~−1.41 | −4.51 | 2.41~12.19 | 6.69 | 5.06~17.59 | 11.63 |
LCZ-B (Scattered trees) | −9.43~0.08 | −3.80 | −7.99~0.26 | −3.99 | 2.32~14.36 | 7.80 | 6.77~19.91 | 12.98 |
LCZ-C (Bush, scrub) | −7.58~0.08 | −3.65 | −6.68~−0.74 | −3.34 | 4.41~13.72 | 9.16 | 8.64~18.53 | 14.41 |
LCZ-D (Low plants) | −27.50~0.45 | −3.83 | −21.84~0.84 | −3.08 | −12.18~15.67 | 9.47 | −9.23~21.13 | 14.52 |
LCZ-E (Bare rock or paved) | −18.09~3.12 | −4.41 | −14.37~3.36 | −3.85 | −3.10~15.18 | 8.42 | −0.09~20.33 | 13.45 |
LCZ-F (Bare soil or sand) | −19.68~1.34 | −4.15 | −17.41~1.03 | −3.56 | −8.43~15.17 | 8.65 | −3.24~20.42 | 13.67 |
LCZ-G (Water) | −8.57~−0.09 | −4.84 | −7.88~0.50 | −5.03 | 1.23~12.42 | 4.40 | 2.23~16.99 | 7.96 |
LCZ | April | May | June | July | ||||
Range | Mean | Range | Mean | Range | Mean | Range | Mean | |
LCZ-1 (Compact high-rise) | 11.87~27.52 | 21.25 | 6.29~33.23 | 25.31 | 23.14~38.19 | 31.82 | 19.99~40.13 | 33.00 |
LCZ-2 (Compact midrise) | 13.42~29.88 | 22.40 | 11.79~35.20 | 26.74 | 24.99~38.04 | 32.99 | 23.63~40.59 | 34.37 |
LCZ-3 (Compact low-rise) | 7.93~28.92 | 23.53 | 3.66~34.73 | 27.20 | 20.70~37.93 | 32.73 | 18.60~40.39 | 32.99 |
LCZ-4 (Open high-rise) | 15.00~29.17 | 21.64 | 16.11~33.46 | 25.24 | 24.02~37.08 | 31.56 | 24.46~38.31 | 32.06 |
LCZ-5 (Open midrise) | 12.31~29.58 | 22.70 | 8.20~38.25 | 26.48 | 21.84~38.99 | 32.45 | 20.92~40.06 | 32.95 |
LCZ-6 (Open low-rise) | 17.68~28.89 | 23.21 | 18.59~35.18 | 26.80 | 25.71~37.17 | 32.15 | 26.08~39.98 | 32.17 |
LCZ-7 (Lightweight low-rise) | 7.83~33.64 | 24.19 | 7.01~40.99 | 27.80 | 20.31~42.03 | 33.33 | 19.29~43.34 | 33.65 |
LCZ-8 (Large low-rise) | 7.36~33.81 | 23.85 | 1.84~41.34 | 27.63 | 18.91~41.77 | 33.19 | 17.36~43.11 | 33.47 |
LCZ-9 (Sparsely built) | 6.20~29.52 | 23.54 | 1.87~34.83 | 26.77 | 19.18~38.55 | 31.44 | 16.78~39.83 | 31.44 |
LCZ-10 (Heavy industry) | 13.34~32.96 | 23.66 | 9.81~40.41 | 27.82 | 24.54~41.63 | 33.59 | 22.68~44.20 | 34.63 |
LCZ-A (Dense trees) | 16.01~29.27 | 21.87 | 16.93~33.90 | 21.66 | 24.71~34.97 | 27.42 | 25.15~35.36 | 27.57 |
LCZ-B (Scattered trees) | 18.40~28.98 | 23.27 | 19.96~33.98 | 25.90 | 26.49~36.75 | 30.73 | 26.56~37.20 | 30.47 |
LCZ-C (Bush, scrub) | 19.04~28.83 | 24.84 | 22.38~35.27 | 28.38 | 28.42~36.07 | 32.84 | 27.70~37.58 | 31.67 |
LCZ-D (Low plants) | 5.15~29.77 | 24.89 | 0.28~35.04 | 28.36 | 17.69~37.58 | 31.75 | 15.89~39.15 | 30.96 |
LCZ-E (Bare rock or paved) | 12.91~29.37 | 23.56 | 9.37~34.96 | 27.24 | 24.45~38.46 | 32.80 | 22.14~40.76 | 32.93 |
LCZ-F (Bare soil or sand) | 12.54~29.51 | 23.92 | 10.62~34.19 | 27.66 | 22.82~38.33 | 32.70 | 20.79~39.12 | 32.45 |
LCZ-G (Water) | 13.33~26.61 | 18.53 | 15.63~30.26 | 20.56 | 21.41~35.41 | 27.02 | 22.19~34.78 | 27.40 |
LCZ | August | September | October | November | ||||
Range | Mean | Range | Mean | Range | Mean | Range | Mean | |
LCZ-1 (Compact high-rise) | 27.82~41.69 | 34.84 | 8.41~32.27 | 25.03 | −0.27~24.25 | 17.04 | −3.36~14.72 | 8.96 |
LCZ-2 (Compact midrise) | 28.98~41.55 | 36.10 | 12.78~35.71 | 26.48 | 2.93~26.11 | 18.33 | −1.34~20.44 | 9.85 |
LCZ-3 (Compact low-rise) | 24.30~42.52 | 35.63 | 6.48~33.72 | 25.87 | −1.84~25.29 | 18.53 | −5.47~18.13 | 10.59 |
LCZ-4 (Open high-rise) | 27.80~41.30 | 34.54 | 15.51~31.60 | 24.54 | 11.36~23.63 | 16.93 | 2.33~15.53 | 9.26 |
LCZ-5 (Open midrise) | 26.77~41.78 | 35.44 | 9.04~32.95 | 25.50 | 1.97~24.53 | 17.84 | −2.71~16.55 | 9.90 |
LCZ-6 (Open low-rise) | 27.92~41.79 | 34.85 | 19.75~32.89 | 25.01 | 12.14~24.12 | 17.86 | 5.50~15.71 | 10.15 |
LCZ-7 (Lightweight low-rise) | 24.00~45.48 | 36.42 | 4.48~37.95 | 26.65 | −0.49~30.16 | 19.25 | −6.05~20.62 | 11.43 |
LCZ-8 (Large low-rise) | 23.64~45.19 | 36.06 | 4.12~37.86 | 26.44 | −4.09~30.36 | 19.09 | −7.54~20.55 | 11.11 |
LCZ-9 (Sparsely built) | 22.64~42.12 | 34.09 | 1.49~33.66 | 24.57 | −5.79~26.17 | 17.67 | −8.97~16.44 | 10.73 |
