Effect of Permafrost Thawing on Discharge of the Kolyma River, Northeastern Siberia
<p>Maps of geographical characteristics in the Kolyma River basin: (<b>a</b>) Vegetation (the 1° GLDAS-2/NOAH Dominant Vegetation Type datasets (<a href="https://ldas.gsfc.nasa.gov/gldas/GLDASvegetation.php" target="_blank">https://ldas.gsfc.nasa.gov/gldas/GLDASvegetation.php</a> accessed on 30 July 2021) using the NOAHv3.3 Vegetation Dataset from GLDAS-2) and (<b>b</b>) Permafrost distribution [<a href="#B19-remotesensing-13-04389" class="html-bibr">19</a>]. White and black lines denote the Kolyma River watershed boundary (total basin). Red area in (<b>a</b>) shows a sub-basin “Dam basin.” In (<b>a</b>), yellow circles denote the locations of river discharge cross-sections, and black cross-mark denotes a large reservoir. In (<b>b</b>), red circles and white numbers denote meteorological observation sites, which include soil temperature profile observation at 20 cm, 40 cm, 80 cm, 160 cm, and 320 cm depth.</p> "> Figure 2
<p>Analysis flow in this study. The vertical axis denotes the Materials and Methods, Results, and Discussion. The number in the parentheses denotes the corresponding section. The abbreviations in the figure are as follows: GMFD: Global Meteorological Forcing Dataset for land surface modeling [<a href="#B26-remotesensing-13-04389" class="html-bibr">26</a>], CRU: University of East Anglia Climatic Research Unit [<a href="#B29-remotesensing-13-04389" class="html-bibr">29</a>], Udel: University of Delaware Air Temperature & Precipitation [<a href="#B30-remotesensing-13-04389" class="html-bibr">30</a>], CHANGE: A coupled hydrological and biogeochemical model [<a href="#B17-remotesensing-13-04389" class="html-bibr">17</a>], Global land data assimilation system v2.0 (NOAH) [<a href="#B35-remotesensing-13-04389" class="html-bibr">35</a>], SCF: Snow cover fraction [<a href="#B33-remotesensing-13-04389" class="html-bibr">33</a>], TWSA: Terrestrial water storage anomaly [<a href="#B34-remotesensing-13-04389" class="html-bibr">34</a>], ALT: Active layer thickness [<a href="#B18-remotesensing-13-04389" class="html-bibr">18</a>].</p> "> Figure 3
<p>Climatology and trend in annual mean air temperature using three different forcing datasets. Climatology derived from (<b>a</b>) GMFD; (<b>c</b>) Climatic Research Unit (CRU), and (<b>e</b>) University of Delaware (Udel) and linear trend with statistical significance (<span class="html-italic">p</span> < 0.05) derived from (<b>b</b>) GMFD; (<b>d</b>) CRU, and (<b>f</b>) Udel.</p> "> Figure 4
<p>Climatology and trend in annual mean precipitation by three different forcing datasets from 1979 to 2012. Climatology derived from (<b>a</b>) GMFD, (<b>c</b>) Climatic Research Unit (CRU), and (<b>e</b>) University of Delaware (Udel) and linear trend with statistical significance (<span class="html-italic">p</span> < 0.05) derived from (<b>b</b>) GMFD; (<b>d</b>) CRU, and (<b>f</b>) Udel.</p> "> Figure 5
<p>Seasonal variations in monthly climatology in hydrometeorological variables derived from CHANGE and NOAH model simulations from 1979 to 2012. The shaded area denotes the 95% confidence interval (CI): (<b>a</b>) Snow water equivalent, (<b>b</b>) Evapotranspiration, (<b>c</b>) soil moisture anomaly (SMA), and (<b>d</b>) terrestrial water storage anomaly (TWSA).</p> "> Figure 6
