Design and Performance Analysis of BDS-3 Integrity Concept
"> Figure 1
<p>BDS SIS integrity risk tree.</p> "> Figure 2
<p>Anomaly monitoring and redundant switching structure of atomic clocks for BDS-3 satellites.</p> "> Figure 3
<p>Fault prevention design of BDS-3 satellite signal generation and broadcasting.</p> "> Figure 4
<p>Information processing and fault monitoring of BDS-3 ground section. The yellow points a to h represent the fault monitoring function points in the ground segment.</p> "> Figure 5
<p>URE and 4.42 × URA sequences of BDS-3 satellites form 1 January 2019 to 31 July 2019. (<b>a</b>) PRN 19; (<b>b</b>) PRN 20; (<b>c</b>) PRN 21; (<b>d</b>) PRN 22; (<b>e</b>) PRN 23; (<b>f</b>) PRN 24; (<b>g</b>) PRN 25; (<b>h</b>) PRN 26; (<b>i</b>) PRN 27; (<b>j</b>) PRN 28; (<b>k</b>) PRN 29; (<b>l</b>) PRN 30; (<b>m</b>) PRN 32; (<b>n</b>) PRN 33; (<b>o</b>) PRN 34; (<b>p</b>) PRN 35; (<b>q</b>) PRN 36; (<b>r</b>) PRN 37. SCID + Number in the titles of figures indicate the Satellite Configure Index used by the internal information processing system.</p> "> Figure 5 Cont.
<p>URE and 4.42 × URA sequences of BDS-3 satellites form 1 January 2019 to 31 July 2019. (<b>a</b>) PRN 19; (<b>b</b>) PRN 20; (<b>c</b>) PRN 21; (<b>d</b>) PRN 22; (<b>e</b>) PRN 23; (<b>f</b>) PRN 24; (<b>g</b>) PRN 25; (<b>h</b>) PRN 26; (<b>i</b>) PRN 27; (<b>j</b>) PRN 28; (<b>k</b>) PRN 29; (<b>l</b>) PRN 30; (<b>m</b>) PRN 32; (<b>n</b>) PRN 33; (<b>o</b>) PRN 34; (<b>p</b>) PRN 35; (<b>q</b>) PRN 36; (<b>r</b>) PRN 37. SCID + Number in the titles of figures indicate the Satellite Configure Index used by the internal information processing system.</p> "> Figure 5 Cont.
<p>URE and 4.42 × URA sequences of BDS-3 satellites form 1 January 2019 to 31 July 2019. (<b>a</b>) PRN 19; (<b>b</b>) PRN 20; (<b>c</b>) PRN 21; (<b>d</b>) PRN 22; (<b>e</b>) PRN 23; (<b>f</b>) PRN 24; (<b>g</b>) PRN 25; (<b>h</b>) PRN 26; (<b>i</b>) PRN 27; (<b>j</b>) PRN 28; (<b>k</b>) PRN 29; (<b>l</b>) PRN 30; (<b>m</b>) PRN 32; (<b>n</b>) PRN 33; (<b>o</b>) PRN 34; (<b>p</b>) PRN 35; (<b>q</b>) PRN 36; (<b>r</b>) PRN 37. SCID + Number in the titles of figures indicate the Satellite Configure Index used by the internal information processing system.</p> "> Figure 6
<p>URE and 4.42 × SISA sequences of BDS-3 satellites from 1 July 2019 to 25 September 2019. (<b>a</b>) PRN 19; (<b>b</b>) PRN 20; (<b>c</b>) PRN 21; (<b>d</b>) PRN 22; (<b>e</b>) PRN 23; (<b>f</b>) PRN 24; (<b>g</b>) PRN 25; (<b>h</b>) PRN 26; (<b>i</b>) PRN 27; (<b>j</b>) PRN 28; (<b>k</b>) PRN 29; (<b>l</b>) PRN 30; (<b>m</b>) PRN 32; (<b>n</b>) PRN 33; (<b>o</b>) PRN 34; (<b>p</b>) PRN 35; (<b>q</b>) PRN 36; (<b>r</b>) PRN 37.</p> "> Figure 6 Cont.
