Spatiotemporal Changes and Driving Factors of Cultivated Soil Organic Carbon in Northern China’s Typical Agro-Pastoral Ecotone in the Last 30 Years
"> Figure 1
<p>(<b>a</b>) Locations of the agro-pastoral ecotone of northern China and their relationships with the land-use and cover types in 2015. (<b>b</b>) Locations of the sampling sites with a relative elevation map in the study area.</p> "> Figure 2
<p>(<b>a</b>). Reflectance characteristics of different SOC values of OLI. (<b>b</b>). Comparison of spectral characteristics between OLI and TM.</p> "> Figure 3
<p>Relationships between measured and estimated soil carbon (SOC) values. (<b>a</b>,<b>b</b>) are the calibration dataset and validation dataset using the red, NIR, SWIR1 and SWIR2 bands. (<b>c</b>,<b>d</b>) are the calibration dataset and validation dataset using the inputs of red, NIR, SWIR1, SWIR2 and elevation, MaxC and MinC.</p> "> Figure 4
<p>Spatial distributions of the soil organic carbon (SOC) in 1989 (<b>a</b>), 2001 (<b>b</b>), 2009 (<b>c</b>) and 2018 (<b>d</b>) with a resolution of 30 m.</p> "> Figure 5
<p>Spatial pattern of the changes in soil organic carbon (SOC) during the periods of 1989–2001 (<b>a</b>), 2001–2009 (<b>b</b>), 2009–2018 (<b>c</b>) and 1989–2018 (<b>d</b>).</p> "> Figure 6
<p>Q-statistic values in the geodetector analysis of the predictor importance for soil organic matter (SOC) in Aohan Banner. (All variables in <a href="#remotesensing-13-03607-f005" class="html-fig">Figure 5</a> show strongly significant effects at <span class="html-italic">p</span> < 0.01).</p> "> Figure 7
<p>The impact of anthropogenic activities on the changes in soil organic carbon (SOC) in Aohan Banner.</p> "> Figure 8
<p>A comparison of the remote sensing data between 1989 and 2018 in typical areas (<b>a</b>–<b>f</b>) (From left to right are Scheme 1989. to 2018, regional variation, 1989 TM data, 2018 OLI data and reflectance curves between TM and OLI in the places of the dots, respectively).</p> "> Figure 9
<p>Crop root carbon inputs since 1989 (carbon inputs by roots were estimated using the crop yield data referenced by [<a href="#B21-remotesensing-13-03607" class="html-bibr">21</a>]).</p> "> Figure A1
<p>The relationship of slope and soil organic carbon (SOC).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Resources and Treatment
2.2.1. Soil Sample Collection and Treatment
2.2.2. Image Acquisition and Treatment
2.2.3. Acquisition and Treatment of Other Auxiliary Variables
2.3. SOC Prediction Model
2.3.1. Random Forest (RF)
2.3.2. Model Evaluation
2.4. Geographical Detector Method (GDM) for Driving Factor Analysis
3. Results
3.1. Descriptive Statistics of the SOC
3.2. Reflectance Characteristics of Soil Samples
3.3. Selection of Predictors for SOC Prediction
3.4. The Results of Different SOC Predictors on RF Models
3.5. Spatiotemporal Changes in SOC in Aohan Banner from 1989 to 2018
3.6. Driving Factors of Spatiotemporal Changes in Soil Organic Carbon (SOC)
4. Discussions
4.1. The Performance of Different Variables in SOC Mapping
4.2. The Drivers of SOC Spatiotemporal Changes
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Soil Type | SOC (g/kg) | Silt (%) | Sand (%) | Clay (%) |
