Efficient Calculation Method for Tree Stem Traits from Large-Scale Point Clouds of Forest Stands
"> Figure 1
<p>Pictures of the study sites. (<b>a</b>) Site 1; (<b>b</b>) Site 2.</p> "> Figure 2
<p>Contour curves of stem sections.</p> "> Figure 3
<p>Process outline.</p> "> Figure 4
<p>Measurement by TLS. (<b>a</b>) Conceptual diagram of TLS measurement; (<b>b</b>) Example of a point cloud with a two-dimensional lattice structure.</p> "> Figure 5
<p>Removal of points on the ground. (<b>a</b>) Example of a point cloud in a test site; (<b>b</b>) digital terrain model (DTM); (<b>c</b>) points of trees after removing ones on the ground (navy blue).</p> "> Figure 6
<p>Generating a wireframe model. (<b>a</b>) Estimation of the distance between neighbor points; (<b>b</b>) edges between neighboring points (a wireframe model).</p> "> Figure 7
<p>Segmentation into connected regions. (<b>a</b>) Connected regions; (<b>b</b>) removal of small regions.</p> "> Figure 8
<p>Section points between a wireframe model and horizontal planes. (<b>a</b>) Horizontal planes; (<b>b</b>) intersections (white circle); (<b>c</b>) section points.</p> "> Figure 9
<p>Section points merged on each horizontal plane.</p> "> Figure 10
<p>Segmentation of cross-sectional points. (<b>a</b>) Section points; (<b>b</b>) Delaunay triangulation; (<b>c</b>) connected components as stem section candidates.</p> "> Figure 11
<p>Ellipses detected from point-clouds.</p> "> Figure 12
<p>Detailed sectional shape of a stem. (<b>a</b>) Median distance in a fan; (<b>b</b>) <span class="html-italic">N</span>-sided polygon of a stem sectional shape.</p> "> Figure 13
<p>Stem representation using spline curve. (<b>a</b>) Four-point subdivision scheme; (<b>b</b>) interpolation by subdivision scheme.</p> "> Figure 14
<p>Extraction of each stem from stem sections. (<b>a</b>) Overlapping closed curves; (<b>b</b>) reconstruction of stem shapes.</p> "> Figure 15
<p>Calculation of tree height. (<b>a</b>) Circle on the horizontal plane; (<b>b</b>) points in a cylinder.</p> "> Figure 16
<p>Stems extracted from the dataset of Site 1.</p> "> Figure 17
<p>Comparison of manually-measured and calculated diameters.</p> "> Figure 18
<p>Diameters of stem sections of a sample tree.</p> "> Figure 19
<p>Comparison of manually-measured and calculated heights.</p> "> Figure 20
<p>Estimation of section areas.</p> "> Figure 21
<p>Comparison of measured and calculated section areas.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Measurements
2.1.1. Study Sites
2.1.2. Acquisition of Point Clouds
2.1.3. Manual Measurement of Stems
2.2. Methods of Point Processing
2.2.1. Outline
2.2.2. Format of Point Cloud Data
2.2.3. Removal of Points on the Ground
2.2.4. Conversion into Wireframe Model and Removal of Small Components
2.2.5. Cross-Sectional Points on Horizontal Planes
2.2.6. Fitting Closed Curves to Section Points
Segmentation of Section Points
Ellipse Fitting
Polygonal Approximation
Spline Curve Approximation
2.2.7. Extraction of Stems as Vertically Aligned Curves
- (1)
- and are overlapping when they are projected on the horizontal plane.
- (2)
- The difference between their z coordinates is less than the threshold .
- (3)
- The difference between their radii is less than the threshold .