<p>URE and 4.42 × SISA sequences of BDS-3 satellites from 1 July 2019 to 25 September 2019. (<b>a</b>) PRN 19; (<b>b</b>) PRN 20; (<b>c</b>) PRN 21; (<b>d</b>) PRN 22; (<b>e</b>) PRN 23; (<b>f</b>) PRN 24; (<b>g</b>) PRN 25; (<b>h</b>) PRN 26; (<b>i</b>) PRN 27; (<b>j</b>) PRN 28; (<b>k</b>) PRN 29; (<b>l</b>) PRN 30; (<b>m</b>) PRN 32; (<b>n</b>) PRN 33; (<b>o</b>) PRN 34; (<b>p</b>) PRN 35; (<b>q</b>) PRN 36; (<b>r</b>) PRN 37.</p> "> Figure 6 Cont.
<p>URE and 4.42 × SISA sequences of BDS-3 satellites from 1 July 2019 to 25 September 2019. (<b>a</b>) PRN 19; (<b>b</b>) PRN 20; (<b>c</b>) PRN 21; (<b>d</b>) PRN 22; (<b>e</b>) PRN 23; (<b>f</b>) PRN 24; (<b>g</b>) PRN 25; (<b>h</b>) PRN 26; (<b>i</b>) PRN 27; (<b>j</b>) PRN 28; (<b>k</b>) PRN 29; (<b>l</b>) PRN 30; (<b>m</b>) PRN 32; (<b>n</b>) PRN 33; (<b>o</b>) PRN 34; (<b>p</b>) PRN 35; (<b>q</b>) PRN 36; (<b>r</b>) PRN 37.</p> ">
Abstract
:1. Introduction
2. BDS Integrity Concept
2.1. Integrity Definition
2.2. Alarming Approach
2.2.1. Ground Monitoring and Alarming
- “Healthy”: The SIS of the satellite meets the minimum service performance specified in the “BeiDou Open Service Performance Specification” [22];
- “Unhealthy”: The SIS of the satellite is not providing services or is under test;
- “Marginal”: The signal is neither of the two previous states. For some types of users, it is acceptable and tolerable, but for others, it is not.
- Step 1: Confirm whether the entire satellite is healthy according to the HS parameter in the message. If HS = 1, it indicates that the satellite is currently unhealthy, and the user should stop using the satellite. If HS = 0, it indicates that the satellite is currently healthy, and proceed to step 2.
- Step 2: Confirm whether the satellite SIS is abnormal according to the SIF parameter in the message. If SIF = 1, it indicates that the satellite SIS has an anomaly affecting the pseudo-range, please stop using the satellite. If SIF = 0, it indicates that the satellite signal is normal, and proceed to step 3.
- Step 3: Access the DIF parameter in the message. If DIF = 1, it indicates that the SISA of the satellite exceed the NTE (that is, URE > 4.42 × SISA), and it is not recommended for users in the life safety field, such as aviation users. However, for the satellite, this is just that its SISA exceeds the limit at this time, not a failure. Other users who have less strict safety requirements can still choose to use it (for example, users in the mass consumer sector). If DIF = 0, it indicates that the SISA of the satellite does not exceed the NTE, and all users can use it with confidence.
2.2.2. Satellite Monitoring and Alarming
2.3. Psat and Pconst Calculations
2.3.1. Psat Calculation for B1I
2.3.2. Psat Calculation for B1C and B2a
2.3.3. Pconst Calculation
3. Integrity Risk Probability Distribution
3.1. Integrity Risk Tree Model
3.2. ModelBottom Event Probability
3.2.1. Bottom Event Probability for Space Segment
- Satellite signal and data anomaly probability
- 2.
- Satellite clock anomaly probability
3.2.2. Bottom Event Probability for Ground Segment
- Satellite orbit calculation anomaly probability and satellite clock calculation anomaly probability
- 2.
- Bottom events 3, 4, 5, and 6 anomaly probability
- 3.
- Message upload anomaly
3.3. Design Values of Psat and Pconst
4. Risk Prevention and Control
4.1. Space Segment Measures
4.2. Ground Segment Measures
- To prevent the MS data anomaly (Event 6 in Figure 1), each MS is equipped with multiple monitoring receivers and atomic clocks to achieve redundancy.
