Assessment of Recent Changes in Dust over South Asia Using RegCM4 Regional Climate Model
"> Figure 1
<p>(<b>a</b>) The model domain with topographical height (shaded); (<b>b</b>) associated soil texture dominant categories. The North-Western (NW) parts of India and the adjacent regions are marked as the black box in (<b>a</b>).</p> "> Figure 2
<p>(<b>a</b>) Trends (year<sup>−1</sup>) in AOD and (<b>b</b>) rainfall for the period of study. Stipple shows the area where trends are significant at 95% confidence level, determined using the Mann-Kendall trend tests.</p> "> Figure 3
<p>Trends (year<sup>−1</sup>) in deposition (dry and wet, mgm<sup>−2</sup>day<sup>−1</sup>) for the period of study. Stipple shows the area where trends are significant at 95% confidence level, determined using the Mann-Kendall trend tests.</p> "> Figure 4
<p>The trends (year<sup>−1</sup>) in simulated radiative forcing (Wm<sup>−2</sup>) and heating rate (K day<sup>−1</sup>) in both SW and LW. The terms toa, boa, and atm are acronym for “Top of the atmosphere”, “bottom of the atmosphere”, and “in the atmospheric column”, respectively. The stipple shows the area where trends are significant at 95% confidence level, determined using the Mann-Kendall trend test.</p> "> Figure 5
<p>Trends (year<sup>−1</sup>) within NW box with respect to the base year (2001) in simulated dust AOD and precipitation for the period of study over the region of interest (NW part of India and adjacent regions). Trends are significant at the 95% confidence level determined using the Mann-Kendall trend tests.</p> "> Figure 6
<p>Overall changes (percentage) in various parameters within the NW box with respect to the base year (2001). SW, LW, and HR are acronyms for shortwave, longwave, and heating rate, respectively.</p> ">
Abstract
:1. Introduction
2. Data and Methodology
2.1. Regional Climate Model RegCM (Version 4.5)
2.2. Experimental Design and Dataset Used
3. Results and Discussion
3.1. Trends in AOD and Precipitation
3.2. Changes in the Dry and Wet Deposition of Dust
3.3. Changes in Radiative Forcing and Heating Rate
3.4. Trends in AOD and Precipitation over the North West
3.5. Trends in Dust and the Associated Changes in Radiative Forcing
4. Conclusions
- The simulated AOD is found to exhibit a spatio-temporal declining trend, whereas rainfall shows an increasing trend over the arid/desert and semi-arid regions of NW India.
- The change in AOD could be due to the combined effects of rainfall and tracer processes (emission, transport, and removal/deposition). There is an approximately 18% decline in AOD and >50% rainfall enhancement observed over NW parts of India.
- The trend of wet removal is more than five-fold more dominant over the gravity settling/dry deposition. However, the net change in wet removal is nearly twice that of dry deposition.
- The direction of the observed trend in radiative forcing in both shortwave and longwave radiation regimes agree with the change in dust load/burden. However, the shortwave forcing trends are dominant over its longwave counterparts.
- Longwave radiative forcing is more sensitive to a unit change in dust burden/AOD compared to shortwave radiative forcing.
- As a response to dust change, a significant widespread atmospheric cooling trend is observed over parts of North and North-Western India.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Tegen, I.; Fung, I. Contribution to the atmospheric mineral aerosol load from land surface modification. J. Geophys. Res. 1995, 100, 18707–18726. [Google Scholar] [CrossRef]
- Atwater, M.A. Planetary albedo changes due to aerosols. Science 1970, 170, 64–66. [Google Scholar] [CrossRef] [PubMed]
