Benchmarking Anchor-Based and Anchor-Free State-of-the-Art Deep Learning Methods for Individual Tree Detection in RGB High-Resolution Images
"> Figure 1
<p>Study area in (<b>a</b>) South America and Brazil, (<b>b</b>) Mato Grosso do Sul, (<b>c</b>) Campo Grande, and (<b>d</b>) an example of an orthoimage used in this study.</p> "> Figure 2
<p>Example of an annotated patch. The bounding boxes for each tree considered as ground—truth are represented in white.</p> "> Figure 3
<p>The workflow for individual tree crown detection. Initially, the images were annotated with bounding boxes. In the first step, 21 deep-learning methods were trained, and the best methods were selected based on the value of the third quartile plus Faster R-CNN and RetinaNet. In the second step, the selected methods were trained four more times with randomly shuffled datasets.</p> "> Figure 4
<p>Loss curves for training (blue) and validation (orange) for each object detection method. For YoloV3, NAS-FPN, and FoveaBox, we only show the validation curves since the log for these two methods did not return the training loss.</p> "> Figure 4 Cont.
<p>Loss curves for training (blue) and validation (orange) for each object detection method. For YoloV3, NAS-FPN, and FoveaBox, we only show the validation curves since the log for these two methods did not return the training loss.</p> "> Figure 4 Cont.
<p>Loss curves for training (blue) and validation (orange) for each object detection method. For YoloV3, NAS-FPN, and FoveaBox, we only show the validation curves since the log for these two methods did not return the training loss.</p> "> Figure 4 Cont.
<p>Loss curves for training (blue) and validation (orange) for each object detection method. For YoloV3, NAS-FPN, and FoveaBox, we only show the validation curves since the log for these two methods did not return the training loss.</p> "> Figure 5
<p>Examples of tree detection by the one-stage methods.</p> "> Figure 6
<p>Examples of tree detection in areas with high density using the one-stage methods.</p> "> Figure 7
<p>Examples of tree detection using the two-stage methods.</p> "> Figure 8
<p>Examples of tree detection in areas with high density using the two-stage methods.</p> "> Figure 9
<p>Examples of tree detection in areas with high density using the anchor-free methods.</p> "> Figure 10
<p>Example of tree detection using anchor-free methods.</p> "> Figure 11
<p>Boxplot for the best five methods plus Faster R-CNN and RetinaNet.</p> "> Figure 12
<p>Tree detection with the top five methods, RetinaNet, and Faster R-CNN: performance with small and medium trees from several species.</p> "> Figure 13
<p>Tree detection with the top five methods, RetinaNet, and Faster R-CNN: performance in a high density scenario.</p> "> Figure 13 Cont.
<p>Tree detection with the top five methods, RetinaNet, and Faster R-CNN: performance in a high density scenario.</p> "> Figure 14
<p>Tree detection with the top five methods, RetinaNet, and Faster R-CNN: performance considering big trees.</p> "> Figure 14 Cont.
