Mapping the Growing Stem Volume of the Coniferous Plantations in North China Using Multispectral Data from Integrated GF-2 and Sentinel-2 Images and an Optimized Feature Variable Selection Method
<p>(<b>a</b>) Study area location; (<b>b</b>) GF-2 images of the study area; (<b>c</b>) distribution of coniferous forest, other forest types, and non-forest land in the study area.</p> "> Figure 2
<p>(<b>a</b>) Plot distribution map and digital elevation model (DEM) of the study area; (<b>b,c</b>) images of Chinese pine and larch at the field survey sites, respectively.</p> "> Figure 3
<p>Methodological framework for forest GSV estimation based on the adaptive feature combination optimization program (AFCO). (<b>a</b>) Data preparation and feature variables extraction; (<b>b</b>) flow chart of adaptive feature combination and optimization program; (<b>c</b>) modelling and mapping the GSV of coniferous plantation.</p> "> Figure 4
<p>The correlation and importance analysis of the feature variables selected by AFCO-RFR method based on the integrated GF-2 and Sentinel-2 datasets.</p> "> Figure 5
<p>The correlation and importance analysis of the feature variables selected by AFCO-RFR method based on the GF-2 and Sentinel-2 datasets, respectively.</p> "> Figure 6
<p>Scatter plots of the observed and estimated GSV values (m<sup>3</sup>/ha) using the combined GF-2 and Sentinel-2 image dataset with various feature variables selected by five methods based on the RFR or KNN models. (<b>a</b>–<b>d</b>) RF, SRF, KNN-FIFS, and DC_FSCK feature variable selection methods. (<b>e</b>–<b>f</b>) AFCO feature selection methods based on KNN and RFR models, respectively. The black line is the fitting trend of the estimated results.</p> "> Figure 7
<p>Scatter plots of the observed and estimated GSV values (m<sup>3</sup>/ha) using the GF-2 and Sentinel-2 image datasets with feature variables selected by the AFCO method. (<b>a</b>,<b>b</b>) GSV estimated from the GF-2 image using the KNN and RFR models, respectively. (<b>c</b>,<b>d</b>) GSV estimated from the Sentinel-2 image using the KNN and RFR models, respectively. The black line is the fitting trend of the estimated results.</p> "> Figure 8
<p>GSV distribution maps of coniferous plantations in the study area using the combined GF-2 and Sentinel-2 image dataset estimated by the (<b>a</b>) RF-RFR, (<b>b</b>) SRF-RFR, (<b>c</b>) (KNN-FIFS)-KNN, (<b>d</b>) (DC-FSCK)-KNN, (<b>e</b>) AFCO-KNN, and (<b>f</b>) AFCO-RFR methods. (<b>g</b>,<b>h</b>) GSV distribution maps estimated by the AFCO-RFR models based on GF-2 and Sentinel-2 images alone, respectively.</p> "> Figure A1
<p>The correlation analysis between the feature variables extracted from the integrated dataset of GF-2 and Sentinel-2 images. GF, GaoFen-2, S2, Sentinel-2, W, the size of the window, T, Serial number of texture feature variables based on band number and texture feature number sequential connection, for example, the eighth texture feature of the second band image can be denated as T16.</p> "> Figure A2
<p>(<b>a</b>,<b>b</b>), the Pearson correlation coefficient between GSV and 864 features extracted from integrated GF-2 and Sentinel-2 dataset. (<b>c</b>,<b>d</b>),the importance of features. GF, GaoFen-2, S2, Sentinel-2, W, the size of the window, T, Serial number of texture feature variables based on band number and texture feature number sequential connection, for example, the eighth texture feature of the second band image can be denated as T16.</p> "> Figure A3
<p>The residuals analysis of the estimated GSV. The data source used for GSV estimation modeling was the integrated dataset of GF-2 and Sentinel-2 images, and the feature selection method was AFCO-RFR, and the regression algorithm was RFR.</p> ">
Abstract
:1. Introduction
- Integrated GF-2 and Sentinel-2 data were used to estimate forest GSV. The vegetation index and multi-scale texture factors of the images were extracted as candidate feature variables for the forest GSV estimation model.
- A variable selection method was proposed based on the combination optimization effect to achieve adaptive selection and a combination of feature variables.
- We compared six different feature variable selection methods and two estimation models and explored the best solutions for coniferous plantation GSV estimation.