LCZ-10 (Heavy industry) | 28.86~45.56 | 36.88 | 12.26~37.43 | 27.18 | 3.03~29.81 | 19.27 | −1.50~22.39 | 10.81 |
LCZ-A (Dense trees) | 26.98~36.70 | 30.34 | 20.13~27.15 | 21.62 | 13.00~20.80 | 14.71 | 6.84~14.41 | 10.61 |
LCZ-B (Scattered trees) | 29.66~38.81 | 33.52 | 20.38~29.61 | 23.79 | 12.89~23.51 | 16.88 | 5.92~15.91 | 10.82 |
LCZ-C (Bush, scrub) | 30.65~40.36 | 34.83 | 22.39~29.27 | 25.20 | 14.55~22.89 | 18.84 | 7.11~17.64 | 11.63 |
LCZ-D (Low plants) | 22.52~41.15 | 33.35 | 1.04~31.69 | 24.34 | −6.11~24.67 | 18.25 | −10.03~16.80 | 11.28 |
LCZ-E (Bare rock or paved) | 27.49~42.40 | 35.77 | 10.50~33.25 | 25.90 | 2.70~25.43 | 18.71 | −0.90~28.21 | −1.00 |
LCZ-F (Bare soil or sand) | 25.76~41.44 | 35.31 | 9.67~32.60 | 25.54 | 1.02~25.31 | 18.64 | −2.33~16.73 | 10.80 |
LCZ-G (Water) | 26.93~37.58 | 30.29 | 19.64~28.27 | 22.02 | 13.09~20.90 | 15.61 | 6.17~13.77 | 8.87 |
Appendix B
LCZ | December | January | February | March | ||||
Range | Mean | Range | Mean | Range | Mean | Range | Mean | |
LCZ-1 (Compact high-rise) | −9.25~1.00 | −4.35 | −8.58~−0.05 | −3.81 | 0.45~13.13 | 7.79 | 5.10~18.78 | 12.36 |
LCZ-2 (Compact midrise) | −8.62~1.39 | −4.05 | −8.10~0.99 | −3.48 | 1.23~14.72 | 8.97 | 2.53~21.02 | 14.02 |
LCZ-3 (Compact low-rise) | −20.21~2.08 | −3.61 | −16.59~2.62 | −3.14 | −5.83~15.00 | 9.69 | −1.77~22.67 | 14.80 |
LCZ-4 (Open high-rise) | −20.80~4.43 | −4.07 | −19.65~3.86 | −3.80 | −6.54~15.52 | 7.93 | −3.09~21.65 | 12.47 |
LCZ-5 (Open midrise) | −17.00~4.03 | −4.29 | −14.46~2.98 | −3.76 | −1.76~15.36 | 8.50 | 2.00~20.92 | 13.55 |
LCZ-6 (Open low-rise) | −13.75~2.17 | −3.84 | −12.38~1.82 | −3.43 | −0.97~16.05 | 9.26 | −1.48~21.61 | 13.91 |
LCZ-7 (Lightweight low-rise) | −25.58~2.88 | −3.81 | −24.72~2.83 | −3.60 | −12.77~16.78 | 9.24 | −7.00~23.26 | 14.38 |
LCZ-8 (Large low-rise) | −16.87~1.96 | −3.47 | −16.28~2.50 | −3.19 | −5.57~16.55 | 9.50 | 1.56~22.89 | 14.89 |
LCZ-9 (Sparsely built) | −17.26~4.36 | −3.56 | −15.85~3.88 | −3.14 | −4.97~18.13 | 9.76 | −3.19~24.55 | 14.07 |
LCZ-10 (Heavy industry) | −15.81~2.86 | −3.43 | −13.74~3.35 | −3.16 | −2.03~16.77 | 10.03 | 2.86~23.11 | 15.33 |
LCZ-A (Dense trees) | −9.26~4.50 | −4.54 | −9.22~3.26 | −4.77 | 0.35~15.75 | 7.22 | −1.90~20.80 | 11.02 |
LCZ-B (Scattered trees) | −9.62~2.35 | −4.36 | −9.17~1.59 | −3.79 | 0.77~15.20 | 8.63 | 3.79~20.07 | 13.24 |
LCZ-C (Bush, scrub) | −7.03~3.10 | −3.10 | −5.71~3.78 | −2.69 | 3.95~15.56 | 10.48 | 6.71~20.66 | 15.14 |
LCZ-D (Low plants) | −21.72~2.93 | −2.63 | −19.35~3.95 | −2.37 | −9.85~22.84 | 11.65 | −9.00~25.97 | 15.83 |
LCZ-E (Bare rock or paved) | −28.64~4.05 | −3.78 | −22.09~3.98 | −3.37 | −16.53~16.04 | 9.37 | −13.12~21.71 | 14.25 |
LCZ-F (Bare soil or sand) | −32.33~2.76 | −3.47 | −27.79~2.42 | −3.02 | −22.77~16.62 | 9.98 | −18.21~23.09 | 14.87 |
LCZ-G (Water) | −8.88~5.53 | −4.77 | −9.30~4.16 | −5.04 | −0.89~14.78 | 3.75 | −2.30~19.05 | 6.83 |
LCZ | April | May | June | July | ||||
Range | Mean | Range | Mean | Range | Mean | Range | Mean | |
LCZ-1 (Compact high-rise) | 15.15~29.62 | 22.97 | 17.42~34.15 | 25.97 | 24.96~36.63 | 30.91 | 25.77~37.50 | 30.49 |
LCZ-2 (Compact midrise) | 13.23~30.09 | 24.04 | 14.95~33.94 | 27.91 | 23.58~36.47 | 32.81 | 23.23~38.27 | 33.36 |
LCZ-3 (Compact low-rise) | 9.70~30.32 | 24.97 | 5.45~35.45 | 27.85 | 21.00~37.79 | 32.41 | 18.51~37.90 | 31.65 |
LCZ-4 (Open high-rise) | 10.62~29.54 | 22.87 | 6.88~35.50 | 25.86 | 20.72~37.78 | 30.78 | 19.37~37.96 | 30.52 |
LCZ-5 (Open midrise) | 13.71~29.78 | 24.05 | 10.71~34.16 | 27.49 | 22.12~40.02 | 32.45 | 21.18~39.95 | 32.47 |
LCZ-6 (Open low-rise) | 13.34~30.61 | 24.45 | 15.06~35.36 | 28.00 | 24.23~37.16 | 32.25 | 21.68~38.43 | 31.39 |
LCZ-7 (Lightweight low-rise) | 6.56~30.60 | 24.37 | 3.36~35.53 | 27.45 | 19.28~40.51 | 32.49 | 16.28~40.62 | 32.07 |
LCZ-8 (Large low-rise) | 12.73~30.76 | 24.98 | 9.56~34.86 | 28.08 | 21.88~38.29 | 32.80 | 21.64~40.32 | 32.17 |