- To prevent the navigation message upload anomaly (Event-9 in Figure 1), one measure is to implement a mutual backup strategy for the uplink station (ULS) antennas to prevent hardware failures; the other is to set up the monitoring function points before uploading and retrieving the navigation messages, respectively (see point a and point h in Figure 4).
- To prevent the satellite orbit calculation anomaly, the satellite clock calculation anomaly, and the ephemeris fitting anomaly (Events 1–3 in Figure 1), one measure is that the data processing center (DPC) has multiple channels for data calculation and generation, and they are independent of each other; the other is that the master control station (MCS) will check the correctness and validity of the products sent from the DPC.
- To prevent the orbit and time processing equipment anomaly (Event 4 in Figure 1), one measure is that the system is running both the main DPC and the backup DPC online at the same time; the other is that each DPC is equipped with multiple processing equipment to achieve redundancy.
5. Results and Discussion
5.1. Test Results for B1I Signal
5.2. Test Results for B1C and B2a Signals
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Blomenhofer, H.; Ehret, W.; Blomenhofer, E. Performance Analysis of GNSS Global and Regional Integrity Concepts. In Proceedings of the ION GPS/GNSS 2003, Portland, OR, USA, 9–12 September 2003; pp. 991–1001. [Google Scholar]
- Hernández, C.; Catalán, C.; Martínez, M.A. Galileo Integrity Concept and its Applications to the Maritime Sector. Int. J. Mar. Navig. Saf. Sea Transp. 2009, 3, 287–291. [Google Scholar]
- Robustelli, U.; Baiocchi, V.; Pugliano, G. Assessment of Dual Frequency GNSS Observations from a Xiaomi Mi 8 Android Smartphone and Positioning Performance Analysis. Electronics 2019, 8, 91. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Martínez, M.J.; Farjas-Abadia, M.; Quesada-Olmo, N. An Approach to Improving GNSS Positioning Accuracy Using Several GNSS Devices. Remote Sens. 2021, 13, 1149. [Google Scholar] [CrossRef]
- GPS. WAAS, Resiliency and Outreach. Available online: https://www.gps.gov/multimedia/presentations/2018/10/APEC/alexander-2.pdf (accessed on 15 June 2021).
- ICAO. WAAS Development Changes since Commissioning. Available online: https://www.icao.int/APAC/APAC-RSO/GBASSBAS%20Implementation%20Workshop/1-4_WAAS_Development_Changes_Since_Commissioning_final%20(T%20Schemmp).pdf (accessed on 15 June 2021).
- ICAO. EGNOS Status 3 June 2019. Available online: https://www.icao.int/APAC/APAC-RSO/GBASSBAS%20Implementation%20Workshop/1-5_EGNOS%20Status_final%20(G%20COMELLI).pdf (accessed on 15 June 2021).
- ICAO. EGNOS Status and Plans. Available online: https://www.icao.int/MID/Documents/2016/ACAC-ICAO%20GNSS/EC%20Rabat%20EGNOS%20status%20and%20plans_final.pdf#search=EGNOS (accessed on 15 June 2021).
- Sakai, T.; Tashiro, H. MSAS Status. In Proceedings of the ION GNSS+ 2013, Nashville, TN, USA, 16–17 September 2013; pp. 2343–2360. [Google Scholar]
- ICAO. MSAS System Development. Available online: https://www.icao.int/APAC/APAC-RSO/GBASSBAS%20Implementation%20Workshop/1-6_MSAS%20System%20Development_Rev2%20(S%20Saito).pdf (accessed on 15 June 2021).