<p>Comparison of estimated terrestrial water storage anomaly (TWSA) and snow cover fraction (SCF) using CHANGE and NOAH models. Black circles and error bars denote the GRACE-based observation datasets and their 95% confidence intervals (CIs), respectively. CHANGE is shown as a solid red line, with monthly climatology and 95% CIs presented in shades of red, whereas NOAH is shown as a solid green line, with monthly climatology and 95% CI presented in shades of green: (<b>a</b>) TWSA and (<b>b</b>) Snow cover fraction.</p> "> Figure 7
<p>Climatological spatial distribution of snow cover fraction by satellite-based observation and two different model simulations: (<b>a</b>,<b>b</b>) Denote satellite-based SCF in June and October, respectively; (<b>c</b>,<b>d</b>) Denote CHANGE-based snow cover fraction in June and October, respectively; (<b>e</b>,<b>f</b>) Denote NOAH-based snow cover fraction in June and October, respectively.</p> "> Figure 8
<p>Vertical profiles of soil temperature climatology in August at four meteorological stations in the Kolyma River basin. Red lines and shaded area denote CHANGE simulation and 95% CIs, respectively. Black dots and error bars denote observed soil temperature and 95% CIs at meteorological stations, respectively. Site no: (<b>a</b>) 24,790, (<b>b</b>) 25,206, (<b>c</b>) 25,400, and (<b>d</b>) 25,428.</p> "> Figure 9
<p>Comparison between observed 1.6 m depth soil temperature and CHANGE-based 1.4 m depth soil temperature in August at sites 24,790, 25,206, 25,400, and 25,428. Colors represent the density of gray circles. Red line denotes linear regression line, which is shown as an equation in the inset of the figure.</p> "> Figure 10
<p>Basin-averaged climatology of the seasonal variations in monthly hydrometeorological factors: (<b>a</b>) Air temperature; (<b>b</b>) precipitation; (<b>c</b>) river runoff; (<b>d</b>) evapotranspiration; (<b>e</b>) terrestrial water storage anomaly (TWSA), and (<b>f</b>) active layer thickness (ALT); (<b>d</b>–<b>f</b>) are CHANGE-based products. Gray areas represent the interannual variability of 95% CIs.</p> "> Figure 11
<p>Interannual variations in basin-averaged hydrometeorological factors annually and during winter and summer: (<b>a</b>–<b>c</b>) Denote the mean annual, winter, and summer air temperature, respectively; (<b>d</b>–<b>f</b>) Denote the mean annual, winter, and summer precipitation, respectively; (<b>g</b>–<b>i</b>) Denote the mean annual, winter, and summer river discharge, respectively; (<b>j</b>–<b>l</b>) Denote the mean annual, winter, and summer evapotranspiration, respectively; (<b>m</b>–<b>o</b>) Denote the mean annual, winter, and summer terrestrial water storage anomaly (TWSA), respectively; (<b>p</b>–<b>r</b>) Denote the mean annual, winter, and summer active layer thickness (ALT), respectively. Here, (<b>j</b>–<b>r</b>) are CHANGE-based products.</p> "> Figure 12
<p>Relation between annual river runoff and related annual factors: (<b>a</b>) Precipitation, (<b>b</b>) Net precipitation (P-E), and (<b>c</b>) Terrestrial water storage anomaly (TWSA). Here, we used CHANGE-based evapotranspiration and TWSA; (<b>d</b>,<b>e</b>) Show lag correlation coefficients (R) between TWSA and precipitation and evapotranspiration, respectively. Lag year indicates precipitation and evapotranspiration against the target year of TWSA. Negative and positive lag denote that the lag year advanced and delayed from the target year of TWSA, respectively.</p> "> Figure 13
<p>Comparison of runoff from the total and Dam basin annually and in winter (NDJFMA) season: (<b>a</b>) Entire period (1979–2012); (<b>b</b>) Pre-dam (1979–1986), and (<b>c</b>) Post-dam (1987–2012). The number above each bar denotes a mean value for that bar, while the accompanying vertical line denotes 95% confidence intervals (CIs).</p> "> Figure 14
