Sliding Windows Method Based on Terrain Self-Similarity for Higher DEM Resolution in Flood Simulating Modeling
"> Figure 1
<p>Location and topography of the study site. The DEM of the Taitou Basin with a 10 m grid resolution.</p> "> Figure 2
<p>Flowchart of the sliding windows method (SWM). The main processes of the experiment include constructing mapping sets, searching for the optimized matching and expansion. During the expansion process, each small-sized window is replaced by its best match window’s corresponding larger window according to its coordinates, thereby constructing a higher-resolution DEM. Then, we repeat these processes with the small-scale expansion factor until the dem resolution reach the requirement.</p> "> Figure 3
<p>Processes and descriptions of sliding-window expansion. Take <span class="html-italic">λ</span> = 2 as an example. In the first step, we compress DEM <span class="html-italic">I</span> into a lower resolution DEM <math display="inline"><semantics> <mrow> <msub> <mi>I</mi> <mi>λ</mi> </msub> </mrow> </semantics></math> according to parameter 2. Due to downsampling, for each 2<math display="inline"><semantics> <mrow> <mo>×</mo> <mn>2</mn> </mrow> </semantics></math> sliding window in DEM <math display="inline"><semantics> <mrow> <msub> <mi>I</mi> <mi>λ</mi> </msub> </mrow> </semantics></math> and digital slope model <math display="inline"><semantics> <mrow> <msub> <mi>S</mi> <mi>λ</mi> </msub> </mrow> </semantics></math>, there is a corresponding <math display="inline"><semantics> <mrow> <mn>3</mn> <mo>×</mo> <mn>3</mn> </mrow> </semantics></math> window in original DEM <span class="html-italic">I</span> and digital slope model <span class="html-italic">S</span> according to its coordinates. In the second step, for any window of the normalized set <math display="inline"><semantics> <mrow> <mi>I</mi> <msubsup> <mi>W</mi> <mn>1</mn> <mo>′</mo> </msubsup> </mrow> </semantics></math>, we can search each window of set <math display="inline"><semantics> <mrow> <mi>I</mi> <msup> <mrow> <msub> <mi>W</mi> <mi>λ</mi> </msub> </mrow> <mo>′</mo> </msup> </mrow> </semantics></math> to obtain the optimal matching results. The matching search step includes height data matching and slope data matching. In the third step, the <math display="inline"><semantics> <mrow> <mn>2</mn> <mo>×</mo> <mn>2</mn> </mrow> </semantics></math> windows in set<math display="inline"><semantics> <mrow> <mo> </mo> <mi>I</mi> <msubsup> <mi>W</mi> <mn>1</mn> <mo>′</mo> </msubsup> </mrow> </semantics></math> can be replaced by the <math display="inline"><semantics> <mrow> <mn>3</mn> <mo>×</mo> <mn>3</mn> </mrow> </semantics></math> windows in set <math display="inline"><semantics> <mrow> <mi>I</mi> <msubsup> <mi>W</mi> <mn>0</mn> <mo>′</mo> </msubsup> </mrow> </semantics></math>. The red and green frames represent different windows, ○ represents known elevation data and △ is the extended data obtained from window replacement. The black solid symbols ▲ and ⚫ represent the overlapping data present in two windows and the values in the overlapped part are averaged. The windows should recover the normalization after replacement. After the expansion of every window, a high-resolution DEM <span class="html-italic">T</span> can be reconstructed.</p> "> Figure 4