- Liu, C.; Gao, W.; Shao, B.; Lu, J.; Wang, W.; Chen, Y.; Su, C.; Xiong, S.; Ding, Q. Development of BeiDou Satellite-Based Augmentation System. Navigation 2021, 68, 405–417. [Google Scholar] [CrossRef]
- Medel, C.H.; Catalán, C.C.; Vidou, M.A.F.; Pérez, E.S. The Galileo Ground Segment Integrity Algorithms: Design and Performance. Int. J. Navig. Obs. 2008, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Blomenhofer, H.; Ehret, W.; Leonard, A.; Blomenhofer, E. GNSS/Galileo Global and Regional Integrity Performance Analysis. In Proceedings of the ION GNSS 2004, Long Beach, CA, USA, 21–24 September 2004; pp. 2158–2168. [Google Scholar]
- Werner, W.; Zink, T.; Lohnert, E.; Pielmeier, J. GALILEO Integrity Performance Assessment (GIPA). In Proceedings of the ION GPS 2001, Salt Lake City, UT, USA, 11–14 September 2001; pp. 1838–1849. [Google Scholar]
- Cabinet Office. Quasi-Zenith Satellite System Performance Standard (PS-QZSS-001). Available online: https://qzss.go.jp/en/technical/download/pdf/ps-is-qzss/ps-qzss-001.pdf (accessed on 15 June 2021).
- Cabinet Office. Quasi-Zenith Satellite System Interface Specification Centimeter Level Augmentation Service (IS-QZSS-L6-001). Available online: https://qzss.go.jp/en/technical/download/pdf/ps-is-qzss/is-qzss-l6-001.pdf (accessed on 15 June 2021).
- GPS. Galileo and Its Outage in July 2019 from the IGS-MGEX Perspective. Available online: https://www.gps.gov/governance/advisory/meetings/2019-11/beutler.pdf (accessed on 15 June 2021).
- GSA. Update on the Availability of Some Galileo Initial Services. Available online: https://www.gsc-europa.eu/news/update-on-the-availability-of-some-galileo-initial-services (accessed on 15 June 2021).
- CSNO. The Application Service Architecture of BeiDou Navigation Satellite System (Version 1.0). Available online: http://en.beidou.gov.cn/SYSTEMS/Officialdocument/201812/P020181227424526837905.pdf (accessed on 15 June 2021).
- Xinhua Net. Update: Xi Officially Announces Commissioning of BDS-3 Navigation System. Available online: http://www.xinhuanet.com/english/2020-07/31/c_139255481.htm (accessed on 15 June 2021).
- ICAO. International Standards and Recommended Practices (SARPs) Annex 10—Aeronautical Telecommunications, 7th ed.; ICAO: Montreal, QC, Canada, 2018; Volume I. [Google Scholar]
- CSNO. BeiDou Navigation Satellite System Open Service Performance Standard (Version 2.0). Available online: http://en.beidou.gov.cn/SYSTEMS/Officialdocument/ (accessed on 15 June 2021).
- CSNO. BeiDou Navigation Satellite System Signal in Space Interface Control Document Open Service Signal B1I (Version 3.0). Available online: http://en.beidou.gov.cn/SYSTEMS/Officialdocument/201902/P020190227601370045731.pdf (accessed on 15 June 2021).
- CSNO. BeiDou Navigation Satellite System Signal in Space Interface Control Document—Open Service Signal B1C (Version 1.0). Available online: http://en.beidou.gov.cn/SYSTEMS/Officialdocument/202008/P020200803544809266816.pdf (accessed on 15 June 2021).
- CSNO. BeiDou Navigation Satellite System Signal in Space Interface Control Document—Open Service Signal B2a (Version 1.0). Available online: http://en.beidou.gov.cn/SYSTEMS/Officialdocument/201806/P020180608525870555377.pdf (accessed on 15 June 2021).
- Brieden, P.; Wallner, S.; Canestri, E. Galileo Characterization as Input to H-ARAIM and SBAS DFMC. In Proceedings of the ION GNSS+ 2019, Miami, FL, USA, 16–20 September 2019; pp. 2819–2841. [Google Scholar]
- Todd, W.; Juan, B.; Mathieu, J.; Boris, P. Determination of fault probabilities for ARAIM. In Proceedings of the IEEE/Institute Navigation Position, Location and Navigation Symposium, Savannah, GA, USA, 11–14 April 2016; pp. 451–461. [Google Scholar]
- Todd, W.; Juan, B.; Kazuma, G.; Mathieu, J.; Boris, P. Determination of Fault Probabilities for ARAIM. IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 3505–3516. [Google Scholar] [CrossRef]
- Sun, S.; Wang, Z. Signal-In-Space Accuracy research of GPS/BDS in China region. In Proceedings of the CSNC 2016, Changsha, China, 18–20 May 2016; pp. 235–245. [Google Scholar] [CrossRef]
- CNN. Europe’s Version of GPS Suffers Major Outage. Available online: https://edition.cnn.com/2019/07/15/tech/galileo-gnss-outage-intl/index.html (accessed on 15 June 2021).