<p>Relationship between (<b>a</b>) detrended June–August (JJA) river runoff and detrended JJA ALT and (<b>b</b>) Relationship between JJA TWSA and JJA evapotranspiration and JJA active layer thickness (ALT).</p> "> Figure 15
<p>Temporal variation in observed annual mean soil temperature at site 25,206 from 1969 to 2008. Gray line denotes five years’ running mean.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Land Surface Model, CHANGE
2.3. Data
2.3.1. Forcing Meteorological Data
Global Meteorological Forcing Dataset for Land Surface modeling (GMFD)
University of East Anglia Climatic Research Unit (CRU)
University of Delaware Air Temperature and Precipitation (Udel)
2.3.2. Satellite Data
Snow Cover Fraction (SCF)
Terrestrial Water Storage Anomaly (TWSA)
2.3.3. Global Land Data Assimilation (GLDAS) System Data (NOAH)
2.3.4. River Flow Rate Data
2.3.5. Soil Temperature Data
2.4. Theory
2.5. Analysis
2.5.1. Statistical Analysis
2.5.2. Analysis Flow
2.6. Verification of Forcing Variables
3. Results
3.1. Model Performance
3.1.1. Global Land Data Assimilation (NOAH) vs. CHANGE
3.1.2. Verification against Satellite-Based Products
3.1.3. Comparison of Soil Temperature
3.2. Seasonal Variations in Hydrometeorological Conditions
3.3. Hydrological Changes
3.3.1. Interannual Variability
3.3.2. Correlation Analysis
3.3.3. Seasonal Discharge
Winter Discharge
Summer Discharge
4. Discussion
4.1. Effect of Permafrost Warming on Summer Discharge
4.2. Artificial Impact of Dam Regulation on Winter Discharge
4.3. Climate Memory
4.4. Uncertainty Related to the Modeling
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Semiletov, I.; Irina Pipko, I.; Gustafsson, Ö.; Anderson, L.G.; Sergienko, V.; Pugach, S.; Dudarev, O.; Charkin, A.; Gukov, A.; Bröder, L.; et al. Acidification of East Siberian Arctic Shelf waters through addition of freshwater and terrestrial carbon. Nat. Geosci. 2016, 9, 361–365. [Google Scholar] [CrossRef]
- Dickson, R.; Rudels, B.; Dye, S.; Karcher, M.; Meincke, J.; Yashayaev, I. Current estimates of freshwater flux through Arctic and subarctic seas. Prog. Oceanogr. 2007, 73, 210–230. [Google Scholar] [CrossRef] [Green Version]
- Park, H.; Watanabe, E.; Kim, Y.; Polyakov, I.; Oshima, K.; Zhang, X.; Kimball, J.S.; Yang, D. Increasing riverine heat influx triggers Arctic sea ice decline and oceanic and atmospheric warming. Sci. Adv. 2020, 6, eabc4699. [Google Scholar] [CrossRef]
- Serreze, M.C.; Barrett, A.P.; Slater, A.G.; Woodgate, R.A.; Aagaard, K.; Lammers, R.B.; Steele, M.; Moritz, R.; Meredith, M.; Lee, C.M. The large-scale freshwater cycle of the Arctic. J. Geophys. Res. Ocean 2006, 111, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Peterson, B.J.; Holmes, R.M.; McClelland, J.W.; Vörösmarty, C.J.; Lammers, R.B.; Shiklomanov, A.I.; Shiklomanov, I.A.; Rahmstorf, S. Increasing river discharge to the Arctic Ocean. Science 2002, 298, 2171–2173. [Google Scholar] [CrossRef] [Green Version]
- Shiklomanov, A.I.; Lammers, R.B. Record Russian river discharge in 2007 and the limits of analysis. Environ. Res. Lett. 2009, 4, 045015. [Google Scholar] [CrossRef]
- McClelland, J.W.; Holmes, R.M.; Peterson, B.J.; Stieglitz, M. Increasing river discharge in the Eurasian Arctic: Consideration of dams, permafrost thaw, and fires as potential agents of change. J. Geophys. Res. Atmos. 2004, 109, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Majhi, I.; Yang, D. Streamflow characteristics and changes in Kolyma Basin in Siberia. J. Hydrometeorol. 2008, 9, 267–279. [Google Scholar] [CrossRef]