<p>Tree detection with the top five methods, RetinaNet, and Faster R-CNN: performance considering big trees.</p> "> Figure 15
<p>Tree detection with the top five methods, RetinaNet, and Faster R-CNN: performance in a challenging illumination scenario with shadows.</p> ">
Abstract
:1. Introduction
2. Material and Methods
2.1. Image Dataset
2.2. Individual Tree Crown Detection Approach
Method | Backbone | Year | Reference | Type |
---|---|---|---|---|
Faster R-CNN | X-101-64x4d-FPN-2x | 2017 | [46] | AB-TS |
RetinaNet | X-101-64x4d-FPN-2x | 2017 | [47] | AB-OS |
Mixed precision training | Faster R-CNN-R50-FPN-FP16-1 | 2017 | [48] | AB-TS |
Deformable ConvNets v2 | Faster R-CNN X101-32x4d-FPN-dconv-c3-c5-1x | 2018 | [49] | AB-TS |
YoloV3 | DarkNet-53 | 2018 | [50] | AB-OS |
ATSS | R-101-FPN-1x | 2019 | [29] | AF |
Weight Standardization | Faster R-CNN-X101-32x4d-FPN-gn-ws-all-1x | 2019 | [51] | AB-TS |
CARAFE | Faster R-CNN-R50-FPN-_carafe-1x | 2019 | [52] | AB-TS |
FSAF | X101-64x4d-FPN-1x | 2019 | [53] | AF |
NAS-FPN | RetinaNet-R-50-NASFPN-crop640_50e | 2019 | [54] | AB-OS |
FoveaBox | R-101-FPN-gn-head-mstrain-640-800-4x4-2x | 2019 | [55] | AF |
Double Heads | dh-Faster R-CNN-R-50-FPN-1x | 2019 | [56] | AB-TS |
Gradient Harmonized Single-stage Detector | X-101-64x4d-FPN-1x | 2019 | [57] | AB-OS |
Empirical Attention | Faster R-CNN-R-50-FPN-attention-1111-dcn-1x | 2019 | [58] | AB-TS |
DetectoRS | rcnn-R-50-1x | 2020 | [59] | AB-MS |
VarifocalNet (1) | R-101-FPN-1x | 2020 | [60] | AF |
VarifocalNet (2) | X-101-64x4d-FPN-mdconv-c3-c5-mstrain-2x | 2020 | [60] | AF |
SABL | cascade rcnn-r101-FPN-1x | 2020 | [61] | AB-OS |
Generalized Focal Loss | X-101-32x4d-FPN-dconv-c4-c5-mstrain-2x | 2020 | [62] | AB-OS |
Probabilistic Anchor Assignment | R-101-FPN-2x | 2020 | [63] | AB-OS |
Dynamic R-CNN | R-50-FPN-1x | 2020 | [64] | AB-TS |
2.3. Performance Evaluation
2.4. Statistical Analysis
3. Results
3.1. Anchor-Based (AB) Detectors
3.2. Anchor-Free (AF) Detectors
3.3. Analysis of the Best Methods
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McDonald, R.I.; Mansur, A.V.; Ascensão, F.; Colbert, M.; Crossman, K.; Elmqvist, T.; Gonzalez, A.; Güneralp, B.; Haase, D.; Hamann, M.; et al. Research gaps in knowledge of the impact of urban growth on biodiversity. Nat. Sustain. 2020, 3, 16–24. [Google Scholar] [CrossRef]
- Ke, J.; Zhang, J.; Tang, M. Does city air pollution affect the attitudes of working residents on work, government, and the city? An examination of a multi-level model with subjective well-being as a mediator. J. Clean. Prod. 2021, 265. [Google Scholar] [CrossRef]
- Khomenko, S.; Cirach, M.; Pereira-Barboza, E.; Mueller, N.; Barrera-Gómez, J.; Rojas-Rueda, D.; de Hoogh, K.; Hoek, G.; Nieuwenhuijsen, M. Premature mortality due to air pollution in European cities: A health impact assessment. Lancet Planet. Health 2021. [Google Scholar] [CrossRef]
- Abass, K.; Buor, D.; Afriyie, K.; Dumedah, G.; Segbefi, A.Y.; Guodaar, L.; Garsonu, E.K.; Adu-Gyamfi, S.; Forkuor, D.; Ofosu, A.; et al. Urban sprawl and green space depletion: Implications for flood incidence in Kumasi, Ghana. Int. J. Disaster Risk Reduct. 2020, 51. [Google Scholar] [CrossRef]
- The Human Cost of Weather Related Disasters (1995–2015): Center For Research on the Epidemiology of Disasters (CRED). 2015. Available online: https://www.unisdr.org/2015/docs/climatechange/COP21_WeatherDisastersReport_2015_FINAL.pdf (accessed on 8 April 2021).