2. Study Area and Data
2.1. Study Area
2.2. Data Preparation
2.2.1. Field Plot Data Collection
2.2.2. Remote Sensing Data Collection and Pre-Processing
3. Methods
3.1. Research Framework
3.2. Feature Variable Extraction Based on Image Data
3.3. Adaptive Feature Combination Optimization Program (AFCO) for Feature Variable Selection
3.3.1. Issues with the Currently Available Feature Combination Optimization Method
- The determination of the first feature variable (FV1) by the existing methods is typically too simple and inaccurate, and it is not dynamically updated according to the subsequent new features. The KNN-FIFS, SRF, and DC_FSCK methods cannot consider the combined effects of the features when selecting FV1, and never change the first feature in the subsequent feature combination process [13,24,36]. FV1 cannot be dynamically updated in the feature selection process, which may cause the final selected feature combination to not be the optimal feature set.
- In the feature combination process of existing methods, the lowest RMSE value obtained from the model established based on the currently selected feature combination is typically used as the feature selection threshold and is continuously updated. However, unsatisfactory situations typically occur in the actual feature selection process. For example, the program can only select two or three feature variables; however, all of the newly added features cannot obtain an RMSE value smaller than the threshold [24,36], causing feature selection to end. The RMSE-based threshold may cause other features that would help improve the accuracy of the model to be directly discarded, thereby losing the opportunity to select the best feature combination.
- The estimation model used in the feature combination process is singular; thus, the robustness of the model estimation results cannot be improved. For example, the KNN-FIFS, DC_FSCK, and SRF methods all use only one KNN or RFR model [13,24,36]; therefore, the performance of the selected feature combination has great uncertainty when used in other estimation models.
3.3.2. Adaptive Feature Combination Optimization Program (AFCO)
3.4. Forest GSV Estimation Modeling Based on the Selected Feature Variables
3.5. Model Evaluation and Application
4. Results
4.1. Selection of Key Feature Variables and Development of GSV Estimation Model
4.2. Correlation Analysis of Feature Variables
4.3. Predicting and Mapping the GSV of Coniferous Plantation
5. Discussion
5.1. The Importance of Feature Selection Methods in GSV Estimation
5.2. GSV Estimation Performance and Key Feature Variable Analysis of GF-2 and Sentinel-2 Images
5.3. Analysis of Factors Affecting the Accuracy of Forest GSV Estimation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Sean, S.; Jeffrey, A.S. Forest resources assessment of 2015 shows positive global trends but forest loss and degradation persist in poor tropical countries. For. Ecol. Manag. 2015, 352, 134–145. [Google Scholar] [CrossRef] [Green Version]
- UNFCCC. Report of the Conference of the Parties on Its Twenty-First Session, Held in Paris from 30 November to 13 December 2015. Addendum. Part Two: Action Taken by the Conference of the Parties at Its Twenty-First Session. 2016. Available online: http://unfccc.int/resource/docs/2015/cop21/eng/10a01.pdf (accessed on 17 April 2021).
- Astola, H.; Hame, T.; Sirro, L.; Molinier, M.; Kilpi, J. Comparison of Sentinel-2 and Landsat 8 imagery for forest variable prediction in boreal region. Remote Sens. Environ. 2019, 223, 257–273. [Google Scholar] [CrossRef]
- Chrysafis, I.; Mallinis, G.; Siachalou, S.; Patias, P. Assessing the relationships between growing stock volume and Sentinel-2 imagery in a Mediterranean forest ecosystem. Remote Sens. Lett. 2017, 8, 508–517. [Google Scholar] [CrossRef]
- Lindberg, E.; Hollaus, M. Comparison of methods for estimation of stem volume, stem number and basal area from airborne laser scanning data in a hemi-boreal forest. Remote Sens. 2012, 4, 1004–1023. [Google Scholar] [CrossRef] [Green Version]