---|---|---|---|---|
gray fluvo–aquic soil | 5.51 | 29.00 | 50.93 | 20.07 |
cinnamon soil | 7.56 | 31.30 | 46.97 | 22.73 |
Castanozeras soil | 5.22 | 30.14 | 52.28 | 17.58 |
Aeolian soils | 4.52 | 14.50 | 77.25 | 8.25 |
References
- Post, W.M.; Emanuel, W.R.; Zinke, P.J.; Stangenberger, A.G. Soil Carbon Pools And World Life Zones. Nature 1982, 298, 156–159. [Google Scholar] [CrossRef]
- Wang, J.; He, T.; Lv, C.; Chen, Y.; Jian, W. Mapping soil organic matter based on land degradation spectral response units using Hyperion images. Int. J. Appl. Earth Obs. 2010, 12, S171–S180. [Google Scholar] [CrossRef]
- Wood, S.A.; Baudron, F. Soil organic matter underlies crop nutritional quality and productivity in smallholder agriculture. Agric. Ecosyst. Environ. 2018, 266, 100–108. [Google Scholar] [CrossRef]
- Meng, X.; Bao, Y.; Liu, J.; Liu, H.; Zhang, X.; Zhang, Y.; Wang, P.; Tang, H.; Kong, F. Regional soil organic carbon prediction model based on a discrete wavelet analysis of hyperspectral satellite data. Int. J. Appl. Earth Obs. 2020, 89, 102111. [Google Scholar] [CrossRef]
- Seema; Ghosh, A.K.; Das, B.S.; Reddy, N. Application of VIS-NIR spectroscopy for estimation of soil organic carbon using different spectral preprocessing techniques and multivariate methods in the middle Indo-Gangetic plains of India. Geoderma Reg. 2020, 23, e00349. [Google Scholar] [CrossRef]
- Zhang, Z.; Ding, J.; Zhu, C.; Wang, J.; Ma, G.; Ge, X.; Li, Z.; Han, L. Strategies for the efficient estimation of soil organic matter in salt-affected soils through Vis-NIR spectroscopy: Optimal band combination algorithm and spectral degradation. Geoderma 2021, 382, 114729. [Google Scholar] [CrossRef]
- Padilha, M.C.D.C.; Vicente, L.E.; Dematte, J.A.M.; Loebmann, D.G.D.S.W.; Vicente, A.K.; Salazar, D.F.U.; Guimaraes, C.C.B. Using Landsat and soil clay content to map soil organic carbon of oxisols and Ultisols near Sao Paulo, Brazil. Geoderma Reg. 2020, 21, e00253. [Google Scholar] [CrossRef]
- Ingleby, H.R.; Crowe, T.G. Reflectance models for predicting organic carbon in Saskatchewan soils. Can. Agric. Eng. 2000, 42, 57–63. [Google Scholar]
- Grinand, C.; Le Maire, G.; Vieilledent, G.; Razakarnanarivo, H.; Razafimbelo, T.; Bernoux, M. Estimating temporal changes in soil carbon stocks at ecoregional scale in Madagascar using remote-sensing. Int. J. Appl. Earth Obs. 2017, 54, 1–14. [Google Scholar] [CrossRef]
- Chen, D.; Chang, N.; Xiao, J.; Zhou, Q.; Wu, W. Mapping dynamics of soil organic matter in croplands with MODIS data and machine learning algorithms. Sci. Total Environ. 2019, 669, 844–855. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.Y.; Jiang, Z.C.; Li, W.J.; Li, H. Prediction of soil organic matter in peak-cluster depression region using kriging and terrain indices. Soil Tillage Res. 2014, 144, 126–132. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, Y.; Shen, C.; Ye, H.; Du, Y. Spatial prediction of soil organic matter using terrain indices and categorical variables as auxiliary information. Geoderma 2012, 171, 35–43. [Google Scholar] [CrossRef]