- Li, H.; Zhang, S.; Qian, Z.; Xie, X.H.; Luo, Y.; Han, R.; Hou, J.; Wang, C.; McMillin, S.E.; Wu, S.; et al. Short-term effects of air pollution on cause-specific mental disorders in three subtropical Chinese cities. Environ. Res. 2020, 191. [Google Scholar] [CrossRef] [PubMed]
- Heinz, A.; Deserno, L.; Reininghaus, U. Urbanicity, social adversity and psychosis. World Psychiatry 2013, 12, 187–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IPCC. Summary for Policymakers. Climate Change 2013: The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; Field, C.B., Ed.; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Fasihi, H.; Parizadi, T. Analysis of spatial equity and access to urban parks in Ilam, Iran. J. Environ. Manag. 2020, 15. [Google Scholar] [CrossRef] [PubMed]
- (UN), U.N. Transforming Our World: The 2030 Agenda for Sustainable Development; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Roy, S.; Byrne, J.; Pickering, C. A systematic quantitative review of urban tree benefits, costs, and assessment methods across cities in different climatic zones. Urban For. Urban Green. 2012, 11, 351–363. [Google Scholar] [CrossRef] [Green Version]
- Endreny, T.A. Strategically growing the urban forest will improve our world. Nat. Commun. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Fassnacht, F.E.; Latifi, H.; Stereńczak, K.; Modzelewska, A.; Lefsky, M.; Waser, L.T.; Straub, C.; Ghosh, A. Review of studies on tree species classification from remotely sensed data. Remote Sens. Environ. 2016, 186, 64–77. [Google Scholar] [CrossRef]
- Padayaahce, A.; Irlich, U.; Faulklner, K.; Gaertner, M.; Proches, S.; Wilson, J.; Rouget, M. How do invasive species travel to and through urban environments? Biol. Invasions 2017, 19, 3557–3570. [Google Scholar]
- Nielsen, A.; Ostberg, J.; Delshammar, T. Review of Urban Tree Inventory Methods Used to Collect Data at Single-Tree Level. Arboric. E Urban For. 2014, 40, 96–111. [Google Scholar]
- Wagner, F.; Ferreira, M.; Sanchez, A.; Hirye, M.; Zortea, M.; Glorr, E.; ans Carlos Souza Filho, O.P.; Shimabukuro, Y.; Aragão, L. Individual tree crown delineation in a highly diverse tropical forest using very high resolution satellite images. ISPRS J. Photogramm. Remote Sens. 2018, 145, 362–377. [Google Scholar] [CrossRef]
- Weinstein, B.G.; Marconi, S.; Bohlman, S.; Zare, A.; White, E. Individual Tree-Crown Detection in RGB Imagery Using Semi-Supervised Deep Learning Neural Networks. Remote Sens. 2019, 11, 1309. [Google Scholar] [CrossRef] [Green Version]
- dos Santos, A.A.; Junior, J.M.; Araújo, M.S.; Martini, D.R.D.; Tetila, E.C.; Siqueira, H.L.; Aoki, C.; Eltner, A.; Matsubara, E.T.; Pistori, H.; et al. Assessment of CNN-Based Methods for Individual Tree Detection on Images Captured by RGB Cameras Attached to UAVs. Sensors 2019, 19, 3595. [Google Scholar] [CrossRef] [Green Version]
- Torres, D.L.; Feitosa, R.Q.; Happ, P.N.; Rosa, L.E.C.L.; Junior, J.M.; Martins, J.; Bressan, P.O.; Gonçalves, W.N.; Liesenberg, V. Applying Fully Convolutional Architectures for Semantic Segmentation of a Single Tree Species in Urban Environment on High Resolution UAV Optical Imagery. Sensors 2020, 20, 563. [Google Scholar] [CrossRef] [Green Version]