- GSA. Further Information on the Event of 14th December. Available online: https://www.gsc-europa.eu/news/further-information-on-the-event-of-14th-december (accessed on 15 June 2021).
Items | GPS | GNLOASS | Galileo | BDS | |
---|---|---|---|---|---|
Psat | Error Tolerance | URE > 4.42 × IAURA | URE > 70 m | URE > 4.17 × URA | URE > 4.17 × URA for B1I; URE > 4.42 × SISA for B1C and B2a |
Time-to-Alert (TTA) | 10 s | 10 s | Not applicable | 60 s for ground monitoring and alarming; 6 s/300 s for satellite and alarming | |
Probability | ≤10−5 | ≤10−4 | ≤3 × 10−5 | ≤10−5 | |
Pconst | Error Tolerance | URE > 4.42 × IAURA | URE > 70 m | URE > 4.17 × URA | URE > 4.17 × URA for B1I; URE > 4.42 × SISA for B1C and B2a |
Time-to-Alert (TTA) | 10 s | 10 s | Not applicable | 300 s for ground monitoring and alarming; 6 s for satellite monitoring and alarming | |
Probability | 10−8 | 10−4 | ≤2 × 10−5 | ≤6 × 10−5 |
B1I SIS Health Status | SatH1 |
---|---|
Healthy | 0 |
Unhealthy | 1 |
B1C/B2a SIS Health Status | HS | SIF | DIF |
---|---|---|---|
Healthy | 0 | 0 | 0 |
Marginal | 0 | 0 | 1 |
2/3 | 0 | 0 | |
Unhealthy | Any value | 1 | 0/1 |
1 | 0/1 | 0/1 |
Satellite | |
---|---|
MEO | 0.2285 |
GEO/IGSO | 0.1512 |
Bottom Events | Integrity Risk Probability | |
---|---|---|
Satellite orbit calculation anomaly | 2.1 × 10−8/h | |
Satellite clock calculation anomaly | 2.1 × 10−8/h | |
Ephemeris fitting anomaly | 1 × 10−9/h | |
Orbit and time processing equipment anomaly | 1 × 10−9/h | |
Data input anomaly | 1 × 10−9/h | |
MS data anomaly | 1 × 10−9/h | |
Message upload anomalies | 4.2 × 10−8/h | |
Satellite clock anomaly | B1I | 4 × 10−6/h |
B1C, B2a | 4 × 10−6/h | |
Satellite signal and data anomaly | B1I | 5 × 10−6/h |
B1C, B2a | 4 × 10−6/h |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Cao, Y.; Zhang, G.; Gao, W.; Chen, Y.; Lu, J.; Liu, C.; Zhao, H.; Li, F. Design and Performance Analysis of BDS-3 Integrity Concept. Remote Sens. 2021, 13, 2860. https://doi.org/10.3390/rs13152860
Liu C, Cao Y, Zhang G, Gao W, Chen Y, Lu J, Liu C, Zhao H, Li F. Design and Performance Analysis of BDS-3 Integrity Concept. Remote Sensing. 2021; 13(15):2860. https://doi.org/10.3390/rs13152860
Chicago/Turabian StyleLiu, Cheng, Yueling Cao, Gong Zhang, Weiguang Gao, Ying Chen, Jun Lu, Chonghua Liu, Haitao Zhao, and Fang Li. 2021. "Design and Performance Analysis of BDS-3 Integrity Concept" Remote Sensing 13, no. 15: 2860. https://doi.org/10.3390/rs13152860
APA StyleLiu, C., Cao, Y., Zhang, G., Gao, W., Chen, Y., Lu, J., Liu, C., Zhao, H., & Li, F. (2021). Design and Performance Analysis of BDS-3 Integrity Concept. Remote Sensing, 13(15), 2860. https://doi.org/10.3390/rs13152860