LCZ-9 (Sparsely built) | 11.72~31.23 | 24.35 | 9.75~36.46 | 27.10 | 21.15~37.78 | 29.49 | 21.55~39.49 | 28.52 |
LCZ-10 (Heavy industry) | 14.29~30.81 | 24.94 | 13.89~35.29 | 28.73 | 23.43~40.80 | 33.58 | 24.18~42.88 | 34.26 |
LCZ-A (Dense trees) | 13.35~31.64 | 22.90 | 15.07~37.05 | 24.65 | 21.25~36.92 | 28.21 | 22.22~36.89 | 27.81 |
LCZ-B (Scattered trees) | 15.44~30.28 | 24.60 | 16.35~35.03 | 27.65 | 23.98~37.73 | 30.84 | 23.88~38.61 | 30.17 |
LCZ-C (Bush, scrub) | 18.40~29.39 | 25.67 | 20.36~35.33 | 29.21 | 27.29~38.84 | 32.42 | 25.62~37.09 | 31.03 |
LCZ-D (Low plants) | 7.48~35.48 | 26.13 | 1.81~37.00 | 29.29 | 15.70~39.66 | 30.96 | 16.66~38.73 | 28.55 |
LCZ-E (Bare rock or paved) | 5.00~31.19 | 24.42 | −2.81~35.08 | 27.78 | 17.85~39.04 | 32.43 | 13.85~38.80 | 31.92 |
LCZ-F (Bare soil or sand) | 0.77~31.04 | 24.97 | −7.61~35.43 | 28.21 | 14.82~39.08 | 32.38 | 10.94~40.33 | 31.33 |
LCZ-G (Water) | 10.36~29.27 | 16.16 | 12.34~34.90 | 18.00 | 20.71~36.06 | 24.73 | 20.76~35.05 | 24.80 |
LCZ | August | September | October | November | ||||
Range | Mean | Range | Mean | Range | Mean | Range | Mean | |
LCZ-1 (Compact high-rise) | 28.10~39.92 | 32.99 | 19.38~30.54 | 23.94 | 11.86~23.13 | 17.58 | 4.62~17.41 | 10.62 |
LCZ-2 (Compact midrise) | 27.15~40.44 | 36.03 | 19.90~33.69 | 26.40 | 14.43~26.55 | 19.19 | 7.31~17.78 | 11.39 |
LCZ-3 (Compact low-rise) | 25.10~40.60 | 33.79 | 6.42~32.82 | 25.06 | 2.21~26.10 | 19.08 | −4.64~17.54 | 11.58 |
LCZ-4 (Open high-rise) | 24.31~42.21 | 33.17 | 5.07~33.06 | 24.13 | 1.26~26.19 | 17.67 | −3.45~16.78 | 10.71 |
LCZ-5 (Open midrise) | 26.81~42.52 | 35.08 | 9.18~34.49 | 25.45 | 3.10~28.35 | 18.47 | −0.74~18.49 | 10.89 |
LCZ-6 (Open low-rise) | 26.30~41.25 | 33.97 | 13.76~32.16 | 24.86 | 6.58~24.96 | 18.57 | 1.61~17.74 | 11.55 |
LCZ-7 (Lightweight low-rise) | 22.62~44.59 | 34.44 | 2.24~37.64 | 25.33 | −5.15~30.87 | 18.80 | −7.07~19.85 | 11.55 |
LCZ-8 (Large low-rise) | 26.15~44.23 | 34.56 | 10.33~34.04 | 25.62 | 4.29~26.28 | 19.35 | −2.23~19.05 | 11.80 |
LCZ-9 (Sparsely built) | 25.22~42.23 | 30.62 | 9.11~33.25 | 22.69 | 2.55~24.89 | 17.03 | −2.73~18.09 | 11.19 |
LCZ-10 (Heavy industry) | 28.90~45.01 | 36.83 | 13.17~36.66 | 27.32 | 6.06~30.28 | 19.92 | 1.21~19.47 | 12.37 |
LCZ-A (Dense trees) | 25.09~39.13 | 30.67 | 18.93~29.11 | 21.56 | 11.17~23.92 | 14.88 | 5.92~18.12 | 11.22 |
LCZ-B (Scattered trees) | 27.09~41.82 | 33.36 | 19.24~32.62 | −1.00 | 11.34~24.65 | 17.32 | 4.99~17.28 | 11.70 |
LCZ-C (Bush, scrub) | 28.23~41.89 | 34.00 | 21.18~30.51 | 24.53 | 14.78~23.46 | 19.04 | 6.90~20.28 | 12.63 |
LCZ-D (Low plants) | 23.88~41.71 | 30.49 | 2.05~45.45 | 22.91 | −3.64~27.09 | 18.19 | −8.46~20.06 | 12.57 |
LCZ-E (Bare rock or paved) | 24.10~42.93 | 34.71 | 0.05~33.23 | 25.27 | −6.37~25.64 | 18.86 | −11.45~20.26 | 11.62 |
LCZ-F (Bare soil or sand) | 22.59~43.61 | 33.76 | −3.27~35.96 | 24.88 | −12.84~29.03 | 18.97 | −15.94~19.63 | 11.77 |
LCZ-G (Water) | 25.72~40.09 | 28.09 | 18.57~28.97 | 20.71 | 12.31~22.71 | 15.37 | 5.38~17.93 | 8.71 |
Appendix C
Appendix D
References
- United Nations. 68% of the World Population Projected to Live in Urban Areas by 2050. In 2018 Revision of World Urbanization Prospects; United Nations: New York, NY, USA, 2018. [Google Scholar]
- Department of Economic and Social Affairs, Sustainable Development, United Nations. Goal 11: Make Cities and Human Settlements Inclusive, Safe, Resilient and Sustainable. 2021; Available online: https://sdgs.un.org/goals/goal11 (accessed on 19 October 2021).
- Howard, L. The Climate of London: Deduced from Meteorological Observations Made in the Metropolis and at Various Places Around It; Darton, J.H., Longman, A.A., Highley, S.H., Hunter, R., Eds.; Joseph Rickerby: London, UK, 1833; Volume 3, Available online: https://books.google.co.jp/books?id=-yllMDVOz1IC&printsec=frontcover&hl=zh-CN&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false (accessed on 19 October 2021).