- Fujinami, H.; Yasunari, T.; Watanabe, T. Trend and interannual variation in summer precipitation in eastern Siberia in recent decades. Int. J. Climatol. 2016, 36, 355–368. [Google Scholar] [CrossRef]
- Nicolì, D.; Bellucci, A.; Iovino, D.; Ruggieri, P.; Gualdi, S. The impact of the AMV on Eurasian summer hydrological cycle. Sci. Rep. 2020, 10, 14444. [Google Scholar] [CrossRef]
- Iijima, Y.; Fedorov, A.N.; Park, H.; Suzuki, K.; Yabuki, H.; Maximov, T.C.; Ohata, T. Abrupt increases in soil temperatures following increased precipitation in a permafrost region, central Lena River basin, Russia. Permafr. Periglac. Process. 2010, 21, 30–41. [Google Scholar] [CrossRef]
- Matsumura, S.; Yamazaki, K. A longer climate memory carried by soil freeze-thaw processes in Siberia. Environ. Res. Lett. 2012, 7, 045402. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Yu, L. Delayed impact of the North Atlantic Oscillation on biosphere productivity in Asia. Geophys. Res. Lett. 2004, 31, 4–7. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, K.; Matsuo, K.; Hiyama, T. Satellite gravimetry-based analysis of terrestrial water storage and its relationship with run-off from the Lena River in eastern Siberia. Int. J. Remote Sens. 2016, 37, 2198–2210. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, K.; Kubota, J.; Ohata, T.; Vuglinsky, V. Influence of snow ablation and frozen ground on spring runoff generation in the Mogot Experimental Watershed, southern mountainous taiga of eastern Siberia. Hydrol. Res. 2006, 37, 21–29. [Google Scholar] [CrossRef]
- Zhang, Y.; He, B.I.N.; Guo, L.; Liu, D. Differences in response of terrestrial water storage components to precipitation over 168 global river basins. J. Hydrometeorol. 2019, 20, 1981–1999. [Google Scholar] [CrossRef]
- Park, H.; Iijima, Y.; Yabuki, H.; Ohta, T.; Walsh, J.; Kodama, Y.; Ohata, T. The application of a coupled hydrological and biogeochemical model (CHANGE) for modeling of energy, water, and CO2 exchanges over a larch forest in eastern Siberia. J. Geophys. Res. Atmos. 2011, 116, D15102. [Google Scholar] [CrossRef]
- Park, H.; Fedorov, A.N.; Zheleznyak, M.N.; Konstantinov, P.Y.; Walsh, J.E. Effect of snow cover on pan-Arctic permafrost thermal regimes. Clim. Dyn. 2015, 44, 2873–2895. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.; Ferrians, O.J., Jr.; Heginbottom, J.A.; Melnikov, E.S. Circum-Arctic Map of Permafrost and Ground-Ice Conditions; Version 2; NSIDC (National Snow and Ice Data Center): Boulder, CO, USA, 2002. [Google Scholar] [CrossRef]
- Verdin, K.L.; Greenlee, S.K. Development of Continental Scale Digital Elevation Models and Extraction of Hydrographic Features. In Proceedings of the Third International Conference/Workshop on Integrating GIS and Environmental Modeling, Santa Fe, Mexico, 21–26 January 1996; National Center for Geographic Information and Analysis: Santa Barbara, CA, USA, 1996. [Google Scholar]
- Hansen, M.C.; DeFries, R.S.; Townshend, J.R.G.; Dimiceli, C.; Carroll, M.; Sohlberg, R. Global percent tree cover at a spatial resolution of 500 m: First results of the MODIS vegetation continuous fields algorithm. Earth Interact. 2003, 7, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Friedl, M.; MclVer, D.; Hodges, J.; Zhang, X.; Muchoney, D.; Strahler, A.H.; Woodcock, C.E.; Gopal, S.; Schenider, A.; Cooper, A.; et al. Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ. 2002, 83, 287–302. [Google Scholar] [CrossRef]
- Ramankutty, N.; Foley, J.A. Estimating historical changes in global land cover: Croplands from 1700 to 1992. Glob. Biogeochem. Cycles 1999, 13, 997–1027. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. Digital Soil Map of the World (CD-ROM); Food and Agriculture Organization: Rome, Italy, 1995. [Google Scholar]