- Osco, L.P.; dos Santos de Arruda, M.; Gonçalves, D.N.; Dias, A.; Batistoti, J.; de Souza, M.; Gomes, F.D.G.; Ramos, A.P.M.; Jorge, L.A.C.; Liesenberg, V.; et al. A CNN approach to simultaneously count plants and detect plantation-rows from UAV imagery. ISPRS J. Photogramm. Remote Sens. 2021, 174, 1–17. [Google Scholar] [CrossRef]
- Biffi, L.J.; Mitishita, E.; Liesenberg, V.; dos Santos, A.A.; Gonçalves, D.N.; Estrabis, N.V.; de Andrade Silva, J.; Osco, L.P.; Ramos, A.P.M.; Centeno, J.A.S.; et al. ATSS Deep Learning-Based Approach to Detect Apple Fruits. Remote Sens. 2021, 13, 54. [Google Scholar] [CrossRef]
- Gomes, M.; Silva, J.; Gonçalves, D.; Zamboni, P.; Perez, J.; Batista, E.; Ramos, A.; Osco, L.; Matsubara, E.; Li, J.; et al. Mapping Utility Poles in Aerial Orthoimages Using ATSS Deep Learning Method. Sensors 2020, 20, 6070. [Google Scholar] [CrossRef]
- Santos, A.; Junior, J.M.; de Andrade Silva, J.; Pereira, R.; Matos, D.; Menezes, G.; Higa, L.; Eltner, A.; Ramos, A.P.; Osco, L.; et al. Storm-Drain and Manhole Detection Using the RetinaNet Method. Sensors 2020, 20, 4450. [Google Scholar] [CrossRef]
- Li, K.; Wan, G.; Cheng, G.; Meng, L.; Han, J. Object detection in optical remote sensing images: A survey and a new benchmark. ISPRS J. Photogramm. Remote Sens. 2020, 159, 296–307. [Google Scholar] [CrossRef]
- Courtrai, L.; Pham, M.T.; Lefèvre, S. Small Object Detection in Remote Sensing Images Based on Super-Resolution with Auxiliary Generative Adversarial Networks. Remote Sens. 2020, 12, 3152. [Google Scholar] [CrossRef]
- Lu, X.; Li, Q.; Li, B.; Yan, J. MimicDet: Bridging the Gap Between One-Stage and Two-Stage Object Detection. 2020. Available online: http://xxx.lanl.gov/abs/2009.11528 (accessed on 8 April 2021).
- Licheng, J.; Fan, Z.; Fang, L.; Shuyuan, Y.; Lingling, L.; Zhixi, F.; Rong, Q. A Survey of Deep Learning-Based Object Detection. IEEE Access 2019, 7, 128837–128868. [Google Scholar] [CrossRef]
- Zhang, S.; Chi, C.; Yao, Y.; Lei, Z.; Li, S.Z. Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selection. arXiv 2019, arXiv:1912.02424. [Google Scholar]
- Chen, X.; Jiang, K.; Zhu, Y.; Wang, X.; Yun, T. Individual Tree Crown Segmentation Directly from UAV-Borne LiDAR Data Using the PointNet of Deep Learning. Forests 2021, 12, 131. [Google Scholar] [CrossRef]
- Miyoshi, G.T.; dos Santos Arruda, M.; Osco, L.P.; Junior, J.M.; Gonçalves, D.N.; Imai, N.N.; Tommaselli, A.M.G.; Honkavaara, E.; Gonçalves, W.N. A Novel Deep Learning Method to Identify Single Tree Species in UAV-Based Hyperspectral Images. Remote Sens. 2020, 12, 1294. [Google Scholar] [CrossRef] [Green Version]
- Ampatzidis, Y.; Partel, V.; Meyering, B.; Albrecht, U. Citrus rootstock evaluation utilizing UAV-based remote sensing and artificial intelligence. Comput. Electron. Agric. 2019, 164. [Google Scholar] [CrossRef]
- Ampatzidis, Y.; Partel, V. UAV-Based High Throughput Phenotyping in Citrus Utilizing Multispectral Imaging and Artificial Intelligence. Remote Sens. 2019, 11, 410. [Google Scholar] [CrossRef] [Green Version]