<p>Comparison of the 30 m precision original contour image before SWM expansion (<b>a</b>), the 10 m precision contour image after expansion (<b>b</b>) and the 10 m precision realistic contour image (<b>c</b>).</p> "> Figure 5
<p><span class="html-italic">PEP1.5</span> in the grayscale images generated by nearest-neighbor interpolation (NNI) (<b>a</b>), bilinear interpolation (BI) (<b>b</b>), inverse distance weighting (IDW) (<b>c</b>), ordinary kriging (<b>d</b>), SWM (<b>e</b>) and the realistic grayscale image (<b>f</b>).</p> "> Figure 6
<p>Regions of the grayscale images and contour maps generated by NNI (<b>a</b>), BI (<b>b</b>), IDW (<b>c</b>), OK (<b>d</b>) and SWM (<b>e</b>). Their corresponding parts in the realistic image (<b>f</b>). In each row, the image on the right is a contour map and the image on the left is a grayscale image.</p> "> Figure 7
<p>Flood extent and the distribution of water depth simulated by the FLO-2D model under different DEM resolutions.</p> ">
Abstract
:1. Introduction
2. Materials
3. Methods
3.1. Experiment Flowchart
3.2. Mapping Set Construction
3.3. Search for the Optimal Matching
3.4. Window Replacement
3.5. Small-Scale Expansion Factor
3.6. Evaluation Metrics
3.6.1. Quantitative Evaluation
3.6.2. Visual Evaluation
3.6.3. Simulated Flooding Event Evaluation
4. Results and Discussion
4.1. Parameters of Sliding Windows
4.2. Image Generation
4.3. Accuracy for Altitude Estimation
4.3.1. Error Indicators
4.3.2. Visual Comparison
4.4. Results of the Madian Basin
4.5. Application of High-Resolution DEMs in Flood Modeling
5. Conclusions and Recommendations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guth, P. Geomorphometry from SRTM. Photogramm. Eng. Remote Sens. 2006, 72, 269–277. [Google Scholar] [CrossRef]
- Liu, L.; Jiang, L.; Zhang, Z.; Wang, H.; Ding, X. Recent Accelerating Glacier Mass Loss of the Geladandong Mountain, Inner Tibetan Plateau, Estimated from ZiYuan-3 and TanDEM-X Measurements. Remote Sens. 2020, 12, 472. [Google Scholar] [CrossRef] [Green Version]
- Mleczko, M.; Mróz, M. Wetland Mapping Using SAR Data from the Sentinel-1A and TanDEM-X Missions: A Comparative Study in the Biebrza Floodplain (Poland). Remote Sens. 2018, 10, 2772. [Google Scholar] [CrossRef] [Green Version]
- Gudowicz, J.; Paluszkiewicz, R. MAT: GIS-Based Morphometry Assessment Tools for Concave Landforms. Remote Sens. 2021, 13, 6278. [Google Scholar] [CrossRef]
- Muhadi, N.A.; Abdullah, A.F.; Bejo, S.K.; Mahadi, M.R.; Mijic, A. The Use of LiDAR-Derived DEM in Flood Applications: A Review. Remote Sens. 2020, 12, 272. [Google Scholar] [CrossRef]
- Wolock, D.; Price, C. Effect of Digital Elevation Model Map Scale and Data Resolution on a Topography-Based Watershed Model. Water Resour. Res. 1994, 30, 3041–3052. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, Z.; Yi, W.; Gui, Q.; Wenguang, H.; Ding, M. Deep gradient prior network for DEM super-resolution: Transfer learning from image to DEM. ISPRS J. Photogramm. Remote Sens. 2019, 150, 80–90. [Google Scholar] [CrossRef]
- Grau, J.; Liang, K.; Ogilvie, J.; Arp, P.; Li, S.; Robertson, B.; Meng, F.-R. Using Unmanned Aerial Vehicle and LiDAR-Derived DEMs to Estimate Channels of Small Tributary Streams. Remote Sens. 2021, 13, 2673. [Google Scholar] [CrossRef]