- Ensor, D.S.; Porch, W.M.; Pilat, M.J.; Charlson, R.J. Influence of the Atmospheric Aerosol on Albedo. J. Appl. Meteorol. 1971, 10, 1303–1306. [Google Scholar] [CrossRef] [Green Version]
- Charlson, R.J.; Schwartz, S.E.; Hales, J.M.; Cess, R.D.; Coakley, J.A.; Hansen, J.E.; Hofmann, D.J. Climate forcing by anthropogenic aerosols. Science 1992, 255, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Dipu, S.; Prabha, T.V.; Pandithurai, G.; Dudhia, J.; Pfister, G.; Rajesh, K.; Goswami, B.N. Impact of elevated aerosol layer on the cloud macrophysical properties prior to monsoon onset. Atmos. Environ. 2013, 70, 454–467. [Google Scholar] [CrossRef]
- Gu, Y.; Liou, K.N.; Jiang, J.H.; Su, H.; Liu, X. Dust aerosol impact on North Africa climate: A GCM investigation of aerosol-cloud-radiation interactions using A-Train satellite data. Atmos. Chem. Phys. 2012, 12, 1667–1679. [Google Scholar] [CrossRef] [Green Version]
- Twomey, S. The Influence of Pollution on the Shortwave Albedo of Clouds. J. Atmos. Sci. 1977, 34, 1149–1152. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Lau, K.M.; Kim, K.M. Observational relationships between aerosol and Asian monsoon rainfall, and circulation. Geophys. Res. Lett. 2006, 33, 1–5. [Google Scholar] [CrossRef]
- Sanap, S.D.; Pandithurai, G. The effect of absorbing aerosols on Indian monsoon circulation and rainfall: A review. Atmos. Res. 2015, 164–165, 318–327. [Google Scholar] [CrossRef]
- Dey, S.; Tripathi, S.N.; Singh, R.P.; Holben, B.N. Influence of dust storms on the aerosol optical properties over the Indo-Gangetic basin. J. Geophys. Res. D Atmos. 2004, 109, D20211. [Google Scholar] [CrossRef] [Green Version]
- Vinoj, V.; Rasch, P.J.; Wang, H.; Yoon, J.H.; Ma, P.L.; Landu, K.; Singh, B. Short-term modulation of Indian summer monsoon rainfall by West Asian dust. Nat. Geosci. 2014, 7, 308–313. [Google Scholar] [CrossRef]
- Jin, Q.; Wei, J.; Yang, Z.L.; Pu, B.; Huang, J. Consistent response of Indian summer monsoon to Middle East dust in observations and simulations. Atmos. Chem. Phys. 2015, 15, 9897–9915. [Google Scholar] [CrossRef] [Green Version]
- Lau, W.K.M. The aerosol-monsoon climate system of Asia: A new paradigm. J. Meteorol. Res. 2016, 30, 1–11. [Google Scholar] [CrossRef]
- Das, S.; Dey, S.; Dash, S.K. Direct radiative effects of anthropogenic aerosols on Indian summer monsoon circulation. Theor. Appl. Climatol. 2015, 124, 629–639. [Google Scholar] [CrossRef]
- Maharana, P.; Dimri, A.P.; Choudhary, A. Redistribution of Indian summer monsoon by dust aerosol forcing. Meteorol. Appl. 2019, 26, 584–596. [Google Scholar] [CrossRef] [Green Version]
- Pandey, S.K.; Vinoj, V.; Panwar, A. The short-term variability of aerosols and their impact on cloud properties and radiative effect over the Indo-Gangetic Plain. Atmos. Pollut. Res. 2020, 11, 630–638. [Google Scholar] [CrossRef]
- Li, Z.; Lau, W.K.M.; Ramanathan, V.; Wu, G.; Ding, Y.; Manoj, M.G.; Liu, J.; Qian, Y.; Li, J.; Zhou, T.; et al. Aerosol and monsoon climate interactions over Asia. Rev. Geophys. 2016, 54, 866–929. [Google Scholar] [CrossRef]
- Harikishan, G.; Padmakumari, B.; Maheskumar, R.S.; Kulkarni, J.R. Radiative effect of dust aerosols on cloud microphysics and meso-scale dynamics during monsoon breaks over Arabian sea. Atmos. Environ. 2015, 105, 22–31. [Google Scholar] [CrossRef]
- Dash, S.K.; Mishra, S.K.; Pattnayak, K.C.; Mamgain, A.; Mariotti, L.; Coppola, E.; Giorgi, F.; Giuliani, G. Projected seasonal mean summer monsoon over India and adjoining regions for the twenty-first century. Theor. Appl. Climatol. 2015, 122, 581–593. [Google Scholar] [CrossRef]