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- He, B.-J.; Zhao, D.; Xiong, K.; Qi, J.; Ulpiani, G.; Pignatta, G.; Prasad, D.; Jones, P. A framework for addressing urban heat challenges and associated adaptive behavior by the public and the issue of willingness to pay for heat resilient infrastructure in Chongqing, China. Sustain. Cities Soc. 2021, 75, 103361. [Google Scholar] [CrossRef]
- Santamouris, M. On the energy impact of urban heat island and global warming on buildings. Energy Build. 2014, 82, 100–113. [Google Scholar] [CrossRef]
- Guhathakurta, S.; Gober, P. The Impact of the Phoenix Urban Heat Island on Residential Water Use. J. Am. Plan. Assoc. 2007, 73, 317–329. [Google Scholar] [CrossRef]
- Santamouris, M.; Kolokotsa, D. Urban Climate Mitigation Techniques; Routledge: Oxfordshire, UK, 2016. [Google Scholar]
- Lowe, S.A. An energy and mortality impact assessment of the urban heat island in the US. Environ. Impact Assess. Rev. 2016, 56, 139–144. [Google Scholar] [CrossRef]
- Meehl, G.A.; Tebaldi, C. More Intense, More Frequent, and Longer Lasting Heat Waves in the 21st Century. Science 2004, 305, 994. [Google Scholar] [CrossRef] [Green Version]
- He, B.-J.; Wang, J.; Liu, H.; Ulpiani, G. Localized synergies between heat waves and urban heat islands: Implications on human thermal comfort and urban heat management. Environ. Res. 2021, 193, 110584. [Google Scholar] [CrossRef]
- Perera, N.G.R.; Emmanuel, R. A “Local Climate Zone” based approach to urban planning in Colombo, Sri Lanka. Urban Clim. 2018, 23, 188–203. [Google Scholar] [CrossRef] [Green Version]
- Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Derdouri, A.; Wang, R.; Murayama, Y.; Osaragi, T. Understanding the Links between LULC Changes and SUHI in Cities: Insights from Two-Decadal Studies (2001–2020). Remote Sens. 2021, 13, 3654. [Google Scholar] [CrossRef]
- Liu, H.; Huang, B.; Zhan, Q.; Gao, S.; Li, R.; Fan, Z. The influence of urban form on surface urban heat island and its planning implications: Evidence from 1288 urban clusters in China. Sustain. Cities Soc. 2021, 71, 102987. [Google Scholar] [CrossRef]
- Yang, J.; Wang, Y.; Xue, B.; Li, Y.; Xiao, X.; Xia, J.; He, B. Contribution of urban ventilation to the thermal environment and urban energy demand: Different climate background perspectives. Sci. Total. Environ. 2021, 795, 148791. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Yang, J.; Sun, W.; He, B. Suitability of human settlements in mountainous areas from the perspective of ventilation: A case study of the main urban area of Chongqing. J. Clean. Prod. 2021, 310, 127467. [Google Scholar] [CrossRef]
- Peng, S.; Piao, S.; Ciais, P.; Friedlingstein, P.; Ottle, C.; Bréon, F.-M.; Nan, H.; Zhou, L.; Myneni, R.B. Surface Urban Heat Island Across 419 Global Big Cities. Environ. Sci. Technol. 2012, 46, 696–703. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Schubert, S.; Kropp, J.P.; Rybski, D. On the influence of density and morphology on the Urban Heat Island intensity. Nat. Commun. 2020, 11, 2647. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Pal, S.; Ziaul, S. Detection of land use and land cover change and land surface temperature in English Bazar urban centre. Egypt. J. Remote. Sens. Space Sci. 2017, 20. [Google Scholar] [CrossRef] [Green Version]
- Amiri, R.; Weng, Q.; Alimohammadi, A.; Alavipanah, S.K. Spatial–temporal dynamics of land surface temperature in relation to fractional vegetation cover and land use/cover in the Tabriz urban area, Iran. Remote Sens. Environ. 2009, 113, 2606–2617. [Google Scholar] [CrossRef]
- Zhao, Z.-Q.; He, B.-J.; Li, L.-G.; Wang, H.-B.; Darko, A. Profile and concentric zonal analysis of relationships between land use/land cover and land surface temperature: Case study of Shenyang, China. Energy Build. 2017, 155, 282–295. [Google Scholar] [CrossRef]
- Li, H.; Zhou, Y.; Li, X.; Meng, L.; Wang, X.; Wu, S.; Sodoudi, S. A new method to quantify surface urban heat island intensity. Sci. Total Environ. 2018, 624, 262–272. [Google Scholar] [CrossRef] [PubMed]
- Adolphe, L. A Simplified Model of Urban Morphology: Application to an Analysis of the Environmental Performance of Cities. Environ. Plan. B Plan. Des. 2001, 28, 183–200. [Google Scholar] [CrossRef]
- Osmond, P. The urban structural unit: Towards a descriptive framework to support urban analysis and planning. Urban Morphol. 2010, 14, 5–20. [Google Scholar]
- He, B.-J.; Ding, L.; Prasad, D. Enhancing urban ventilation performance through the development of precinct ventilation zones: A case study based on the Greater Sydney, Australia. Sustain. Cities Soc. 2019, 47, 101472. [Google Scholar] [CrossRef]
- Fenner, D.; Meier, F.; Bechtel, B.; Otto, M.; Scherer, D. Intra and inter ‘local climate zone’ variability of air temperature as observed by crowdsourced citizen weather stations in Berlin, Germany. Meteorol. Z. 2017, 26, 525–547. [Google Scholar] [CrossRef]
- Alexander, P.J.; Mills, G. Local Climate Classification and Dublin’s Urban Heat Island. Atmosphere 2014, 5, 755. [Google Scholar] [CrossRef] [Green Version]
- Lau, K.K.-L.; Chung, S.C.; Ren, C. Outdoor thermal comfort in different urban settings of sub-tropical high-density cities: An approach of adopting local climate zone (LCZ) classification. Build. Environ. 2019, 154, 227–238. [Google Scholar] [CrossRef]
- Kotharkar, R.; Bagade, A. Evaluating urban heat island in the critical local climate zones of an Indian city. Landsc. Urban Plan. 2018, 169, 92–104. [Google Scholar] [CrossRef]
- Ochola, E.M.; Fakharizadehshirazi, E.; Adimo, A.O.; Mukundi, J.B.; Wesonga, J.M.; Sodoudi, S. Inter-local climate zone differentiation of land surface temperatures for Management of Urban Heat in Nairobi City, Kenya. Urban Clim. 2020, 31, 100540. [Google Scholar] [CrossRef]
- Lehnert, M.; Geletič, J.; Husák, J.; Vysoudil, M. Urban field classification by “local climate zones” in a medium-sized Central European city: The case of Olomouc (Czech Republic). Theor. Appl. Climatol. 2015, 122, 531–541. [Google Scholar] [CrossRef]
- Yang, J.; Jin, S.; Xiao, X.; Jin, C.; Xia, J.; Li, X.; Wang, S. Local climate zone ventilation and urban land surface temperatures: Towards a performance-based and wind-sensitive planning proposal in megacities. Sustain. Cities Soc. 2019, 47, 101487. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R.; Krayenhoff, E.S. Evaluation of the ‘local climate zone’ scheme using temperature observations and model simulations. Int. J. Climatol. 2014, 34, 1062–1080. [Google Scholar] [CrossRef]
- Bechtel, B.; Demuzere, M.; Mills, G.; Zhan, W.; Sismanidis, P.; Small, C.; Voogt, J. SUHI analysis using Local Climate Zones—A comparison of 50 cities. Urban Clim. 2019, 28, 100451. [Google Scholar] [CrossRef]
- Chen, X.; Yang, J.; Ren, C.; Jeong, S.; Shi, Y. Standardizing thermal contrast among local climate zones at a continental scale: Implications for cool neighborhoods. Build. Environ. 2021, 197, 107878. [Google Scholar] [CrossRef]
- Brousse, O.; Georganos, S.; Demuzere, M.; Vanhuysse, S.; Wouters, H.; Wolff, E.; Linard, C.; van Lipzig, N.P.M.; Dujardin, S. Using Local Climate Zones in Sub-Saharan Africa to tackle urban health issues. Urban Clim. 2019, 27, 227–242. [Google Scholar] [CrossRef] [Green Version]
- Demuzere, M.; Bechtel, B.; Middel, A.; Mills, G. Mapping Europe into local climate zones. PLoS ONE 2019, 14, e0214474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eldesoky, A.H.M.; Gil, J.; Pont, M.B. The suitability of the urban local climate zone classification scheme for surface temperature studies in distinct macroclimate regions. Urban Clim. 2021, 37, 100823. [Google Scholar] [CrossRef]
- Geletič, J.; Lehnert, M.; Savić, S.; Milošević, D. Inter-/intra-zonal seasonal variability of the surface urban heat island based on local climate zones in three central European cities. Build. Environ. 2019, 156, 21–32. [Google Scholar] [CrossRef]
- Du, P.; Chen, J.; Bai, X.; Han, W. Understanding the seasonal variations of land surface temperature in Nanjing urban area based on local climate zone. Urban Clim. 2020, 33, 100657. [Google Scholar] [CrossRef]
- Gémes, O.; Tobak, Z.; Leeuwen, B.V. Satellite Based Analysis of Surface Urban Heat Island Intensity. J. Environ. Geogr. 2016, 9, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Ziaul, S.; Pal, S. Analyzing control of respiratory particulate matter on Land Surface Temperature in local climatic zones of English Bazar Municipality and Surroundings. Urban Clim. 2018, 24, 34–50. [Google Scholar] [CrossRef]
- He, B.-J.; Zhao, Z.-Q.; Shen, L.-D.; Wang, H.-B.; Li, L.-G. An approach to examining performances of cool/hot sources in mitigating/enhancing land surface temperature under different temperature backgrounds based on landsat 8 image. Sustain. Cities Soc. 2019, 44, 416–427. [Google Scholar] [CrossRef]
- Shenyang Statistics Bureau. Bulletin No.1, Shenyang Seventh National Census. 2021-06-01; Shenyang Statistics Bureau: Shenyang, China, 2021.