- Grimm, R.; Behrens, T.; Marker, M.; Elsenbeer, H. Soil organic carbon concentrations and stocks on Barro Colorado Island—digital soil mapping using Random Forests analysis. Geoderma 2008, 146, 102–113. [Google Scholar] [CrossRef]
- Zeraatpisheh, M.; Ayoubi, S.; Jafari, A.; Tajik, S.; Finke, P. Digital mapping of soil properties using multiple machine learning in a semi-arid region, central Iran. Geoderma 2019, 338, 445–452. [Google Scholar] [CrossRef]
- Fissore, C.; Dalzell, B.J.; Berhe, A.A.; Voegtle, M.A.; Evans, M.A.; Wu, A. Influence of topography on soil organic carbon dynamics in a Southern California grassland. Catena 2017, 149, 140–149. [Google Scholar] [CrossRef]
- Cai, A.; Feng, W.; Zhang, W.; Xu, M. Climate, soil texture, and soil types affect the contributions of fine-fraction-stabilized carbon to total soil organic carbon in different land uses across China. J. Environ. Manag. 2016, 172, 2–9. [Google Scholar] [CrossRef]
- Chen, Q.; Niu, B.; Hu, Y.; Luo, T.; Zhang, G. Warming and increased precipitation indirectly affect the composition and turnover of labile-fraction soil organic matter by directly affecting vegetation and microorganisms. Sci. Total Environ. 2020, 714, 136787. [Google Scholar] [CrossRef]
- Chen, L.; Jing, X.; Flynn, D.F.B.; Shi, Y.; Kuehn, P.; Scholten, T.; He, J.-S. Changes of carbon stocks in alpine grassland soils from 2002 to 2011 on the Tibetan Plateau and their climatic causes. Geoderma 2017, 288, 166–174. [Google Scholar] [CrossRef]
- Bahadori, M.; Chen, C.; Lewis, S.; Boyd, S.; Rashti, M.R.; Esfandbod, M.; Garzon-Garcia, A.; Van Zwieten, L.; Kuzyakov, Y. Soil organic matter formation is controlled by the chemistry and bioavailability of organic carbon inputs across different land uses. Sci. Total Environ. 2021, 770, 145307. [Google Scholar] [CrossRef]
- Xie, E.; Zhang, Y.; Huang, B.; Zhao, Y.; Shi, X.; Hu, W.; Qu, M. Spatiotemporal variations in soil organic carbon and their drivers in southeastern China during 1981–2011. Soil Tillage Res. 2021, 205, 104763. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, M.; Hu, S.; Zhang, X.; Ouyang, Z.; Zhang, G.; Huang, B.; Zhao, S.; Wu, J.; Xie, D.; et al. Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. Proc. Natl. Acad. Sci. USA 2018, 115, 4045–4050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, X.; Zhang, L.-F. Succession and Enhancement Mechanism of Ecosystem Productivity in the De-farming Area of the Ecotone Between Agriculture and Animal Husbandry in North China. Agric. Sci. China 2008, 7, 487–496. [Google Scholar] [CrossRef]
- Yao, Y.; Ge, N.; Wei, X.; Fu, W.; Shao, M.; Zhao, X.; Ingwersen, J. Responses of soil organic carbon mineralization and its temperature sensitivity to re-vegetation in the agro-pastoral ecotone of northern China. Eur. J. Soil Biol. 2021, 103, 103278. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Gong, X.; Niu, Y.; Liu, J. Changes of soil organic carbon stocks from the 1980s to 2018 in northern China’s agro-pastoral ecotone. Catena 2020, 194, 104722. [Google Scholar] [CrossRef]
- O’Kelly, B.C. Accurate determination of moisture content of organic soils using the oven drying method. Dry. Technol. 2004, 22, 1767–1776. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis, 3rd ed.; Sparks, D.L., Ed.; SSSA and ASA: Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar]