- Milette, S.; Daigneault, R.-A.; Roy, M. Refining the glacial lake coverage of the southern Laurentide ice margin using Lidar-DEM based reconstructions: The case of Lake Obedjiwan in south-central Quebec, Canada. Geomorphology 2019, 342, 78–87. [Google Scholar] [CrossRef]
- Höhle, J. DEM generation using a digital large format frame camera. Photogramm. Eng. Remote Sens. 2009, 75, 87–93. [Google Scholar] [CrossRef]
- San, B.T.; Suzen, M.L. Digital elevation model (DEM) generation and accuracy assessment from ASTER stereo data. Int. J. Remote Sens. 2005, 26, 5013–5027. [Google Scholar] [CrossRef]
- Schenk, T. Digital aerial triangulation. Int. Arch. Photogramm. Remote Sens. 1996, 31, 735–745. [Google Scholar]
- Martínez-Carricondo, P.; Agüera-Vega, F.; Carvajal-Ramírez, F.; Mesas-Carrascosa, F.-J.; García-Ferrer, A.; Pérez-Porras, F.-J. Assessment of UAV-photogrammetric mapping accuracy based on variation of ground control points. Int. J. Appl. Earth Obs. Geoinf. 2018, 72, 1–10. [Google Scholar] [CrossRef]
- Kervyn, F. Modelling topography with SAR interferometry: Illustrations of a favourable and less favourable environment. Comput. Geosci. 2001, 27, 1039–1050. [Google Scholar] [CrossRef]
- Franks, S.; Storey, J.; Rengarajan, R. The new landsat collection-2 digital elevation model. Remote Sens. 2020, 12, 3909. [Google Scholar] [CrossRef]
- Frey, H.; Paul, F. On the suitability of the SRTM DEM and ASTER GDEM for the compilation of: Topographic parameters in glacier inventories. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 480–490. [Google Scholar] [CrossRef]
- Kiamehr, R.; Sjöberg, L.E. Effect of the SRTM global DEM on the determination of a high-resolution geoid model: A case study in Iran. J. Geod. 2005, 79, 540–551. [Google Scholar] [CrossRef]
- Mukherjee, S.; Joshi, P.K.; Mukherjee, S.; Ghosh, A.; Garg, R.D.; Mukhopadhyay, A. Evaluation of vertical accuracy of open source Digital Elevation Model (DEM). Int. J. Appl. Earth Obs. Geoinf. 2012, 21, 205–217. [Google Scholar] [CrossRef]
- Aguilar, F.J.; Agüera, F.; Aguilar, M.A.; Carvajal, F. Effects of terrain morphology, sampling density, and interpolation methods on grid DEM accuracy. Photogramm. Eng. Remote Sens. 2005, 71, 805–816. [Google Scholar] [CrossRef] [Green Version]
- Chaplot, V.; Darboux, F.; Bourennane, H.; Leguédois, S.; Silvera, N.; Phachomphon, K. Accuracy of interpolation techniques for the derivation of digital elevation models in relation to landform types and data density. Geomorphology 2006, 77, 126–141. [Google Scholar] [CrossRef]
- Usowicz, B.; Lipiec, J.; Łukowski, M.; Słomiński, J. Improvement of Spatial Interpolation of Precipitation Distribution Using Cokriging Incorporating Rain-Gauge and Satellite (SMOS) Soil Moisture Data. Remote Sens. 2021, 13, 1039. [Google Scholar] [CrossRef]
- Montealegre, A.L.; Lamelas, M.T.; De La Riva, J. Interpolation routines assessment in ALS-derived Digital Elevation Models for forestry applications. Remote Sens. 2015, 7, 8631–8654. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Shi, W.; Liu, E. Robust methods for assessing the accuracy of linear interpolated DEM. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 198–206. [Google Scholar] [CrossRef]
- Weber, D.D.; Englund, E.J. Evaluation and comparison of spatial interpolators II. Math. Geol. 1994, 26, 9243. [Google Scholar] [CrossRef]