- Shenyang Statistics Bureau. Bulletin No.6, Shenyang Seventh National Census. 2021-06-01; Shenyang Statistics Bureau: Shenyang, China, 2021.
- Qin, Z.; Karnieli, A.; Berliner, P. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. Int. J. Remote. Sens. 2001, 22, 3719–3746. [Google Scholar] [CrossRef]
- Zhou, D.; Zhao, S.; Liu, S.; Zhang, L.; Zhu, C. Surface urban heat island in China’s 32 major cities: Spatial patterns and drivers. Remote Sens. Environ. 2014, 152, 51–61. [Google Scholar] [CrossRef]
- Zhang, L.; Meng, Q.; Sun, Z.; Sun, Y. Spatial and Temporal Analysis of the Mitigating Effects of Industrial Relocation on the Surface Urban Heat Island over China. ISPRS Int. J. Geo-Inf. 2017, 6, 121. [Google Scholar] [CrossRef] [Green Version]
- Debbage, N.; Shepherd, J.M. The urban heat island effect and city contiguity. Comput. Environ. Urban Syst. 2015, 54, 181–194. [Google Scholar] [CrossRef]
- Yue, W.; Liu, X.; Zhou, Y.; Liu, Y. Impacts of urban configuration on urban heat island: An empirical study in China mega-cities. Sci. Total Environ. 2019, 671, 1036–1046. [Google Scholar] [CrossRef]
- Imhoff, M.L.; Zhang, P.; Wolfe, R.E.; Bounoua, L. Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sens. Environ. 2010, 114, 504–513. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Cai, M.; Ren, C.; Bechtel, B.; Xu, Y.; Ng, E. Detecting multi-temporal land cover change and land surface temperature in Pearl River Delta by adopting local climate zone. Urban Clim. 2019, 28, 100455. [Google Scholar] [CrossRef]
- Wang, Y.; Ouyang, W. Investigating the heterogeneity of water cooling effect for cooler cities. Sustain. Cities Soc. 2021, 75, 103281. [Google Scholar] [CrossRef]
- Geletič, J.; Lehnert, M.; Savić, S.; Milošević, D. Modelled spatiotemporal variability of outdoor thermal comfort in local climate zones of the city of Brno, Czech Republic. Sci. Total Environ. 2018, 624, 385–395. [Google Scholar] [CrossRef] [PubMed]
- Kotharkar, R.; Ghosh, A.; Kotharkar, V. Estimating summertime heat stress in a tropical Indian city using Local Climate Zone (LCZ) framework. Urban Clim. 2021, 36, 100784. [Google Scholar] [CrossRef]
- Gilabert, J.; Deluca, A.; Lauwaet, D.; Ballester, J.; Corbera, J.; Llasat, M.C. Assessing heat exposure to extreme temperatures in urban areas using the Local Climate Zone classification. Nat. Hazards Earth Syst. Sci. 2021, 21, 375–391. [Google Scholar] [CrossRef]
Date | Air Temperature/°C | Relative Humidity/% | Wind Speed/m·s–1 | Surface Temperature/°C |
---|---|---|---|---|
24 December 2018 | −7.1 | 59 | 0.9 | −9.5 |
25 January 2019 | −6.9 | 35 | 2.6 | −3.5 |
26 February 2019 | 1.5 | 36 | 1.9 | 6.9 |
14 March 2019 | 4.8 | 37 | 2.1 | 13.9 |
15 April 2019 | 18.9 | 21 | 4.0 | 30.4 |
1 May 2019 | 16.7 | 24 | 4.2 | 34.2 |
20 June 2020 | 29.4 | 44 | 5.4 | 49.9 |
4 July 2019 | 28.5 | 47 | 4.6 | 48.5 |
2 August 2018 | 33.2 | 38 | 4.0 | 40.5 |
22 September 2019 | 20.4 | 46 | 5.2 | 33.7 |
8 October 2019 | 11.4 | 30 | 8.0 | 24.6 |
9 November 2019 | 7.5 | 47 | 1.3 | 18.7 |
LCZ Types | Study Area /km2 | Built-Up Area (A and B) /km2 (%) | Rural Area/km2 (%) |
---|---|---|---|
LCZ 1 (Compact high-rise) | 22.02 | 21.34 (96.9%) | 0.67 (3.1%) |
LCZ 2 (Compact midrise) | 63.19 | 61.87 (97.9%) | 1.37 (2.1%) |
LCZ 3 (Compact low-rise) | 77.84 | 30.6 (39.3%) | 47.24 (60.7%) |
LCZ 4 (Open high-rise) | 73.25 | 53.69 (73.3%) | 19.79 (26.7%) |
LCZ 5 (Open midrise) | 93.89 | 75.79 (80.7%) | 17.97 (19.3%) |
LCZ 6 (Open low-rise) | 103.49 | 24.54 (23.7%) | 78.93 (76.3%) |
LCZ 7 (Lightweight low-rise) | 160.93 | 90.64 (56.3%) | 70.25 (43.7%) |
LCZ 8 (Large low-rise) | 77.53 | 50.77 (65.5%) | 26.94 (34.5%) |
LCZ 9 (Sparsely built) | 359.88 | 65.26 (18.1%) | 294.71 (81.9%) |
LCZ 10 (Heavy industry) | 77.98 | 68.55 (87.9%) | 8.98 (12.1%) |
LCZ A (Dense trees) | 75.29 | 2.13 (2.8%) | 73.17 (97.2%) |
LCZ B (Scattered trees) | 16.21 | 3.58 (22.1%) | 12.59 (77.9%) |
LCZ C (Bush, scrub) | 4.53 | 0.77 (17.0%) | 3.76 (83.0%) |