- Hartling, S.; Sagan, V.; Sidike, P.; Maimaitijiang, M.; Carron, J. Urban Tree Species Classification Using a WorldView-2/3 and LiDAR Data Fusion Approach and Deep Learning. Sensors 2019, 19, 1284. [Google Scholar] [CrossRef] [Green Version]
- Csillik, O.; Cherbini, J.; Johnson, R.; Lyons, A.; Kelly, M. Identification of Citrus Trees from Unmanned Aerial Vehicle Imagery Using Convolutional Neural Networks. Drones 2018, 2, 39. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Fu, H.; Yu, L.; Cracknell, A. Deep Learning Based Oil Palm Tree Detection and Counting for High-Resolution Remote Sensing Images. Remote Sens. 2017, 9, 22. [Google Scholar] [CrossRef] [Green Version]
- Nezami, S.; Khoramshahi, E.; Nevalainen, O.; Pölönen, I.; Honkavaara, E. Tree Species Classification of Drone Hyperspectral and RGB Imagery with Deep Learning Convolutional Neural Networks. Remote Sens. 2020, 12, 1070. [Google Scholar] [CrossRef] [Green Version]
- Pleșoianu, A.I.; Stupariu, M.S.; Șandric, I.; Pătru-Stupariu, I.; Draguț, L. Individual Tree-Crown Detection and Species Classification in Very High-Resolution Remote Sensing Imagery Using a Deep Learning Ensemble Model. Remote Sens. 2020, 12, 2426. [Google Scholar] [CrossRef]
- Culman, M.; Delalieux, S.; Tricht, K.V. Individual Palm Tree Detection Using Deep Learning on RGB Imagery to Support Tree Inventory. Remote Sens. 2020, 12, 3476. [Google Scholar] [CrossRef]
- Oh, S.; Chang, A.; Ashapure, A.; Jung, J.; Dube, N.; Maeda, M.; Gonzalez, D.; Landivar, J. Plant Counting of Cotton from UAS Imagery Using Deep Learning-Based Object Detection Framework. Remote Sens. 2020, 12, 2981. [Google Scholar] [CrossRef]
- Roslan, Z.; Long, Z.A.; Ismail, R. Individual Tree Crown Detection using GAN and RetinaNet on Tropical Forest. In Proceedings of the 2021 15th International Conference on Ubiquitous Information Management and Communication (IMCOM), Seoul, Korea, 4–6 January 2021; pp. 1–7. [Google Scholar] [CrossRef]
- Roslan, Z.; Awang, Z.; Husen, M.N.; Ismail, R.; Hamzah, R. Deep Learning for Tree Crown Detection In Tropical Forest. In Proceedings of the 2020 14th International Conference on Ubiquitous Information Management and Communication (IMCOM), Taichung, Taiwan, 3–5 January 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Afforestation of Public Roads: IBGE, 2010 Population Census. Available online: https://cidades.ibge.gov.br/brasil/ms/campo-grande/panorama (accessed on 30 March 2021).
- Campo Grande Urban Arborization Master Plan: Campo Grande City Hall. 2010. Available online: http://www.campogrande.ms.gov.br/semadur/canais/arborizacao-urbana-plano-diretor/ (accessed on 30 March 2021).
- Chen, K.; Wang, J.; Pang, J.; Cao, Y.; Xiong, Y.; Li, X.; Sun, S.; Feng, W.; Liu, Z.; Xu, J.; et al. MMDetection: Open MMLab Detection Toolbox and Benchmark. arXiv 2019, arXiv:1906.07155. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017. [Google Scholar]
- Micikevicius, P.; Narang, S.; Alben, J.; Diamos, G.; Elsen, E.; Garcia, D.; Ginsburg, B.; Houston, M.; Kuchaiev, O.; Venkatesh, G.; et al. Mixed precision training. arXiv 2017, arXiv:1710.03740. [Google Scholar]
- Zhu, X.; Hu, H.; Lin, S.; Dai, J. Deformable ConvNets v2: More Deformable, Better Results. arXiv 2018, arXiv:1811.11168. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Qiao, S.; Wang, H.; Liu, C.; Shen, W.; Yuille, A. Weight Standardization. arXiv 2019, arXiv:1903.10520. [Google Scholar]