- Global Soil Data Task. Global Soil Data Products CD-ROM (IGBP-DIS), CD-ROM, International Geosphere-Biosphere Programme, Data and Information System, Potsdam, Germany; Oak Ridge National Laboratory Distributed Active Archive Center: Oak Ridge, TN, USA, 2000. [Google Scholar]
- Sheffield, J.; Goteti, G.; Wood, E.F. Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Clim. 2006, 19, 3088–3111. [Google Scholar] [CrossRef] [Green Version]
- Masaki, Y.; Hanasaki, N.; Biemans, H.; Schmied, H.M.; Tang, Q.; Wada, Y.; Gosling, S.N.; Takahashi, K.; Hijioka, Y. Intercomparison of global river discharge simulations focusing on dam operation—Multiple models analysis in two case-study river basins, Missouri-Mississippi and Green-Colorado. Environ. Res. Lett. 2017, 12, 055002. [Google Scholar] [CrossRef] [PubMed]
- Gädeke, A.; Krysanova, V.; Aryal, A.; Chang, J.; Grillakis, M.; Hanasaki, N.; Koutroulis, A.; Pokhrel, Y.; Satoh, Y.; Sibyll Schaphof, S.; et al. Performance evaluation of global hydrological models in six large Pan-Arctic watersheds. Clim. Chang. 2020, 163, 1329–1351. [Google Scholar] [CrossRef]
- Harris, I.C.; Jones, P.D. CRU TS4.02: Climatic Research Unit (CRU) Time-Series (TS) Version 4.02 of High-Resolution Gridded Data of Month-by-Month Variation in Climate (January 1901–December 2017). Centre for Environmental Data Analysis. Available online: http://dx.doi.org/10.5285/b2f81914257c4188b181a4d8b0a46bff (accessed on 1 April 2019).
- Willmott, C.J.; Matsuura, K. Terrestrial Air Temperature and Precipitation: Monthly and Annual Time Series (1950—1999). 2001. Available online: http://climate.geog.udel.edu/~climate/html_pages/README.ghcn_ts2.html (accessed on 30 July 2021).
- Legates, D.R.; Willmott, C.J. Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int. J. Climatol. 1990, 10, 111–127. [Google Scholar] [CrossRef]
- Legates, D.R.; Willmott, C.J. Mean seasonal and spatial variability in global surface air temperature. Theor. Appl. Climatol. 1990, 41, 11–21. [Google Scholar] [CrossRef]
- Hori, M.; Sugiura, K.; Kobayashi, K.; Aoki, T.; Tanikawa, T.; Kuchiki, K.; Niwano, M.; Enomoto, H. A 38-year (1978–2015) Northern Hemisphere daily snow cover extent product derived using consistent objective criteria from satellite-borne optical sensors. Remote Sens. Environ. 2017, 191, 402–418. [Google Scholar] [CrossRef]
- Suzuki, K.; Matsuo, K.; Yamazaki, D.; Ichii, K.; Iijima, Y.; Papa, F.; Yanagi, Y.; Hiyama, T. Hydrological variability and changes in the Arctic circumpolar tundra and the three largest pan-Arctic river basins from 2002 to 2016. Remote Sens. 2018, 10, 402. [Google Scholar] [CrossRef] [Green Version]
- Beaudoing, H.; Rodell, M.; NASA/GSFC/HSL. GLDAS Noah Land Surface Model L4 Monthly 0.25 × 0.25 Degree V2.0; Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MD, USA, 2019. [Google Scholar]
- Suzuki, K.; Hiyama, T.; Matsuo, K.; Ichii, K.; Iijima, Y.; Yamazaki, D. Accelerated continental-scale snowmelt and ecohydrological impacts in the four largest Siberian river basins in response to spring warming. Hydrol. Process. 2020, 34, 3867–3881. [Google Scholar] [CrossRef]
- Holmes, R.M.; McClelland, J.W.; Shiklomanov, A.I.; Spencer, R.; Suslova, A.; Tank, S. The Arctic Great Rivers Observatory (ArcticGRO). AGU Fall Meet. Abstr. 2018, 2018, C43C-1784. [Google Scholar]
- Shiklomanov, A.I.; Holmes, R.M.; McClelland, J.W.; Tank, S.E.; Spencer, R.G.M. Arctic Great Rivers Observatory. Discharge Dataset, Version 20180713. 2018. Available online: https://www.arcticrivers.org/data (accessed on 13 July 2018).