LCZ D (Low plants) | 1132.68 | 30.28 (2.7%) | 1102.25 (97.3%) |
LCZ E (Bare rock or paved) | 77.01 | 42.55 (55.3%) | 34.4 (44.7%) |
LCZ F (Bare soil or sand) | 125.38 | 40.16 (32.0%) | 85.28 (68.0%) |
LCZ G (Water) | 39.09 | 1.32 (3.4%) | 37.74 (96.6%) |
LCZ | December | January | February | March | ||||
Range | Mean | Range | Mean | Range | Mean | Range | Mean | |
LCZ-1 (Compact high-rise) | −20.28~1.63 | −4.65 | −16.26~−0.05 | −4.80 | −9.04~13.13 | 6.21 | −4.89~18.78 | 10.73 |
LCZ-2 (Compact midrise) | −18.43~2.81 | −4.15 | −14.45~1.46 | −4.21 | −6.30~16.34 | 7.27 | −1.08~21.18 | 12.04 |
LCZ-3 (Compact low-rise) | −26.15~3.74 | −3.91 | −22.25~4.35 | −3.48 | −12.47~15.19 | 9.11 | −9.83~23.37 | 14.21 |
LCZ-4 (Open high-rise) | −20.80~4.43 | −4.54 | −19.65~3.86 | −4.52 | −6.54~15.52 | 6.71 | −3.09~21.65 | 11.42 |
LCZ-5 (Open midrise) | −23.72~4.03 | −4.52 | −18.91~2.98 | −4.27 | −8.72~15.36 | 7.42 | −3.01~23.30 | 12.47 |
LCZ-6 (Open low-rise) | −13.75~2.17 | −4.01 | −12.38~1.82 | −3.58 | −0.97~16.05 | 8.89 | −1.19~21.61 | 13.67 |
LCZ-7 (Lightweight low-rise) | −25.58~3.32 | −3.87 | −24.72~3.36 | −3.66 | −12.77~18.41 | 9.10 | −7.00~24.26 | 14.31 |
LCZ-8 (Large low-rise) | −27.04~3.35 | −3.73 | −22.01~2.50 | −3.60 | −11.93~18.60 | 8.90 | −9.09~25.71 | 14.25 |
LCZ-9 (Sparsely built) | −26.81~4.36 | −3.70 | −21.74~3.88 | −3.26 | −12.69~18.13 | 9.46 | −9.58~24.55 | 13.91 |
LCZ-10 (Heavy industry) | −17.34~4.66 | −4.03 | −13.74~3.35 | −3.69 | −6.36~19.79 | 8.64 | −2.35~26.64 | 13.79 |
LCZ-A (Dense trees) | −9.26~4.50 | −4.52 | −9.22~3.26 | −4.76 | 0.35~15.75 | 7.21 | −4.75~20.80 | 10.98 |
LCZ-B (Scattered trees) | −9.62~2.35 | −4.24 | −9.17~1.59 | −3.83 | 0.77~15.20 | 8.44 | 3.79~20.41 | 13.37 |
LCZ-C (Bush, scrub) | −7.58~3.10 | −3.20 | −6.76~3.78 | −2.80 | 3.95~15.56 | 10.26 | 7.33~20.66 | 15.50 |
LCZ-D (Low plants) | −27.50~2.93 | −2.66 | −21.34~3.95 | −2.39 | −12.18~22.84 | 11.59 | −9.23~25.97 | 15.82 |
LCZ-E (Bare rock or paved) | −28.64~4.05 | −4.12 | −22.09~3.98 | −3.64 | −16.53~16.04 | 8.85 | −13.12~25.15 | 13.91 |
LCZ-F (Bare soil or sand) | −32.33~2.76 | −3.69 | −27.79~2.42 | −3.19 | −22.77~16.62 | 9.56 | −18.21~23.09 | 14.48 |
LCZ-G (Water) | −8.97~5.53 | −4.77 | −9.30~4.16 | −5.04 | −0.89~14.78 | 3.77 | −4.82~19.09 | 6.90 |
LCZ | April | May | June | July | ||||
Range | Mean | Range | Mean | Range | Mean | Range | Mean | |
LCZ-1 (Compact high-rise) | 11.87~29.62 | 21.33 | 6.29~34.15 | 25.36 | 23.14~38.19 | 31.80 | 19.99~40.09 | 32.93 |
LCZ-2 (Compact midrise) | 13.23~30.09 | 22.44 | 11.79~35.20 | 26.77 | 23.58~38.04 | 32.98 | 23.23~40.59 | 34.34 |
LCZ-3 (Compact low-rise) | 7.36~31.86 | 24.42 | 1.84~35.45 | 27.58 | 19.21~41.46 | 32.53 | 17.36~40.92 | 32.16 |
LCZ-4 (Open high-rise) | 10.62~30.18 | 22.02 | 6.88~35.50 | 25.44 | 20.72~39.05 | 31.37 | 19.37~38.31 | 31.66 |
LCZ-5 (Open midrise) | 12.31~31.11 | 22.99 | 8.20~38.25 | 26.69 | 21.84~41.46 | 32.46 | 20.92~40.06 | 32.87 |
LCZ-6 (Open low-rise) | 13.34~30.61 | 24.23 | 15.06~35.36 | 27.74 | 24.23~37.17 | 32.23 | 21.68~39.98 | 31.57 |
LCZ-7 (Lightweight low-rise) | 6.56~33.08 | 24.27 | 3.36~39.63 | 27.64 | 19.28~41.82 | 32.96 | 16.28~42.95 | 32.95 |
LCZ-8 (Large low-rise) | 7.24~33.81 | 24.24 | 1.91~41.34 | 27.79 | 18.91~42.03 | 33.05 | 17.24~43.34 | 33.02 |
LCZ-9 (Sparsely built) | 6.20~32.18 | 24.24 | 1.87~36.46 | 27.03 | 19.18~38.55 | 29.85 | 16.78~39.83 | 29.05 |
LCZ-10 (Heavy industry) | 13.34~32.57 | 23.81 | 9.81~39.29 | 27.92 | 23.43~42.60 | 33.59 | 22.68~44.20 | 34.58 |
LCZ-A (Dense trees) | 13.35~31.64 | 22.93 | 15.07~37.05 | 24.55 | 21.25~38.30 | 28.28 | 22.22~36.89 | 27.87 |
LCZ-B (Scattered trees) | 15.22~32.92 | 24.56 | 16.35~35.03 | 27.37 | 23.56~37.73 | 30.91 | 23.88~38.61 | 30.27 |
LCZ-C (Bush, scrub) | 18.62~31.22 | 25.93 | 20.52~35.33 | 29.13 | 26.59~38.84 | 32.24 | 25.62~37.58 | 30.87 |
LCZ-D (Low plants) | 5.15~35.48 | 26.18 | 0.28~37.45 | 29.22 | 15.70~39.86 | 30.97 | 15.89~39.72 | 28.55 |
LCZ-E (Bare rock or paved) | 5.00~31.36 | 24.05 | −2.75~38.29 | 27.52 | 17.85~41.97 | 32.61 | 13.85~40.77 | 32.43 |