- Wang, J.; Chen, K.; Xu, R.; Liu, Z.; Loy, C.C.; Lin, D. CARAFE: Content-Aware ReAssembly of FEatures. In Proceedings of the The IEEE International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019. [Google Scholar]
- Zhu, C.; He, Y.; Savvides, M. Feature Selective Anchor-Free Module for Single-Shot Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 840–849. [Google Scholar]
- Ghiasi, G.; Lin, T.Y.; Le, Q.V. Nas-fpn: Learning scalable feature pyramid architecture for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 7036–7045. [Google Scholar]
- Kong, T.; Sun, F.; Liu, H.; Jiang, Y.; Shi, J. FoveaBox: Beyond Anchor-based Object Detector. arXiv 2019, arXiv:1904.03797. [Google Scholar]
- Wu, Y.; Chen, Y.; Yuan, L.; Liu, Z.; Wang, L.; Li, H.; Fu, Y. Rethinking Classification and Localization for Object Detection. arXiv 2019, arXiv:1904.06493. [Google Scholar]
- Li, B.; Liu, Y.; Wang, X. Gradient Harmonized Single-stage Detector. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019. [Google Scholar]
- Zhu, X.; Cheng, D.; Zhang, Z.; Lin, S.; Dai, J. An Empirical Study of Spatial Attention Mechanisms in Deep Networks. arXiv 2019, arXiv:1904.05873. [Google Scholar]
- Qiao, S.; Chen, L.C.; Yuille, A. DetectoRS: Detecting Objects with Recursive Feature Pyramid and Switchable Atrous Convolution. arXiv 2020, arXiv:2006.02334. [Google Scholar]
- Zhang, H.; Wang, Y.; Dayoub, F.; Sünderhauf, N. VarifocalNet: An IoU-aware Dense Object Detector. arXiv 2020, arXiv:2008.13367. [Google Scholar]
- Wang, J.; Zhang, W.; Cao, Y.; Chen, K.; Pang, J.; Gong, T.; Shi, J.; Loy, C.C.; Lin, D. Side-Aware Boundary Localization for More Precise Object Detection; ECCV 2020. Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2020; Volume 12349. [Google Scholar] [CrossRef]
- Li, X.; Wang, W.; Wu, L.; Chen, S.; Hu, X.; Li, J.; Tang, J.; Yang, J. Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection. arXiv 2020, arXiv:2006.04388. [Google Scholar]
- Kim, K.; Lee, H.S. Probabilistic Anchor Assignment with IoU Prediction for Object Detection; ECCV 2020. Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2020; Volume 12370. [Google Scholar] [CrossRef]
- Zhang, H.; Chang, H.; Ma, B.; Wang, N.; Chen, X. Dynamic R-CNN: Towards High Quality Object Detection via Dynamic Training. arXiv 2020, arXiv:2004.06002. [Google Scholar]
- Wu, J.; Yang, G.; Yang, H.; Zhu, Y.; Li, Z.; Lei, L.; Zhao, C. Extracting apple tree crown information from remote imagery using deep learning. Comput. Electron. Agric. 2020, 174. [Google Scholar] [CrossRef]
- Lumnitz, S.; Devisscher, T.; Mayaud, J.; Radic, V.; Coops, N.; Griess, V. Mapping trees along urban street networks with deep learning and street-level imagery. ISPRS J. Photogramm. Remote Sens. 2021, 175, 144–157. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017. [Google Scholar]
Set | n° of Patches | n° of Instances |
---|---|---|
Train | 132 | 2124 |
Validation | 44 | 582 |
Test | 44 | 676 |
Total | 220 | 3382 |
Model | Test Set AP |
---|---|
SABL | 0.661 |
Generalized Focal Loss | 0.677 |