- Shi, X.Z.; Yu, D.S.; Xu, S.X.; Warner, E.D.; Wang, H.J.; Sun, W.X.; Zhao, Y.C.; Gong, Z.T. Cross-reference for relating Genetic Soil Classification of China with WRB at different scales. Geoderma 2010, 155, 344–350. [Google Scholar] [CrossRef]
- Meng, L.; Zhang, X.L.; Liu, H.; Guo, D.; Yan, Y.; Qin, L.; Pan, Y. Estimation of Cotton Yield Using the Reconstructed Time-Series Vegetation Index of Landsat Data. Can. J. Remote Sens. 2017, 43, 244–255. [Google Scholar] [CrossRef]
- Mishra, N.; Helder, D.; Barsi, J.; Markham, B. Continuous calibration improvement in solar reflective bands: Landsat 5 through Landsat 8. Remote Sens. Environ. 2016, 185, 7–15. [Google Scholar] [CrossRef] [Green Version]
- Pu, X.; Cheng, H.; Tysklind, M.; Xie, J.; Lu, L.; Yang, S. Indications of soil properties on dissolved organic carbon variability following a successive land use conversion. Ecol. Eng. 2018, 117, 115–119. [Google Scholar] [CrossRef]
- Pouladi, N.; Møller, A.B.; Tabatabai, S.; Greve, M.H. Mapping soil organic matter contents at field level with Cubist, Random Forest and kriging. Geoderma 2019, 342, 85–92. [Google Scholar] [CrossRef]
- Teng, H.; Rossel, R.A.V.; Shi, Z.; Behrens, T. Updating a national soil classification with spectroscopic predictions and digital soil mapping. Catena 2018, 164, 125–134. [Google Scholar] [CrossRef]
- Luo, L.; Mei, K.; Qu, L.; Zhang, C.; Chen, H.; Wang, S.; Di, D.; Huang, H.; Wang, Z.; Xia, F.; et al. Assessment of the Geographical Detector Method for investigating heavy metal source apportionment in an urban watershed of Eastern China. Sci. Total Environ. 2019, 653, 714–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiao, P.; Yang, S.; Lei, M.; Chen, T.; Dong, N. Quantitative analysis of the factors influencing spatial distribution of soil heavy metals based on geographical detector. Sci. Total Environ. 2019, 664, 392–413. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, Y.; Gong, X.; Niu, Y.; Chen, Y.; Shi, X.; Li, W. Storage, pattern and driving factors of soil organic carbon in an ecologically fragile zone of nothern China. Geoderma 2019, 343, 155–165. [Google Scholar] [CrossRef]
- Lewis-Beck, M.S.; Tien, C. Election Forecasting for Turbulent Times. PS-Poli. Sci. Pol. 2012, 45, 625–629. [Google Scholar] [CrossRef]
- Dou, X.; Wang, X.; Liu, H.; Zhang, X.; Meng, L.; Pan, Y.; Yu, Z.; Cui, Y. Prediction of soil organic matter using multi-temporal satellite images in the Songnen Plain, China. Geoderma 2019, 356, 113896. [Google Scholar] [CrossRef]
- Jin, X.; Song, K.; Du, J.; Liu, H.; Wen, Z. Comparison of different satellite bands and vegetation indices for estimation of soil organic matter based on simulated spectral configuration. Agric. Forest Meteorol. 2017, 244–245, 57–71. [Google Scholar] [CrossRef]
- Teng, M.; Zeng, L.; Xiao, W.; Huang, Z.; Zhou, Z.; Yan, Z.; Wang, P. Spatial variability of soil organic carbon in Three Gorges Reservoir area, China. Sci. Total Environ. 2017, 599, 1308–1316. [Google Scholar] [CrossRef]
- Wang, D.D.; Shi, X.Z.; Wang, H.J.; Weindorf, D.C.; Yu, D.S.; Sun, W.X.; Ren, H.Y.; Zhao, Y.C. Scale Effect of Climate and Soil Texture on Soil Organic Carbon in the Uplands of Northeast China. Pedosphere 2010, 20, 525–535. [Google Scholar] [CrossRef]