- Hydrometeorological Service of Kolyma Region. Monthly Meteorological Bulletin; Hydrometeorological Service of Kolyma Region: 1970–2018; Gidrometeoizdat: Magadan, Russia, 2018; Volume 33. (In Russian) [Google Scholar]
- Sherstyukov, A.B.; Sherstyukov, B.G. Spatial features and new trends in thermal conditions of soil and depth of its seasonal thawing in the permafrost zone. Russ. Meteorol. Hydrol. 2015, 40, 73–78. [Google Scholar] [CrossRef]
- Hydrometeorological Service of Yakutia. Monthly Meteorological Bulletin; Hydrometeorological Service of Yakutia: 1964–2018; Gidrometeoizdat: Yakutsk, Russia, 2018; Volume 24. (In Russian) [Google Scholar]
- Barlage, M.; Chen, F.; Tewari, M.; Ikeda, K.; Gochis, D.; Dudhia, J.; Rasmussen, R.; Livneh, B.; Ek, M.; Mitchell, K. Noah land surface model modifications to improve snowpack prediction in the Colorado Rocky Mountains. J. Geophys. Res. Atmos. 2010, 115, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Ichii, K.; Kondo, M.; Okabe, Y.; Ueyama, M.; Kobayashi, H.; Lee, S.J.; Saigusa, N.; Zhu, Z.; Myneni, R.B. Recent changes in terrestrial gross primary productivity in Asia from 1982 to 2011. Remote Sens. 2013, 5, 6043–6062. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, K.; Liston, G.E.; Matsuo, K. Estimation of continental-basin-scale sublimation in the Lena River Basin, Siberia. Adv. Meteorol. 2015, 2015, 286206. [Google Scholar] [CrossRef]
- Pu, Z.; Xu, L.; Salomonson, V.V. MODIS/Terra observed seasonal variations of snow cover over the Tibetan Plateau. Geophys. Res. Lett. 2007, 34, L067606. [Google Scholar] [CrossRef] [Green Version]
- Goncharova, O.Y.; Matyshak, G.V.; Bobrik, A.A.; Moskalenko, N.G.; Ponomareva, O.E. Temperature regimes of northern taiga soils in the isolated permafrost zone of Western Siberia. Eurasian Soil Sci. 2015, 48, 1329–1340. [Google Scholar] [CrossRef]
- Walvoord, M.A.; Kurylyk, B.L. Hydrologic impacts of thawing permafrost—A review. Vadose Zone J. 2016, 15, 1–20. [Google Scholar] [CrossRef]
- Biskaborn, B.K.; Smith, S.L.; Noetzli, J.; Matthes, H.; Vieira, G.; Streletskiy, D.A.; Schoeneich, P.; Romanovsky, V.E.; Lewkowicz, A.G.; Abramov, A.; et al. Permafrost is warming at a global scale. Nat. Commun. 2019, 10, 264. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Zhang, H.; Zhao, J.; Guo, X.; Xiong, T.; Wu, R. Shifting contribution of climatic constraints on evapotranspiration in the boreal forest. Earth’s Future 2021, 9, e2021EF002104. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Sharma, K.P.; Fekete, B.M.; Copeland, A.H.; Holden, J.; Marble, J.; Lough, J.A. The storage and aging of continental runoff in large reservoir systems of the world. Ambio 1997, 26, 210–219. [Google Scholar] [CrossRef]
- Sugimoto, A.; Naito, D.; Yanagisawa, N.; Ichiyanagi, K.; Kurita, N.; Kubota, J.; Kotake, T.; Ohata, T.; Maximov, T.C.; Fedorov, A.N. Characteristics of soil moisture in permafrost observed in East Siberian taiga with stable isotopes of water. Hydrol. Process. 2003, 17, 1073–1092. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Kubota, J.; Ohata, T.; Vuglinsky, V.; Mizuyama, T. Seasonal changes in runoff characteristics on a permafrost watershed in the southern mountainous region of eastern Siberia. Hydrol. Process. 2006, 20, 453–467. [Google Scholar] [CrossRef]