LCZ-F (Bare soil or sand) | 0.77~31.19 | 24.65 | −7.61~35.43 | 28.00 | 14.82~42.15 | 32.48 | 10.94~41.52 | 31.69 |
LCZ-G (Water) | 10.36~29.27 | 16.29 | 12.34~34.90 | 18.14 | 20.71~36.06 | 24.83 | 20.76~36.39 | 24.91 |
LCZ | August | September | October | November | ||||
Range | Mean | Range | Mean | Range | Mean | Range | Mean | |
LCZ-1 (Compact high-rise) | 27.82~41.69 | 34.79 | 8.41~32.27 | 25.02 | −0.27~23.89 | 17.08 | −3.36~17.41 | 9.04 |
LCZ-2 (Compact midrise) | 27.15~41.55 | 36.10 | 12.78~35.71 | 26.47 | 2.93~26.55 | 18.34 | −1.34~20.44 | 9.88 |
LCZ-3 (Compact low-rise) | 23.64~42.65 | 34.50 | 4.33~34.04 | 25.37 | −4.09~26.42 | 18.87 | −8.29~18.13 | 11.18 |
LCZ-4 (Open high-rise) | 24.31~42.21 | 34.18 | 5.07~33.06 | 24.45 | 1.26~25.94 | 17.16 | −3.45~16.78 | 9.67 |
LCZ-5 (Open midrise) | 26.77~42.99 | 35.38 | 9.04~37.76 | 25.50 | 1.97~28.35 | 17.98 | −6.92~18.49 | 10.10 |
LCZ-6 (Open low-rise) | 26.30~41.79 | 34.15 | 13.76~32.89 | 24.87 | 6.58~24.96 | 18.41 | 1.61~17.74 | 11.22 |
LCZ-7 (Lightweight low-rise) | 22.62~45.48 | 35.54 | 2.24~37.64 | 26.06 | −5.15~30.87 | 19.04 | −7.07~19.85 | 11.48 |
LCZ-8 (Large low-rise) | 23.93~45.19 | 35.54 | 4.09~38.02 | 26.14 | −3.99~30.36 | 19.18 | −9.97~20.55 | 11.34 |
LCZ-9 (Sparsely built) | 22.64~42.29 | 31.24 | 1.49~33.66 | 23.03 | −5.79~26.26 | 17.15 | −8.97~18.09 | 11.10 |
LCZ-10 (Heavy industry) | 28.86~45.56 | 36.87 | 12.26~37.85 | 27.19 | 3.03~30.28 | 19.34 | −1.50~22.39 | 10.98 |
LCZ-A (Dense trees) | 25.09~39.13 | 30.70 | 18.93~28.96 | 21.59 | 11.05~25.11 | 14.91 | 5.92~18.12 | 11.20 |
LCZ-B (Scattered trees) | 26.89~41.82 | 33.45 | 19.24~32.62 | −1.00 | 11.48~24.65 | 17.27 | 4.99~17.28 | 11.50 |
LCZ-C (Bush, scrub) | 28.21~41.89 | 33.82 | 21.18~30.51 | 24.36 | 14.55~23.59 | 19.05 | 6.90~20.28 | 12.45 |
LCZ-D (Low plants) | 22.52~41.71 | 30.52 | 1.04~45.45 | 22.92 | −6.11~27.09 | 18.13 | −10.03~20.06 | 12.54 |
LCZ-E (Bare rock or paved) | 24.32~42.93 | 35.23 | 0.05~38.23 | 25.55 | −5.98~29.51 | 18.78 | −11.45~28.21 | −1.00 |
LCZ-F (Bare soil or sand) | 22.59~43.61 | 34.24 | −3.27~35.96 | 25.08 | −12.84~29.03 | 18.86 | −15.94~19.63 | 11.46 |
LCZ-G (Water) | 25.72~40.09 | 28.19 | 18.57~28.97 | 20.78 | 11.95~22.71 | 15.40 | 5.38~17.93 | 8.72 |
Urban | Rural | Urban | Rural | |||||
---|---|---|---|---|---|---|---|---|
Max-1 | Max-2 | Max-1 | Max-2 | Min-1 | Min-2 | Min-1 | Min-2 | |
December | LCZ-8 (–3.86) | LCZ-7 (–3.92) | LCZ-10 (–3.43) | LCZ-8 (–3.47) | LCZ-4 (–4.74) | LCZ-1 (–4.69) | LCZ-1 (–4.35) | LCZ-5 (–4.29) |
January | LCZ-7 (–3.70) | LCZ-10 (–3.75) | LCZ-3 (–3.14) | LCZ-9 (–3.14) | LCZ-1 (–4.87) | LCZ-4 (–4.82) | LCZ-1 (–3.81) | LCZ-4 (–3.80) |
February | LCZ-7 (9.00) | LCZ-8 (8.60) | LCZ-10 (10.03) | LCZ-9 (9.76) | LCZ-1 (6.12) | LCZ-4 (6.22) | LCZ-1 (7.79) | LCZ-4 (7.93) |
March | LCZ-7 (14.28) | LCZ-8 (13.91) | LCZ-10 (15.33) | LCZ-8 (14.89) | LCZ-1 (10.65) | LCZ-4 (10.97) | LCZ-1 (12.36) | LCZ-4 (12.47) |
April | LCZ-7 (24.19) | LCZ-8 (23.85) | LCZ-8 (24.98) | LCZ-3 (24.97) | LCZ-1 (21.25) | LCZ-4 (21.64) | LCZ-4 (22.87) | LCZ-1 (22.97) |
May | LCZ-10 (27.82) | LCZ-7 (27.80) | LCZ-10 (28.73) | LCZ-8 (28.08) | LCZ-4 (25.24) | LCZ-1 (25.31) | LCZ-4 (25.86) | LCZ-1 (25.97) |
June | LCZ-10 (33.59) | LCZ-7 (33.33) | LCZ-10 (33.58) | LCZ-2 (32.81) | LCZ-9 (31.44) | LCZ-4 (31.56) | LCZ-9 (29.49) | LCZ-4 (30.78) |
July | LCZ-10 (34.63) | LCZ-2 (34.37) | LCZ-10 (34.26) | LCZ-2 (33.36) | LCZ-9 (31.44) | LCZ-4 (32.06) | LCZ-9 (28.52) | LCZ-1 (30.49) |
August | LCZ-10 (36.88) | LCZ-7 (36.42) | LCZ-10 (36.83) | LCZ-2 (36.03) | LCZ-9 (34.09) | LCZ-4 (34.54) | LCZ-9 (30.62) | LCZ-1 (32.99) |
September | LCZ-10 (27.18) | LCZ-7 (26.65) | LCZ-10 (27.32) | LCZ-2 (26.40) | LCZ-4 (24.54) | LCZ-9 (24.57) | LCZ-9 (22.69) | LCZ-1 (23.94) |
October | LCZ-10 (19.27) | LCZ-7 (19.25) | LCZ-10 (19.92) | LCZ-8(19.35) | LCZ-4 (16.93) | LCZ-1 (17.04) | LCZ-9 (17.03) | LCZ-1 (17.58) |