2.2.8. Calculation of Traits
3. Results
3.1. Experimental Methods
3.2. Evaluation for Processing Large-Scale Point Clouds
3.2.1. Evaluation of Required Memory Size for Large-Scale Point Clouds
3.2.2. Performance of Point Processing
3.2.3. Detection of Stems
3.3. Evaluation of Stem Sections
3.3.1. Estimation of Diameter and Height
3.3.2. Reproducibility of Calculated Traits
4. Discussion
4.1. Efficiency of Point Processing
4.2. Accuracy of Stem Detection and Calculation of Stem Traits
4.3. Morphological Traits Calculated from Sectional Shapes of Stems
4.4. Application for Forest Investigations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Del Río, M.; Bravo, F.; Pando, V.; Sanz, G.; de Grado, R.S. Influence of individual tree and stand attributes in stem straightness in Pinus pinaster Ait. stands. Ann. For. Sci. 2004, 61, 141–148. [Google Scholar] [CrossRef]
- Thies, M.; Pfeifer, N.; Winterhalder, D.; Gorte, B.G.H. Three-dimensional reconstruction of stems for assessment of taper, sweep and lean based on laser scanning of standing trees. Scand. J. For. Res. 2004, 19, 571–581. [Google Scholar] [CrossRef]
- Wang, D.; Kankare, V.; Puttonen, E.; Hollaus, M.; Pfeifer, N. Reconstructing stem cross section shapes from terrestrial laser scanning. IEEE Geosci. Remote Sens. Lett. 2017, 14, 272–276. [Google Scholar] [CrossRef]
- Burt, A.; Disney, M.I.; Calders, K. Extracting individual trees from lidar point clouds using treeseg. Methods Ecol. Evol. 2019, 10, 438–445. [Google Scholar] [CrossRef] [Green Version]
- Raumonen, P.; Åkerblom, M.; Kaasalainen, M.; Casella, E.; Calders, K.; Murphy, S. Massive-Scale Tree Modelling from TLS Data. In ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, Proceedings of the PIA15+HRIGI15—Joint ISPRS Conference, Munich, Germany, 25–27 March 2015; International Society for Photogrammetry and Remote Sensing: Hannover, Germany, 2015; Volume II-3/W, pp. 189–196. [Google Scholar]
- Olofsson, K.; Holmgren, J. Single tree stem profile detection using terrestrial laser scanner data, flatness saliency features and curvature properties. Forests 2016, 7, 207. [Google Scholar] [CrossRef]
- Zhang, W.; Wan, P.; Wang, T.; Cai, S.; Chen, Y.; Jin, X.; Yan, G. A novel approach for the detection of standing tree stems from plot-level terrestrial laser scanning data. Remote Sens. 2019, 11, 211. [Google Scholar] [CrossRef] [Green Version]
- Lefsky, M.; McHale, M. Volume estimates of trees with complex architecture from terrestrial laser scan. J. Appl. Remote Sens. 2008, 2, 023521. [Google Scholar]
- Wang, D.; Hollaus, M.; Puttonen, E.; Pfeifer, N. Automatic and self-adaptive stem reconstruction in landslide-affected forests. Remote Sens. 2016, 8, 974. [Google Scholar] [CrossRef] [Green Version]
- Puttonen, E.; Lehtomäki, M.; Kaartinen, H.; Zhu, L.; Kukko, A.; Jaakkola, A. Improved sampling for terrestrial and mobile laser scanner point cloud data. Remote Sens. 2013, 5, 1754–1773. [Google Scholar] [CrossRef] [Green Version]
- Simonse, M.; Aschoff, T.; Spiecker, H.; Thies, M. Automatic determination of forest inventory parameters using terrestrial laserscanning. In Proceedings of the ScandLaser Scientific Workshop on Airborne Laser Scanning of Forest, Umea, Sweden, 3–4 September 2003; Volume 2003, pp. 252–258. [Google Scholar]
- Rabbani, T.; Van Den Heuvel, F. Efficient hough transform for automatic detection of cylinders in point clouds. ISPRS WG 2005, 3, 60–65. [Google Scholar]