- Wijaya, A.; Kusnadi, S.; Gloaguen, R.; Heilmeier, H. Improved strategy for estimating stem volume and forest biomass using moderate resolution remote sensing data and GIS. J. For. Res. Jpn. 2010, 21, 1–12. [Google Scholar] [CrossRef]
- Asner, G.P.; Powell, G.; Mascaro, J.; Knapp, D.E.; Clark, J.K.; Jacobson, J.; Kennedy-Bowdoin, T.; Balaji, A.; Paez-Acosta, G.; Victoria, E.; et al. High-resolution forest carbon stocks and emissions in the Amazon. Proc. Natl. Acad. Sci. USA 2010, 107, 16738–16742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puliti, S.; Saarela, S.; Gobakken, T.; Stahl, G.; Naesset, E. Combining UAV and Sentinel-2 auxiliary data for forest growing stock volume estimation through hierarchical model-based inference. Remote Sens. Environ. 2018, 204, 485–497. [Google Scholar] [CrossRef]
- Bilous, A.; Myroniuk, V.; Holiaka, D.; Bilous, S.; See, L.; Schepaschenko, D. Mapping growing stock volume and forest live biomass: A case study of the Polissya region of Ukraine. Environ. Res. Lett. 2017, 12, 105001. [Google Scholar] [CrossRef] [Green Version]
- Chrysafis, I.; Mallinis, G.; Gitas, I.; Tsakiri-Strati, M. Estimating Mediterranean forest parameters using multi seasonal Landsat 8 OLI imagery and an ensemble learning method. Remote Sens. Environ. 2017, 199, 154–166. [Google Scholar] [CrossRef]
- Fassnacht, F.E.; Hartig, F.; Latifi, H.; Berger, C.; Hernández, J.; Corvalán, P.; Koch, B. Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass. Remote Sens. Environ. 2014, 154, 102–114. [Google Scholar] [CrossRef]
- Bogan, S.A.; Antonarakis, A.S.; Moorcroft, P.R. Imaging spectrometry-derived estimates of regional ecosystem composition for the Sierra Nevada, California. Remote Sens. Environ. 2019, 228, 14–30. [Google Scholar] [CrossRef]
- Li, X.; Liu, Z.; Lin, H.; Wang, G.; Sun, H.; Long, J.; Zhang, M. Estimating the growing stem volume of Chinese Pine and Larch Plantations based on fused optical data using an improved variable screening method and stacking algorithm. Remote Sens. 2020, 12, 871. [Google Scholar] [CrossRef] [Green Version]
- Dube, T.; Mutanga, O. The impact of integrating WorldView-2 sensor and environmental variables in estimating plantation forest species aboveground biomass and carbon stocks in uMgeni Catchment, South Africa. ISPRS J. Photogramm. Remote Sens. 2016, 119, 415–425. [Google Scholar] [CrossRef]
- Granero-Belinchon, C.; Adeline, K.; Briottet, X. Impact of the number of dates and their sampling on a NDVI time series reconstruction methodology to monitor urban trees with Venμs satellite. Int. J. Appl. Earth Obs. Geoinf. 2021, 95, 102257. [Google Scholar] [CrossRef]
- Sinha, S.; Jeganathan, C.; Sharma, L.K.; Nathawat, M.S. A review of radar remote sensing for biomass estimation. Int. J. Environ. Sci. Technol. 2015, 12, 1779–1792. [Google Scholar] [CrossRef] [Green Version]
- Santoro, M.; Beaudoin, A.; Beer, C.; Cartus, O.; Fransson, J.E.S.; Hall, R.J.; Pathe, C.; Schmullius, C.; Schepaschenko, D.; Shvidenko, A. Forest growing stock volume of the northern hemisphere: Spatially explicit estimates for 2010 derived from Envisat ASAR. Remote Sens. Environ. 2015, 168, 316–334. [Google Scholar] [CrossRef]
- Soja, M.J.; Quegan, S.; d’Alessandro, M.M.; Banda, F.; Scipal, K.; Tebaldini, S.; Ulander, L.M.H. Mapping above-ground biomass in tropical forests with ground-cancelled P-band SAR and limited reference data. Remote Sens. Environ. 2021, 253, 112153. [Google Scholar] [CrossRef]
- Fu, L.; Liu, Q.; Sun, H.; Wang, S.; Li, Z.; Chen, E.; Pang, Y.; Song, X.; Wang, G. Development of a system of compatible individual tree diameter and aboveground biomass prediction models using error-in-variable regression and airborne LiDAR data. Remote Sens. 2018, 10, 325. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Laurin, G.V.; Battles, J.J.; Saah, D. Integration of airborne LiDAR and vegetation types derived from aerial photography for mapping aboveground live biomass. Remote Sens. Environ. 2012, 121, 108–117. [Google Scholar] [CrossRef]