- Nigam, S.; Bollasina, M. “Elevated heat pump” hypothesis for the aerosol-monsoon hydroclimate link: “Grounded” in observations? J. Geophys. Res. Atmos. 2010, 115, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Lau, K.M.; Kim, K.M. Comment on “‘Elevated heat pump’ hypothesis for the aerosol-monsoon hydroclimate link: ‘Grounded’ in observations ?” by S. Nigam and M. Bollasina. J. Geophys. Res. Atmos. 2011, 116, 4–7. [Google Scholar] [CrossRef] [Green Version]
- Bollasina, M.; Nigam, S.; Lau, K.M. Absorbing aerosols and summer monsoon evolution over South Asia: An observational portrayal. J. Clim. 2008, 21, 3221–3239. [Google Scholar] [CrossRef] [Green Version]
- Chung, C.E.; Ramanathan, V.; Kiehl, J.T.; Chung, C.E.; Ramanathan, V.; Kiehl, J.T. Effects of the South Asian Absorbing Haze on the Northeast Monsoon and Surface–Air Heat Exchange. J. Clim. 2002, 15, 2462–2476. [Google Scholar] [CrossRef]
- Lau, K.M.; Kim, M.K.; Kim, K.M. Asian summer monsoon anomalies induced by aerosol direct forcing: The role of the Tibetan Plateau. Clim. Dyn. 2006, 26, 855–864. [Google Scholar] [CrossRef] [Green Version]
- Pandey, S.K.; Vinoj, V.; Landu, K.; Babu, S.S. Declining pre-monsoon dust loading over South Asia: Signature of a changing regional climate. Sci. Rep. 2017, 7, 16062. [Google Scholar] [CrossRef] [Green Version]
- Dickinson, R.E.; Errico, R.M.; Giorgi, F.; Bates, G.T. A regional climate model for the western United States. Clim. Chang. 1989, 15, 383–422. [Google Scholar] [CrossRef]
- Gao, X.; Xu, Y.; Zhao, Z.; Pal, J.S.; Giorgi, F. On the role of resolution and topography in the simulation of East Asia precipitation. Theor. Appl. Climatol. 2006, 86, 173–185. [Google Scholar] [CrossRef]
- Giorgi, F. Thirty Years of Regional Climate Modeling: Where Are We and Where Are We Going next? J. Geophys. Res. Atmos. 2019, 124, 5696–5723. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.-G.; Park, J.-H.; Lee, S.-H.; Suh, M.-S. Assessment of the RegCM4 over East Asia and future precipitation change adapted to the RCP scenarios. J. Geophys. Res. Atmos. 2014, 119, 2913–2927. [Google Scholar] [CrossRef]
- Solmon, F.; Giorgi, F.; Liousse, C. Aerosol modelling for regional climate studies: Application to anthropogenic particles and evaluation over a European/African domain. Tellus B Chem. Phys. Meteorol. 2006, 58, 51–72. [Google Scholar] [CrossRef]
- Giorgi, F.; Solmon, F.; Giuliani, G. Regional Climatic Model RegCM User’s Guide; Version 4.5; International Centre for Theoretical Physics: Trieste, Italy, 2016. [Google Scholar]
- Dash, S.K.; Mamgain, A.; Pattnayak, K.C.; Giorgi, F. Spatial and Temporal Variations in Indian Summer Monsoon Rainfall and Temperature: An Analysis Based on RegCM3 Simulations. Pure Appl. Geophys. 2013, 170, 655–674. [Google Scholar] [CrossRef]
- Davitashvili, T.; Kutaladze, N.; Kvatadze, R.; Mikuchadze, G. Effect of dust aerosols in forming the regional climate of Georgia. Scalable Comput. 2018, 19, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Pattnayak, K.C.; Panda, S.K.; Saraswat, V.; Dash, S.K. Assessment of two versions of regional climate model in simulating the Indian Summer Monsoon over South Asia CORDEX domain. Clim. Dyn. 2018, 50, 3049–3061. [Google Scholar] [CrossRef] [Green Version]
- Kiehl, J.T.; Hack, J.J.; Bonan, G.B.; Boville, B.A.; Briegleb, B.P.; Williamson, D.L.; Rasch, P.J. Description of the NCAR Community Climate Model. (CCM3); NCAR: Boulder, CO, USA, 1996. [Google Scholar]
- Abish, B.; Arun, K. Resolving the weakening of orographic rainfall over India using a regional climate model RegCM 4.5. Atmos. Res. 2019, 227, 125–139. [Google Scholar] [CrossRef]
- Ajay, P.; Pathak, B.; Solmon, F.; Bhuyan, P.K.; Giorgi, F. Obtaining best parameterization scheme of RegCM 4.4 for aerosols and chemistry simulations over the CORDEX South Asia. Clim. Dyn. 2019, 53, 329–352. [Google Scholar] [CrossRef]