- Zhao, C.; Miao, Y.; Yu, C.; Zhu, L.; Wang, F.; Jiang, L.; Hui, D.; Wan, S. Soil microbial community composition and respiration along an experimental precipitation gradient in a semiarid steppe. Sci. Rep. 2016, 6, 24317. [Google Scholar] [CrossRef] [Green Version]
- Lybrand, R.A.; Rasmussen, C. Quantifying Climate and Landscape Position Controls on Soil Development in Semiarid Ecosystems. Soil. Sci. Soc. Am. J. 2015, 79, 104–116. [Google Scholar] [CrossRef] [Green Version]
- Melero, S.; Ruiz Porras, J.C.; Francisco Herencia, J.; Madejon, E. Chemical and biochemical properties in a silty loam soil under conventional and organic management. Soil Tillage Res. 2006, 90, 162–170. [Google Scholar] [CrossRef]
- Huang, B.; Sun, W.; Zhao, Y.; Zhu, J.; Yang, R.; Zou, Z.; Ding, F.; Su, J. Temporal and spatial variability of soil organic matter and total nitrogen in an agricultural ecosystem as affected by farming practices. Geoderma 2007, 139, 336–345. [Google Scholar] [CrossRef]
- Shi, S.Q.; Cao, Q.W.; Yao, Y.M.; Tang, H.J.; Yang, P.; Wu, W.B.; Xu, H.Z.; Liu, J.; Li, Z.G. Influence of Climate and Socio-Economic Factors on the Spatio-Temporal Variability of Soil Organic Matter: A Case Study of Central Heilongjiang Province, China. J. Integr. Agric. 2014, 13, 1486–1500. [Google Scholar] [CrossRef]
- Wang, X.M.; Zhang, C.X.; Hasi, E.; Dong, Z.B. Has the Three Norths Forest Shelterbelt Program solved the desertification and dust storm problems in arid and semiarid China? J. Arid. Environ. 2010, 74, 13–22. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, B.; Wang, S.; Xie, G.D. Dynamic changes in water conservation in the Beijing Tianjin Sandstorm Source Control Project Area: A case study of Xilin Gol League in China. J. Clean. Prod. 2021, 293, 126054. [Google Scholar] [CrossRef]
- Lo, A.Y.; Cong, R. After CDM: Domestic carbon offsetting in China. J. Clean. Prod. 2017, 141, 1391–1399. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Day, S.D.; Wick, A.F.; McGuire, K.J. Influence of urban land development and subsequent soil rehabilitation on soil aggregates, carbon, and hydraulic conductivity. Sci. Total Environ. 2014, 494, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Abd-Elmabod, S.K.; Fitch, A.C.; Zhang, Z.; Ali, R.R.; Jones, L. Rapid urbanisation threatens fertile agricultural land and soil carbon in the Nile delta. J. Environ. Manag. 2019, 252, 109668. [Google Scholar] [CrossRef]
Images | Date |
---|---|
TM | 25 March 1989 |
TM | 26 March 2001 |
TM | 1 April 2009 |
OLI | 25 March 2018 |
Bands | Regression Model between ETM+ and TM | R2 | RMSE (Reflectance) | Regression Model between OLI and ETM+ | R2 | RMSE (Reflectance) |
---|---|---|---|---|---|---|
Red | ETM+ =1.071×TM−0.016 | 0.980 | 0.013 | OLI = 1.010×ETM+ −0.011 | 0.948 | 0.025 |
NIR | ETM+ =1.076×TM−0.023 | 0.979 | 0.013 | OLI = 0.988×ETM+ −0.015 | 0.943 | 0.028 |
SWIR1 | ETM+ =1.048×TM−0.024 | 0.984 | 0.022 | OLI = 0.966×ETM+ −0.002 | 0.954 | 0.035 |
SWIR2 | ETM+ =1.037×TM−0.022 | 0.982 | 0.024 | OLI = 0.911×ETM+ +0.007 | 0.944 | 0.043 |
Parameters | Purpose | Data Sources |