- Quinton, W.L.; Hayashi, M.; Pietroniro, A. Connectivity and storage functions of channel fens and flat bogs in northern basins. Hydrol. Process. 2003, 17, 3665–3684. [Google Scholar] [CrossRef]
- Papa, F.; Günther, A.; Frappart, F.; Prigent, C.; Rossow, W.B. Variations of surface water extent and water storage in large river basins: A comparison of different global data sources. Geophys. Res. Lett. 2008, 35, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Hood, J.L.; Hayashi, M. Characterization of snowmelt flux and groundwater storage in an alpine headwater basin. J. Hydrol. 2015, 521, 482–497. [Google Scholar] [CrossRef]
- Takakura, H. Limits of pastoral adaptation to permafrost regions caused by climate change among the Sakha people in the middle basin of Lena River. Polar Sci. 2016, 10, 395–403. [Google Scholar] [CrossRef]
- Voropay, N.N.; Ryazanova, A.A. Atmospheric droughts in Southern Siberia in the late 20th and early 21st centuries. IOP Conf. Ser. Earth Environ. Sci. 2018, 211, 211. [Google Scholar] [CrossRef]
- Sugimoto, A.; Yanagisawa, N.; Naito, D.; Fujita, N.; Maximov, T.C. Importance of permafrost as a source of water for plants in east Siberian taiga. Ecol. Res. 2002, 17, 493–503. [Google Scholar] [CrossRef]
Basin Name | Gauge Station | Drainage Area (km2) | Continuous Permafrost (%) | Tundra Coverage (%) | Shrub Coverage (%) |
---|---|---|---|---|---|
Total basin | Kolymskoye (1979–2008) Kolymsk-1 (2009–2016) (68.73°N, 158.72°E) | 657,254 | 100 | 22.4 | 77.0 |
Dam basin | Ust-Srednekan (1979–2012) (62.45°N, 152.3°E) | 99,507 (15.1%) | 100 | 29.9 | 70.0 |
Model | TWSA April 2002 to December 2012 | Snow Cover Fraction January 1979 to December 2012 | ||||
---|---|---|---|---|---|---|
Root Mean Square Error (mm) | Nash–Sutcliffe Efficiency | R2 | Root Mean Square Error | Nash–Sutcliffe Efficiency | R2 | |
CHANGE | 37.3 | 0.35 | 0.66 | 0.19 | 0.81 | 0.84 |
NOAH | 42.9 | 0.14 | 0.56 | 0.18 | 0.82 | 0.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suzuki, K.; Park, H.; Makarieva, O.; Kanamori, H.; Hori, M.; Matsuo, K.; Matsumura, S.; Nesterova, N.; Hiyama, T. Effect of Permafrost Thawing on Discharge of the Kolyma River, Northeastern Siberia. Remote Sens. 2021, 13, 4389. https://doi.org/10.3390/rs13214389
Suzuki K, Park H, Makarieva O, Kanamori H, Hori M, Matsuo K, Matsumura S, Nesterova N, Hiyama T. Effect of Permafrost Thawing on Discharge of the Kolyma River, Northeastern Siberia. Remote Sensing. 2021; 13(21):4389. https://doi.org/10.3390/rs13214389
Chicago/Turabian StyleSuzuki, Kazuyoshi, Hotaek Park, Olga Makarieva, Hironari Kanamori, Masahiro Hori, Koji Matsuo, Shinji Matsumura, Nataliia Nesterova, and Tetsuya Hiyama. 2021. "Effect of Permafrost Thawing on Discharge of the Kolyma River, Northeastern Siberia" Remote Sensing 13, no. 21: 4389. https://doi.org/10.3390/rs13214389
APA StyleSuzuki, K., Park, H., Makarieva, O., Kanamori, H., Hori, M., Matsuo, K., Matsumura, S., Nesterova, N., & Hiyama, T. (2021). Effect of Permafrost Thawing on Discharge of the Kolyma River, Northeastern Siberia. Remote Sensing, 13(21), 4389. https://doi.org/10.3390/rs13214389