November | LCZ-7 (11.43) | LCZ-8 (11.11) | LCZ-10 (12.37) | LCZ-8 (11.80) | LCZ-1 (8.96) | LCZ-4 (9.26) | LCZ-1 (10.62) | LCZ-4 (10.71) |
Urban | Rural | Urban | Rural | |||||
---|---|---|---|---|---|---|---|---|
Max-1 | Max-2 | Max-1 | Max-2 | Min-1 | Min-2 | Min-1 | Min-2 | |
December | LCZ-C (−3.65) | LCZ-B (−3.80) | LCZ-D (−2.63) | LCZ-C (−3.10) | LCZ-G (−4.84) | LCZ-E (−4.41) | LCZ-G (−4.77) | LCZ-A (−4.54) |
January | LCZ-D (−3.08) | LCZ-C (−3.34) | LCZ-D (−2.37) | LCZ-C (−2.69) | LCZ-G (−5.03) | LCZ-A (−4.51) | LCZ-G (−5.04) | LCZ-A (−4.77) |
February | LCZ-D (9.47) | LCZ-C (9.16) | LCZ-D (11.65) | LCZ-C (10.48) | LCZ-G (4.40) | LCZ-A (6.69) | LCZ-G (3.75) | LCZ-A (7.22) |
March | LCZ-D (14.52) | LCZ-C (14.41) | LCZ-D (15.83) | LCZ-C (15.14) | LCZ-G (7.96) | LCZ-A (11.63) | LCZ-G (6.83) | LCZ-A (11.02) |
April | LCZ-D (24.89) | LCZ-C (24.84) | LCZ-D (26.13) | LCZ-C (25.67) | LCZ-G (18.53) | LCZ-A (21.87) | LCZ-G (16.16) | LCZ-A (22.90) |
May | LCZ-C (28.38) | LCZ-D (28.36) | LCZ-D (29.29) | LCZ-C (29.21) | LCZ-G (20.56) | LCZ-A (21.66) | LCZ-G (18.00) | LCZ-A (24.65) |
June | LCZ-C (32.84) | LCZ-E (32.80) | LCZ-E (32.43) | LCZ-C (32.42) | LCZ-G (27.02) | LCZ-A (27.42) | LCZ-G (24.73) | LCZ-A (28.21) |
July | LCZ-E (32.93) | LCZ-F (32.45) | LCZ-E (31.92) | LCZ-F (31.33) | LCZ-G (27.40) | LCZ-A (27.57) | LCZ-G (24.80) | LCZ-A (27.81) |
August | LCZ-E (35.77) | LCZ-F (35.31) | LCZ-E (34.71) | LCZ-C (34.00) | LCZ-G (30.29) | LCZ-A (30.34) | LCZ-G (28.09) | LCZ-D (30.49) |
September | LCZ-E (25.90) | LCZ-F (25.54) | LCZ-E (25.27) | LCZ-F (24.88) | LCZ-A (21.62) | LCZ-G (22.02) | LCZ-B (-1.00) | LCZ-G (20.71) |
October | LCZ-C (18.84) | LCZ-E (18.71) | LCZ-C (19.04) | LCZ-F (18.97) | LCZ-A (14.71) | LCZ-G (15.61) | LCZ-A (14.88) | LCZ-G (15.37) |
November | LCZ-C (11.63) | LCZ-D (11.28) | LCZ-C (12.63) | LCZ-D (12.57) | LCZ-E (−1.00) | LCZ-G (8.87) | LCZ-G (8.71) | LCZ-A (11.22) |
Whole Study Area | Urban (Built-Up) Area | Rural Area | ||||
---|---|---|---|---|---|---|
Built LCZs | Land-Cover LCZs | Built LCZs | Land-Cover LCZs | Built LCZs | Land-Cover LCZs | |
December | 86.7% | 76.2% | 71.1% | 47.6% | 48.9% | 76.2% |
January | 91.1% | 85.7% | 77.8% | 71.4% | 57.8% | 85.7% |
February | 84.4% | 81.0% | 91.1% | 81.0% | 62.2% | 85.7% |
March | 91.1% | 90.5% | 95.6% | 81.0% | 77.8% | 85.7% |
April | 88.9% | 90.5% | 88.9% | 81.0% | 75.6% | 90.5% |
May | 80.0% | 90.5% | 84.4% | 85.7% | 62.2% | 85.7% |
June | 88.9% | 85.7% | 88.9% | 76.2% | 75.6% | 90.5% |
July | 91.1% | 95.2% | 86.7% | 71.4% | 88.9% | 95.2% |
August | 93.3% | 95.2% | 86.7% | 81.0% | 86.7% | 95.2% |
September | 88.9% | 90.5% | 88.9% | 81.0% | 33.3% | 57.1% |
October | 91.1% | 95.2% | 82.2% | 81.0% | 75.6% | 81.0% |
November | 84.4% | 81.0% | 91.1% | 61.9% | 62.2% | 71.4% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Sharifi, A.; Dong, X.; Shen, L.; He, B.-J. Spatial Variability and Temporal Heterogeneity of Surface Urban Heat Island Patterns and the Suitability of Local Climate Zones for Land Surface Temperature Characterization. Remote Sens. 2021, 13, 4338. https://doi.org/10.3390/rs13214338
Zhao Z, Sharifi A, Dong X, Shen L, He B-J. Spatial Variability and Temporal Heterogeneity of Surface Urban Heat Island Patterns and the Suitability of Local Climate Zones for Land Surface Temperature Characterization. Remote Sensing. 2021; 13(21):4338. https://doi.org/10.3390/rs13214338
Chicago/Turabian StyleZhao, Ziqi, Ayyoob Sharifi, Xin Dong, Lidu Shen, and Bao-Jie He. 2021. "Spatial Variability and Temporal Heterogeneity of Surface Urban Heat Island Patterns and the Suitability of Local Climate Zones for Land Surface Temperature Characterization" Remote Sensing 13, no. 21: 4338. https://doi.org/10.3390/rs13214338
APA StyleZhao, Z., Sharifi, A., Dong, X., Shen, L., & He, B. -J. (2021). Spatial Variability and Temporal Heterogeneity of Surface Urban Heat Island Patterns and the Suitability of Local Climate Zones for Land Surface Temperature Characterization. Remote Sensing, 13(21), 4338. https://doi.org/10.3390/rs13214338