- Olofsson, K.; Holmgren, J.; Olsson, H. Tree stem and height measurements using terrestrial laser scanning and the RANSAC algorithm. Remote Sens. 2014, 6, 4323–4344. [Google Scholar] [CrossRef] [Green Version]
- Lindberg, E.; Holmgren, J.; Olofsson, K.; Olsson, H. Estimation of stem attributes using a combination of terrestrial and airborne laser scanning. Eur. J. For. Res. 2012, 131, 1917–1931. [Google Scholar] [CrossRef] [Green Version]
- Gorte, B.; Pfeifer, N. Structuring laser-scanned trees using 3D mathematical morphology. Int. Arch. Photogramm. Remote Sens. 2004, 35, 929–933. [Google Scholar]
- Schnabel, R.; Wahl, R.; Klein, R. Efficient RANSAC for point-cloud shape detection. In Computer Graphics Forum; Blackwell Publishing Ltd.: Oxford, UK, 2007; Volume 26, pp. 214–226. [Google Scholar]
- Gorte, B.; Winterhalder, D. Reconstruction of laser-scanned trees using filter operations in the 3d raster domain. Remote Sens. Spat. Inf. Sci. 2012, 36, W2. [Google Scholar]
- Vonderach, C.; Voegtle, T.; Adler, P. Voxel-based approach for estimating urban tree volume from terrestrial laser scanning data. In ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, Proceedings of the XXII ISPRS Congress, Melbourne, Australia, 25 August–1 September 2012; International Society for Photogrammetry and Remote Sensing: Hannover, Germany, 2012; Volume XXXIX-B8, pp. 451–456. [Google Scholar]
- Aschoff, T.; Thies, M.; Spiecker, H. Describing forest stands using terrestrial laser-scanning. In ISPRS International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Proceedings of Istanbul 20th ISPRS World Congress, Istanbul, Turkey 12–23 July 2004; International Society for Photogrammetry and Remote Sensing: Hannover, Germany, 2004; Volume XXXV, Part B; pp. 237–241. [Google Scholar]
- Saito, K.; Masuda, H.; Hiraoka, Y.; Matsushita, M.; Takahashi, M. Shape reconstruction of trees in massive-scale forests for evaluation of morphological traits. In Proceedings of the SilviLaser, Blacksburg, VA, USA, 10–12 October 2017; p. 166. [Google Scholar]
- Pfeifer, N.; Winterhalder, D. Modelling of tree cross sections from terrestrial laser scanning data with free-form curves. Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. 2004, 36, 76–81. [Google Scholar]
- Eto, S.; Masuda, H.; Hiraoka, Y.; Matsushita, M.; Takahashi, M. Extraction and evaluation of tree traits using TLS point cloud. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2020, XLIII-B2-2020, 205–210. [Google Scholar] [CrossRef]
- Masuda, H.; Niwa, T.; Tanaka, I.; Matsuoka, R. Reconstruction of polygonal faces from large-scale point-clouds of engineering plants. Comput. Aided Des. Appl. 2015, 12, 555–563. [Google Scholar] [CrossRef]
- Dyn, N. Subdivision schemes in CAGD. Adv. Numer. Anal. 1992, 2, 36–104. [Google Scholar]
- Kato, A.; Ishii, H.; Enoki, T.; Osawa, A.; Kobayashi, T.; Umeki, K.; Sasaki, T.; Matsue, K. Application of laser remote sensing to forest ecological research. J. Jpn. For. Soc. 2014, 96, 168–181. [Google Scholar] [CrossRef] [Green Version]
- Koizumi, A.; Ikeda, K.; Sawata, K.; Hirai, T. Nondestructive measurement of cross-sectional shape of a tree trunk. J. Wood Sci. 2011, 57, 276–281. [Google Scholar] [CrossRef] [Green Version]