---|---|---|
Elevation | Predictor/Spatial driving factor | https://search.asf.alaska.edu/#/, accessed on 25 March 2020 |
MaxC | Predictor | Extracted by ENVI 5.3 |
MinC | Predictor | Extracted by ENVI 5.3 |
Clay | Spatial driving factor | https://www.resdc.cn/, accessed on 25 March 2020 |
Soil Type | Spatial driving factor | https://www.resdc.cn/, accessed on 25 March 2020 |
Precipitation | Spatial/temporal driving factor | https://data.cma.cn/; https://www.resdc.cn/, accessed on 25 March 2020 |
Temperature | Spatial/temporal driving factor | https://data.cma.cn/; https://www.resdc.cn/, accessed on 25 March 2020 |
C input | Spatial/temporal driving factor | http://files.ntsg.umt.edu/data/NTSGProducts/MOD17/, accessed on 25 March 2020 |
GDP | Spatial/temporal driving factor | https://www.resdc.cn/, accessed on 25 March 2020 |
Set | n | Max (g/kg) | Min (g/kg) | Mean (g/kg) | SD (g/kg) | Skewness | Kurtosis | CV/% |
---|---|---|---|---|---|---|---|---|
Whole dataset | 102 | 12.18 | 2.03 | 5.90 | 2.11 | 0.33 | −0.13 | 35.82 |
Calibration dataset | 68 | 12.18 | 2.03 | 5.87 | 2.13 | 0.38 | 0.07 | 36.34 |
Validation dataset | 34 | 10.44 | 2.26 | 5.96 | 2.11 | 0.24 | 0.42 | 35.30 |
Bands | Coefficient | VIF | Terrain Factors | Coefficient | VIF |
---|---|---|---|---|---|
Blue | −0.48 ** | 1.29 | Elevation | 0.48 ** | 1.30 |
Green | −0.50 ** | 1.33 | MaxC | 0.48 ** | 1.29 |
Red | −0.53 ** | 1.39 | MinC | −0.48 ** | 1.29 |
NIR | −0.60 ** | 1.57 | Aspect | −0.11 | 1.01 |
SWIR1 | −0.64 ** | 1.70 | Slope | 0.14 | 1.02 |
SWIR2 | −0.58 ** | 1.52 |
Input | R2 cal | RMSE cal/g/kg | RPD cal | R2 val | RMSE val/g/kg | RPD val |
---|---|---|---|---|---|---|
Red, NIR, SWIR1, SWIR2 | 0.86 | 0.87 | 1.83 | 0.59 | 1.42 | 1.10 |
Red, NIR, SWIR1, SWIR2 + Elevation + MaxC + MinC | 0.90 | 0.76 | 2.23 | 0.77 | 1.05 | 1.49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Wang, X.; Wang, D.; Qi, B.; Zheng, S.; Liu, H.; Luo, C.; Li, H.; Meng, L.; Meng, X.; et al. Spatiotemporal Changes and Driving Factors of Cultivated Soil Organic Carbon in Northern China’s Typical Agro-Pastoral Ecotone in the Last 30 Years. Remote Sens. 2021, 13, 3607. https://doi.org/10.3390/rs13183607
Wang L, Wang X, Wang D, Qi B, Zheng S, Liu H, Luo C, Li H, Meng L, Meng X, et al. Spatiotemporal Changes and Driving Factors of Cultivated Soil Organic Carbon in Northern China’s Typical Agro-Pastoral Ecotone in the Last 30 Years. Remote Sensing. 2021; 13(18):3607. https://doi.org/10.3390/rs13183607
Chicago/Turabian StyleWang, Liping, Xiang Wang, Dianyao Wang, Beisong Qi, Shufeng Zheng, Huanjun Liu, Chong Luo, Houxuan Li, Linghua Meng, Xiangtian Meng, and et al. 2021. "Spatiotemporal Changes and Driving Factors of Cultivated Soil Organic Carbon in Northern China’s Typical Agro-Pastoral Ecotone in the Last 30 Years" Remote Sensing 13, no. 18: 3607. https://doi.org/10.3390/rs13183607
APA StyleWang, L., Wang, X., Wang, D., Qi, B., Zheng, S., Liu, H., Luo, C., Li, H., Meng, L., Meng, X., & Wang, Y. (2021). Spatiotemporal Changes and Driving Factors of Cultivated Soil Organic Carbon in Northern China’s Typical Agro-Pastoral Ecotone in the Last 30 Years. Remote Sensing, 13(18), 3607. https://doi.org/10.3390/rs13183607