- Zhang, Y.; Shao, Z.F. Assessing of urban vegetation biomass in combination with LiDAR and high-resolution remote sensing images. Int. J. Remote Sens. 2021, 42, 964–985. [Google Scholar] [CrossRef]
- Cao, L.; Coops, N.C.; Innes, J.L.; Sheppard, S.R.J.; Fu, L.; Ruan, H.; She, G. Estimation of forest biomass dynamics in subtropical forests using multi-temporal airborne LiDAR data. Remote Sens. Environ. 2016, 178, 158–171. [Google Scholar] [CrossRef]
- Lu, D.; Chen, Q.; Wang, G.; Li, G.; Moran, E. A survey of remote sensing-basedd aboveground biomass estimation methods in forest ecosystems. Int. J. Digit. Earth 2016, 9, 63–105. [Google Scholar] [CrossRef]
- Jiang, F.; Kutia, M.; Sarkissian, A.J.; Lin, H.; Long, J.; Sun, H.; Wang, G. Estimating the Growing Stem Volume of Coniferous Plantations Based on Random Forest Using an Optimized Variable Selection Method. Sensors 2020, 20, 7248. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, T.; Liu, S.; Kang, W.; Chen, X.; Feng, K.; Zhang, X.; Zhi, Y. Biomass and vegetation coverage survey in the Mu Us sandy land-based on unmanned aerial vehicle RGB images. Int. J. Appl. Earth Obs. Geoinf. 2021, 94, 102239. [Google Scholar] [CrossRef]
- Kumar, L.; Mutanga, O. Remote sensing of above-ground biomass. Remote Sens. 2017, 9, 935. [Google Scholar] [CrossRef] [Green Version]
- Vafaei, S.; Soosani, J.; Adeli, K.; Fadaei, H.; Naghavi, H.; Pham, T.D.; Bui, D.T. Improving accuracy estimation of forest aboveground biomass based on incorporation of ALOS-2 PALSAR-2 and Sentinel-2A imagery and machine learning: A case study of the Hyrcanian Forest area (Iran). Remote Sens. 2018, 10, 172. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Liu, K.; Myint, S.W.; Du, Z.; Wu, Z. Integration of GF2 Optical, GF3 SAR, and UAV Data for Estimating Aboveground Biomass of China’s Largest Artificially Planted Mangroves. Remote Sens. 2020, 12, 2039. [Google Scholar] [CrossRef]
- Zhan, Z.; Yu, L.; Li, Z.; Ren, L.; Gao, B.; Wang, L.; Luo, Y. Combining GF-2 and Sentinel-2 Images to Detect Tree Mortality Caused by Red Turpentine Beetle during the Early Outbreak Stage in North China. Forests 2020, 11, 172. [Google Scholar] [CrossRef] [Green Version]
- Zhao, P.; Lu, D.; Wang, G.; Wu, C.; Huang, Y.; Yu, S. Examining spectral reflectance saturation in Landsat imagery and corresponding solutions to improve forest aboveground biomass estimation. Remote Sens. 2016, 8, 469. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Yu, S.; Zhao, F.; Tian, L.; Zhao, Z. Comparison of machine learning algorithms for forest parameter estimations and application for forest quality assessments. For. Ecol. Manag. 2019, 434, 224–234. [Google Scholar] [CrossRef]
- Luo, M.; Wang, Y.; Xie, Y.; Zhou, L.; Qiao, J.; Qiu, S.; Sun, Y. Combination of feature selection and catboost for prediction: The first application to the estimation of aboveground biomass. Forests 2021, 12, 216. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Fan, J.; Lv, J. Sure independence screening for ultrahigh dimensional feature space (with discussion). J. R. Stat. Soc. Ser. B 2008, 70, 849–911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, R.; Zhong, W.; Zhu, L. Feature Screening via Distance Correlation Learning. J. Am. Stat. Assoc. 2012, 107, 1129–1139. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.; Jiang, H.; Wang, W.; Li, Z.; Chen, E.; Yan, M.; Tian, X. Forest Above-Ground Biomass Estimation Using KNN-FIFS Method Based on Multi-Source Remote Sensing Data. Sci. Silvae Sincae 2018, 54, 73–82. [Google Scholar] [CrossRef]
- Gao, Y.; Lu, D.; Li, G.; Wang, G.; Chen, Q.; Liu, L.; Li, D. Comparative analysis of modeling algorithms for forest aboveground biomass estimation in a subtropical region. Remote Sens. 2018, 10, 627. [Google Scholar] [CrossRef] [Green Version]