- Shi, P.-J.; Huang, J.-G.; Hui, C.; Grissino-Mayer, H.D.; Tardif, J.C.; Zhai, L.-H.; Wang, F.-S.; Li, B.-L. Capturing spiral radial growth of conifers using the superellipse to model tree-ring geometric shape. Front. Plant Sci. 2015, 6, 856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiraoka, Y.; Fukatsu, E.; Mishima, K.; Hirao, T.; Teshima, K.M.; Tamura, M.; Tsubomura, M.; Iki, T.; Kurita, M.; Takahashi, M.; et al. Potential of genome-wide studies in unrelated plus trees of a coniferous species. Cryptomeria japonica (Japanese cedar). Front. Plant Sci. 2018, 9, 1322. [Google Scholar] [CrossRef] [PubMed]
- Nagano, S.; Hirao, T.; Takashima, Y.; Matsushita, M.; Mishima, K.; Takahashi, M.; Iki, T.; Ishiguri, F.; Hiraoka, H. SNP genotyping with target amplicon sequencing using a multiplexed primer panel and its application to genomic prediction in Japanese Cedar, Cryptomeria japonica (L.f.) D.Don. Forests 2020, 11, 898. [Google Scholar] [CrossRef]
Study 1 | Study 2 | Study 3 | ||
---|---|---|---|---|
Dataset | A | B | C | D |
Study site | Site 1 | Site 2 | Site 2 | Site 2 |
Measured age (years) | 18 | 22 | 23 | 23 |
Objective area (ha) | 0.517 | 0.056 | 0.019 | 0.018 |
Stem density within Objective area (ha−1) | 1410 | 1238 | 1440 | 1598 |
Number of targeted trees | 636 | 8 | 3 | 3 |
Scanner type | S120 | X330 | X330 | X330 |
Number of scanner locations | 37 | 19 | 12 | 15 |
Number of points | 3,573,945,616 | 1,237,481,441 | 867,906,402 | 1,105,273,190 |
FARO Focus3D S120 | FARO Focus3D X330 | |
---|---|---|
Range of distance | 0.6–120 m | 0.6–330 m |
Wave length | 905 nm | 1550 nm |
Ranging error | ±2 mm at 10 m and 25 m, each at 90% and 10% reflectivity | |
Angle resolution | 0.018 deg (20,480 measurements per 360 deg) | |
Scan speed | 488,000 points/sec (Quality 2X) |
Number of measurements | 7.0 billion |
Data size | 112 GB |
Number of valid points | 3.6 billion |
Data size | 43 GB |
Interval of Sections | ||
---|---|---|
10 cm | 5 cm | |
Number of section points | 39 million | 79 million |
Data size | 313 MB | 632 MB |
Ratio to original coordinate data | 0.73% | 1.47% |
Number of section curves | 62,624 | 131,458 |
Time | Ratio | |
---|---|---|
Loading and ground removal | 1001 s | 84% |
Calculation of cross-sectional points | 45 s | 3% |
Curve fitting | 121 s | 10% |
Stem detection | 20 s | 2% |
Total | 1187 s | 100% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masuda, H.; Hiraoka, Y.; Saito, K.; Eto, S.; Matsushita, M.; Takahashi, M. Efficient Calculation Method for Tree Stem Traits from Large-Scale Point Clouds of Forest Stands. Remote Sens. 2021, 13, 2476. https://doi.org/10.3390/rs13132476
Masuda H, Hiraoka Y, Saito K, Eto S, Matsushita M, Takahashi M. Efficient Calculation Method for Tree Stem Traits from Large-Scale Point Clouds of Forest Stands. Remote Sensing. 2021; 13(13):2476. https://doi.org/10.3390/rs13132476
Chicago/Turabian StyleMasuda, Hiroshi, Yuichiro Hiraoka, Kazuto Saito, Shinsuke Eto, Michinari Matsushita, and Makoto Takahashi. 2021. "Efficient Calculation Method for Tree Stem Traits from Large-Scale Point Clouds of Forest Stands" Remote Sensing 13, no. 13: 2476. https://doi.org/10.3390/rs13132476
APA StyleMasuda, H., Hiraoka, Y., Saito, K., Eto, S., Matsushita, M., & Takahashi, M. (2021). Efficient Calculation Method for Tree Stem Traits from Large-Scale Point Clouds of Forest Stands. Remote Sensing, 13(13), 2476. https://doi.org/10.3390/rs13132476