Probabilistic Anchor Assignment | 0.677 |
RetinaNet | 0.650 |
NAS-FPN | 0.658 |
YoloV3 | 0.591 |
Gradient Harmonized Single-stage Detector | 0.691 |
Model | Test Set AP |
---|---|
Faster R-CNN | 0.660 |
DetecoRS | 0.651 |
Weight Standardization | 0.631 |
Deformable ConvNets v2 | 0.657 |
CARAFE | 0.697 |
Dynamic R-CNN | 0.655 |
Double Heads | 0.699 |
Mixed precision training | 0.679 |
Empirical Attention | 0.690 |
Model | Test Set AP |
---|---|
ATSS | 0.692 |
VarifocalNet (1) | 0.664 |
VarifocalNet (2) | 0.683 |
FSAF | 0.701 |
FoveaBox | 0.692 |
Method 1 | Method 2 | Stat. | p-Value | p-Value Corr | Reject |
---|---|---|---|---|---|
ATSS | CARAFE | 1.2172 | 0.2904 | 1.0 | False |
ATSS | Double Heads | −0.9589 | 0.3919 | 1.0 | False |
ATSS | FSAF | 1.2161 | 0.2908 | 1.0 | False |
ATSS | Faster R-CNN | 5.0387 | 0.0073 | 0.1166 | False |
ATSS | FoveaBox | 1.2631 | 0.2752 | 1.0 | False |
ATSS | RetinaNet | 37.9511 | 0.0 | 0.0001 | True |
CARAFE | Double Heads | −2.2274 | 0.0899 | 0.8987 | False |
CARAFE | FSAF | 0.6059 | 0.5773 | 1.0 | False |
CARAFE | Faster R-CNN | 3.8948 | 0.0176 | 0.2643 | False |
CARAFE | FoveaBox | 0.6554 | 0.548 | 1.0 | False |
CARAFE | RetinaNet | 9.7542 | 0.0006 | 0.0124 | True |
Double Heads | FSAF | 1.2605 | 0.276 | 1.0 | False |
Double Heads | Faster R-CNN | 3.7234 | 0.0204 | 0.2654 | False |
Double Heads | FoveaBox | 1.2241 | 0.2881 | 1.0 | False |
Double Heads | RetinaNet | 8.9582 | 0.0009 | 0.0163 | True |
FSAF | Faster R-CNN | 3.2573 | 0.0312 | 0.3739 | False |
FSAF | FoveaBox | 0.2654 | 0.8038 | 1.0 | False |
FSAF | RetinaNet | 6.0 | 0.0039 | 0.0699 | False |
Faster R-CNN | FoveaBox | −3.8623 | 0.0181 | 0.2643 | False |
Faster R-CNN | RetinaNet | 2.737 | 0.0521 | 0.5727 | False |
FoveaBox | RetinaNet | 5.4165 | 0.0056 | 0.0957 | False |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zamboni, P.; Junior, J.M.; Silva, J.d.A.; Miyoshi, G.T.; Matsubara, E.T.; Nogueira, K.; Gonçalves, W.N. Benchmarking Anchor-Based and Anchor-Free State-of-the-Art Deep Learning Methods for Individual Tree Detection in RGB High-Resolution Images. Remote Sens. 2021, 13, 2482. https://doi.org/10.3390/rs13132482
Zamboni P, Junior JM, Silva JdA, Miyoshi GT, Matsubara ET, Nogueira K, Gonçalves WN. Benchmarking Anchor-Based and Anchor-Free State-of-the-Art Deep Learning Methods for Individual Tree Detection in RGB High-Resolution Images. Remote Sensing. 2021; 13(13):2482. https://doi.org/10.3390/rs13132482
Chicago/Turabian StyleZamboni, Pedro, José Marcato Junior, Jonathan de Andrade Silva, Gabriela Takahashi Miyoshi, Edson Takashi Matsubara, Keiller Nogueira, and Wesley Nunes Gonçalves. 2021. "Benchmarking Anchor-Based and Anchor-Free State-of-the-Art Deep Learning Methods for Individual Tree Detection in RGB High-Resolution Images" Remote Sensing 13, no. 13: 2482. https://doi.org/10.3390/rs13132482
APA StyleZamboni, P., Junior, J. M., Silva, J. d. A., Miyoshi, G. T., Matsubara, E. T., Nogueira, K., & Gonçalves, W. N. (2021). Benchmarking Anchor-Based and Anchor-Free State-of-the-Art Deep Learning Methods for Individual Tree Detection in RGB High-Resolution Images. Remote Sensing, 13(13), 2482. https://doi.org/10.3390/rs13132482