- Sibson, R. A brief description of natural neighbour interpolation. In Interpreting Multivariate Data; Barnett, V., Ed.; Wiley: NewYork, NY, USA, 1981. [Google Scholar]
- Sibson, R. A Vector Identity for the Dirichlet Tesselation. Math. Proc. Camb. Philos. Soc. 1980, 87, 151–155. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Zhang, P.; Peng, S. Wavelet-domain least squares based image superresolution. Proc. Int. Conf. Wavelet. Anal. Appl. 2003, 1, 269–274. [Google Scholar] [CrossRef]
- Irani, M.; Peleg, S. Super resolution from image sequences. Proc. Int. Conf. Pattern Recognit. 1990, 2, 115–120. [Google Scholar] [CrossRef]
- Zhang, H.; Song, Z.; Yang, J.; Yang, Q.; Wang, C.; Li, R. Influence of DEM super-resolution reconstruction on terraced field slope extraction. Nongye Jixie Xuebao Trans. Chin. Soc. Agric. Mach. 2017, 48, 138. [Google Scholar] [CrossRef]
- Yan, L.; Tang, X.; Zhang, Y. High Accuracy Interpolation of DEM Using Generative Adversarial Network. Remote Sens. 2021, 13, 676. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, X.; Xu, Z.; Hou, W. Convolutional neural network based dem super resolution. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2016, 41, 247–250. [Google Scholar] [CrossRef] [Green Version]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Image Super-Resolution Using Deep Convolutional Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 295–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, B.; Son, S.; Kim, H.; Nah, S.; Lee, K.M. Enhanced Deep Residual Networks for Single Image Super-Resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2017, Honolulu, HI, USA, 21–26 July 2017; pp. 1132–1140. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Chen, Z.; Han, Q.; Deng, X.; Sun, X.; Yin, Q. Self-similarity Based Multi-layer DEM Image Up-Sampling. Adv. Intell. Syst. Comput. 2020, 965, 533–545. [Google Scholar] [CrossRef]
- Loc, H.H.; Park, E.; Chitwatkulsiri, D.; Lim, J.; Yun, S.-H.; Maneechot, L.; Minh Phuong, D. Local rainfall or river overflow? Re-evaluating the cause of the Great 2011 Thailand flood. J. Hydrol. 2020, 589, 125368. [Google Scholar] [CrossRef]
- Walker, W.; Kellndorfer, J.; Pierce, L.E. Quality assessment of SRTM C- and X-band interferometric data: Implications for the retrieval of vegetation canopy height. Remote Sens. Environ. 2007, 106, 428–448. [Google Scholar] [CrossRef]
- Miller, C.L.; Laflamme, R.A. The digital terrain model—Theory and application. Photogramm. Eng. 1958, 24, 433–442. [Google Scholar]
- Saksena, S.; Merwade, V. Incorporating the effect of DEM resolution and accuracy for improved flood inundation mapping. J. Hydrol. 2015, 530, 180–194. [Google Scholar] [CrossRef] [Green Version]
- Chaplot, V. Impact of DEM mesh size and soil map scale on SWAT runoff, sediment, and NO3-N loads predictions. J. Hydrol. 2005, 312, 207–222. [Google Scholar] [CrossRef]
- Arbab, N.N.; Hartman, J.M.; Quispe, J.; Grabosky, J. Implications of Different DEMs on Watershed Runoffs Estimations. J. Water Resour. Prot. 2019, 11, 448–467. [Google Scholar] [CrossRef] [Green Version]
- Yalcin, E. Assessing the impact of topography and land cover data resolutions on two-dimensional HEC-RAS hydrodynamic model simulations for urban flood hazard analysis. Nat. Hazards 2020, 101, 995–1017. [Google Scholar] [CrossRef]