- Maurya, R.K.S.; Sinha, P.; Mohanty, M.R.; Mohanty, U.C. Coupling of Community Land Model with RegCM4 for Indian Summer Monsoon Simulation. Pure Appl. Geophys. 2017, 174, 4251–4270. [Google Scholar] [CrossRef]
- Tiwari, P.R.; Chandra Kar, S.; Mohanty, U.C.; Dey, S.; Sinha, P.; Raju, P.V.S.; Shekhar, M.S. The role of land surface schemes in the regional climate model (RegCM) for seasonal scale simulations over Western Himalaya. Atmosfera 2015, 28, 129–142. [Google Scholar] [CrossRef] [Green Version]
- Mohanty, M.R.; Sinha, P.; Maurya, R.K.S.; Mohanty, U.C. Moisture flux adjustments in RegCM4 for improved simulation of Indian summer monsoon precipitation. Clim. Dyn. 2019, 52, 7049–7069. [Google Scholar] [CrossRef]
- Alfaro, S.C.; Gomes, L. Modeling mineral aerosol production by wind erosion: Emission intensities and aerosol size distributions in source areas. J. Geophys. Res. Atmos. 2001, 106, 18075–18084. [Google Scholar] [CrossRef]
- Zakey, A.S.; Solmon, F.; Giorgi, F. Implementation and testing of a desert dust module in a regional climate model. Atmos. Chem. Phys. 2006, 6, 4687–4704. [Google Scholar] [CrossRef] [Green Version]
- Solmon, F.; Mallet, M.; Elguindi, N.; Giorgi, F.; Zakey, A.; Konaré, A. Dust aerosol impact on regional precipitation over western Africa, mechanisms and sensitivity to absorption properties. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Hess, M.; Koepke, P.; Schult, I. Optical Properties of Aerosols and Clouds: The Software Package OPAC. Bull. Am. Meteorol. Soc. 1998, 79, 831–844. [Google Scholar] [CrossRef]
- Steiner, A.L.; Pal, J.S.; Rauscher, S.A.; Bell, J.L.; Diffenbaugh, N.S.; Boone, A.; Sloan, L.C.; Giorgi, F. Land surface coupling in regional climate simulations of the West African monsoon. Clim. Dyn. 2009, 33, 869–892. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Pal, J.S.; Small, E.E.; Eltahir, E.A.B. Simulation of regional-scale water and energy budgets: Representation of subgrid cloud and precipitation processes within RegCM. J. Geophys. Res. Atmos. 2000, 105, 29579–29594. [Google Scholar] [CrossRef] [Green Version]
- Holtslag, A.A.M.; De Bruijn, E.I.F.; Pan, H.L. A high resolution air mass transformation model for short-range weather forecasting. Mon. Weather Rev. 1990, 118, 1561–1575. [Google Scholar] [CrossRef]
- Satheesh, S.K.; Srinivasan, J. Enhanced aerosol loading over Arabian Sea during the pre-monsoon season: Natural or anthropogenic? Geophys. Res. Lett. 2002, 29, 21-1–21-4. [Google Scholar] [CrossRef]
- Vinoj, V.; Satheesh, S.K. Measurements of aerosol optical depth over Arabian Sea during summer monsoon season. Geophys. Res. Lett. 2003, 30, 5. [Google Scholar] [CrossRef]
- Deepshikha, S.; Satheesh, S.K.; Srinivasan, J. Dust aerosols over India and adjacent continents retrieved using METEOSAT infrared radiance Part I: Sources and regional distribution. Ann. Geophys. 2006, 24, 37–61. [Google Scholar] [CrossRef] [Green Version]
- Pandey, S.K.; Bakshi, H.; Vinoj, V. Recent changes in dust and its impact on aerosol trends over the Indo-Gangetic Plain (IGP). In Remote Sensing of the Atmosphere, Clouds, and Precipitation VI; Im, E., Kumar, R., Yang, S., Eds.; SPIE: Bellingham, WA, USA, 2016; Volume 9876, p. 98761Z. [Google Scholar]
- Lau, W. Atmospheric science: Desert dust and monsoon rain. Nat. Geosci. 2014, 7, 255–256. [Google Scholar] [CrossRef]
- Tiwari, S.; Kumar, A.; Pratap, V.; Singh, A.K. Assessment of two intense dust storm characteristics over Indo—Gangetic basin and their radiative impacts: A case study. Atmos. Res. 2019, 228, 23–40. [Google Scholar] [CrossRef]
- Singh, A.; Tiwari, S.; Sharma, D.; Singh, D.; Tiwari, S.; Srivastava, A.K.; Rastogi, N.; Singh, A.K. Characterization and radiative impact of dust aerosols over northwestern part of India: A case study during a severe dust storm. Meteorol. Atmos. Phys. 2016, 128, 779–792. [Google Scholar] [CrossRef]
- Tripathi, S.N.; Srivastava, A.K.; Dey, S.; Satheesh, S.K.; Krishnamoorthy, K. The vertical profile of atmospheric heating rate of black carbon aerosols at Kanpur in northern India. Atmos. Environ. 2007, 41, 6909–6915. [Google Scholar] [CrossRef]
- Ramachandran, S.; Rupakheti, M.; Lawrence, M.G. Aerosol—Induced atmospheric heating rate decreases over South and East Asia as a result of changing content and composition. Sci. Rep. 2020, 10, 20091. [Google Scholar] [CrossRef] [PubMed]
- Lau, K.M.; Ramanathan, V.; Wu, G.X.; Li, Z.; Tsay, S.C.; Hsu, C.; Sikka, R.; Holben, B.; Lu, D.; Tartari, G.; et al. The joint aerosol-monsoon experiment: A new challenge for monoon climate research. Bull. Am. Meteorol. Soc. 2008, 89, 369–383. [Google Scholar] [CrossRef] [Green Version]
- Marticorena, B.; Bergametti, G. Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme. J. Geophys. Res. Atmos. 1995, 100, 16415–16430. [Google Scholar] [CrossRef] [Green Version]
- Kuzu, S.L.; Yavuz, E. Comparison of RegCM dust schemes by monitoring an aeolian dust transport episode. Air Qual. Atmos. Health 2021, 1–11. [Google Scholar] [CrossRef]
Model Used | RegCM (Version 4.5) |
---|---|
Grid dimensions | 160 × 100, 18 sigma levels |
Dynamics | MM5 hydrostatic |
Horizontal resolutions | 50 km |
Simulation Periods | 2001–2015 |
Top layer Pressure | 50 hPa |
Land Surface model | CLM4.5 |
Meteorological boundary conditions | ERA-Interim [46] |
Chemical boundary conditions | Dust Chemistry (online) |
Cumulus convection scheme | Emanuel over land and ocean |
Radiation scheme | CCM3 |
Moisture scheme | Subgrid Explicit Moisture Scheme [47] |
Planetary boundary layer scheme | Holtslag PBL [48] |
Topography | USGS |
SST | Weekly Optimal Interpolation dataset (OI_WK) |
Dust tracers | DUST4 (4 bins) |
Dust size particle distributions | Standard scheme [42] |
Variables | Units | Trend Year−1 | Duration | Total Change (%) |
---|---|---|---|---|
AOD | unit less | −0.005 | 2001–2015 | −17.5% |
Precipitation | mm day−1 | 0.10 | 2001–2015 | 54.14% |
Burden | mg m−2 | −5.47 | 2001–2015 | −19.3% |
Surface Emission | mg m−2 day−1 | −8.38 | 2001–2015 | −3.6% |
Dry Deposition | mg m−2 day−1 | 0.28 | 2001–2015 | 48.6% |
Wet deposition | mg m−2 day−1 | 1.69 | 2001–2015 | 79.6% |
SWRF (toa) | Wm−2 | 0.04 | 2001–2015 | 7% |
SWRF (atm) | Wm−2 | −0.19 | 2001–2015 | −16.6% |
SWRF (boa) | Wm−2 | 0.24 | 2001–2015 | 11.6% |
SWHR (atm) | Kday−1 | −0.006 | 2001–2015 | −16.1% |
LWRF (toa) | Wm−2 | −0.14 | 2001–2015 | −88.6% |
LWRF (atm) | Wm−2 | −0.08 | 2001–2015 | −32.8% |
LWRF (boa) | Wm−2 | −0.09 | 2001–2015 | −20.8% |
LWHR (atm) | Kday−1 | −0.002 | 2001–2015 | −22.5% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asutosh, A.; Pandey, S.K.; Vinoj, V.; Ramisetty, R.; Mittal, N. Assessment of Recent Changes in Dust over South Asia Using RegCM4 Regional Climate Model. Remote Sens. 2021, 13, 4309. https://doi.org/10.3390/rs13214309
Asutosh A, Pandey SK, Vinoj V, Ramisetty R, Mittal N. Assessment of Recent Changes in Dust over South Asia Using RegCM4 Regional Climate Model. Remote Sensing. 2021; 13(21):4309. https://doi.org/10.3390/rs13214309
Chicago/Turabian StyleAsutosh, Acharya, S.K Pandey, V Vinoj, Ramakrishna Ramisetty, and Nishant Mittal. 2021. "Assessment of Recent Changes in Dust over South Asia Using RegCM4 Regional Climate Model" Remote Sensing 13, no. 21: 4309. https://doi.org/10.3390/rs13214309
APA StyleAsutosh, A., Pandey, S. K., Vinoj, V., Ramisetty, R., & Mittal, N. (2021). Assessment of Recent Changes in Dust over South Asia Using RegCM4 Regional Climate Model. Remote Sensing, 13(21), 4309. https://doi.org/10.3390/rs13214309