- Hsu, Y.C.; Prinsen, G.; Bouaziz, L.; Lin, Y.J.; Dahm, R. An Investigation of DEM Resolution Influence on Flood Inundation Simulation. Procedia Eng. 2016, 154, 826–834. [Google Scholar] [CrossRef]
- Bates, P.D.; De Roo, A.P.J. A simple raster-based model for flood inundation simulation. J. Hydrol. 2000, 236, 54–77. [Google Scholar] [CrossRef]
- Zhou, Q.; Liu, X. Error analysis on grid-based slope and aspect algorithms. Photogramm. Eng. Remote Sens. 2004, 70, 268. [Google Scholar] [CrossRef]
- Unwin, D. Introductory spatial analysis. Introd. Spat. Anal. 1981. [Google Scholar] [CrossRef]
- Jin, Y.; Zhu, Y.B.; Li, X.; Zheng, J.L.; Dong, J.B. Scaling Invariant Effects on the Permeability of Fractal Porous Media. Transp. Porous Media 2015, 109, 433–453. [Google Scholar] [CrossRef]
- Habib, M. Evaluation of DEM interpolation techniques for characterizing terrain roughness. Catena 2021, 198, 105072. [Google Scholar] [CrossRef]
- Shepard, M.K.; Campbell, B.A.; Bulmer, M.H.; Farr, T.G.; Gaddis, L.R.; Plaut, J.J. The roughness of natural terrain: A planetary and remote sensing perspective. J. Geophys. Res. E Planets 2001, 106, 32777–32795. [Google Scholar] [CrossRef]
- Segura-Beltrán, F.; Sanchis-Ibor, C.; Morales-Hernández, M.; González-Sanchis, M.; Bussi, G.; Ortiz, E. Using post-flood surveys and geomorphologic mapping to evaluate hydrological and hydraulic models: The flash flood of the Girona River (Spain) in 2007. J. Hydrol. 2016, 541, 310–329. [Google Scholar] [CrossRef] [Green Version]
Name | NNI | BI | IDW | OK | SWM |
---|---|---|---|---|---|
ME (m) | −0.009 | 0.011 | 0.017 | 2.167 | 0.007 |
RMSE (m) | 8.41 | 8.39 | 81.69 | 222.52 | 3.38 |
Name | NNI | BI | IDW | OK | SWM |
---|---|---|---|---|---|
PEP1.5 (%) | 0.154 | 0.058 | 0.455 | 0.123 | 0.014 |
Name | NNI | BI | IDW | OK | SWM |
---|---|---|---|---|---|
DR (m) | 5.2012 | 4.1777 | 6.1175 | 7.7898 | 1.9732 |
Name | NNI | BI | IDW | SWM |
---|---|---|---|---|
ME (m) | ||||
RMSE (m) | 153.3595 | 177.3813 | 115.1725 | 37.0556 |
PEP1.5 (%) | 0.7752 | 0.7687 | 0.7471 | 0.0840 |
DR (m) | 13.2122 | 12.0504 | 10.1399 | 3.1569 |
Resolution of DEM(m) | Total Flood Extent (km2) | The Ratio of Flood Extent at Different Water Depths 1 (%) | FITA (%) | |||||
---|---|---|---|---|---|---|---|---|
0~1 | 1~2 | 2~3 | 3~4 | 4~5 | ≧5 | |||
30 | 0.35 | 41.97 | 25.65 | 18.13 | 9.07 | 4.92 | 0.26 | 0.56 |
10 | 0.25 | 30.12 | 25.34 | 21.00 | 16.22 | 6.81 | 0.52 | 0.74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, Q.; Chen, Z.; Zheng, X.; Xu, Y.; Liu, T. Sliding Windows Method Based on Terrain Self-Similarity for Higher DEM Resolution in Flood Simulating Modeling. Remote Sens. 2021, 13, 3604. https://doi.org/10.3390/rs13183604
Yin Q, Chen Z, Zheng X, Xu Y, Liu T. Sliding Windows Method Based on Terrain Self-Similarity for Higher DEM Resolution in Flood Simulating Modeling. Remote Sensing. 2021; 13(18):3604. https://doi.org/10.3390/rs13183604
Chicago/Turabian StyleYin, Qian, Ziyi Chen, Xin Zheng, Yingjun Xu, and Tianxue Liu. 2021. "Sliding Windows Method Based on Terrain Self-Similarity for Higher DEM Resolution in Flood Simulating Modeling" Remote Sensing 13, no. 18: 3604. https://doi.org/10.3390/rs13183604
APA StyleYin, Q., Chen, Z., Zheng, X., Xu, Y., & Liu, T. (2021). Sliding Windows Method Based on Terrain Self-Similarity for Higher DEM Resolution in Flood Simulating Modeling. Remote Sensing, 13(18), 3604. https://doi.org/10.3390/rs13183604