- Rasel, S.M.M.; Chang, H.C.; Ralph, T.J.; Saintilan, N.; Diti, I.J. Application of feature selection methods and machine learning algorithms for saltmarsh biomass estimation using Worldview-2 imagery. Geocarto Int. 2019, 10, 1–25. [Google Scholar] [CrossRef]
- Pham, T.D.; Yokoya, N.; Xia, J.; Ha, N.T.; Le, N.N.; Nguyen, T.T.T.; Dao, T.H.; Vu, T.T.P.; Pham, T.D.; Takeuchi, W. Comparison of machine learning methods for estimating mangrove above-ground biomass using multiple source remote sensing data in the red river delta biosphere reserve, Vietnam. Remote Sens. 2020, 12, 1334. [Google Scholar] [CrossRef] [Green Version]
- López-Serrano, P.M.; López-Sánchez, C.A.; Álvarez-González, J.G.; García-Gutiérrez, J. A Comparison of Machine Learning Techniques Applied to Landsat-5 TM Spectral Data for Biomass Estimation. Can. J. Remote Sens. 2016, 42, 690–705. [Google Scholar] [CrossRef]
- Wu, C.; Chen, Y.; Peng, C.; Li, Z.; Hong, X. Modeling and estimating aboveground biomass of Dacrydium pierrei in China using machine learning with climate change. J. Environ. Manag. 2019, 234, 167–179. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, J.; Liang, S.; Li, X.; Li, M. An evaluation of eight machine learning regression algorithms for forest aboveground biomass estimation from multiple satellite data products. Remote Sens. 2020, 12, 15. [Google Scholar] [CrossRef]
- Li, G.; Xie, Z.; Jiang, X.; Lu, D.; Chen, E. Integration of ZiYuan-3 Multispectral and Stereo Data for Modeling Aboveground Biomass of Larch Plantations in North China. Remote Sens. 2019, 11, 2328. [Google Scholar] [CrossRef] [Green Version]
- Xie, Z.; Chen, Y.; Lu, D.; Li, G.; Chen, E. Classification of Land Cover, Forest, and Tree Species Classes with ZiYuan-3 Multispectral and Stereo Data. Remote Sens. 2019, 11, 164. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Zhang, H.; Li, X.; Liu, Y.; Cai, Y.; Lin, H. Classification of Paddy Rice Using a Stacked Generalization Approach and the Spectral Mixture Method Based on MODIS Time Series. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2264–2275. [Google Scholar] [CrossRef]
- Cai, Y.; Li, X.; Zhang, M.; Lin, H. Mapping wetland using the object-based stacked generalization method based on multi-temporal optical and SAR data. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102164. [Google Scholar] [CrossRef]
- Holmstrm, H.; Fransson, J.E.S. Combining remotely sensed optical and radar data in knn-estimation of forest variables. For. Sci. 2003, 49, 409–418. [Google Scholar] [CrossRef] [Green Version]
- Doyog, N.D.; Lin, C.; Lee, Y.J.; Lumbres, R.I.C.; Daipan, B.P.O.; Bayer, D.C.; Parian, C.P. Diagnosing pristine pine forest development through pansharpened-surface-reflectance Landsat image derived aboveground biomass productivity. For. Ecol. Manag. 2021, 487. [Google Scholar] [CrossRef]
- Chang, C.; Pal, N.; Lin, J. Testing First Order Autocorrelation: A Simple Parametric Bootstrap Approach to Improve Over the Standard Tests. Am. J. Math. Manag. Sci. 2019, 38, 261–276. [Google Scholar] [CrossRef]
- Long, J.; Lin, H.; Wang, G.; Sun, H.; Yan, E. Estimating the growing stem volume of the planted forest using the general linear model and time series quad-polarimetric sar images. Sensors 2020, 20, 3957. [Google Scholar] [CrossRef]
- Purohit, S.; Aggarwal, S.P.; Patel, N.R. Estimation of forest aboveground biomass using combination of Landsat 8 and Sentinel-1A data with random forest regression algorithm in Himalayan Foothills. Trop. Ecol. 2021, 62, 288–300. [Google Scholar] [CrossRef]
Tree Species | Numbers of Plots | Minimum | Maximum | Mean | Standard Deviation | Coefficient of Variation (%) |
---|---|---|---|---|---|---|
Chinese pine | 42 | 91.97 | 514.96 | 257.15 | 112.63 | 0.4380 |
Larch | 37 | 87.44 | 405.56 | 211.69 | 81.51 | 0.3850 |
All | 79 | 87.44 | 514.96 | 237.38 | 99.62 | 0.4197 |
Image Category | Image Identification | Product Level | Acquisition Date |
---|---|---|---|
GF-2 | GF2_PMS2_E118.3_N41.6_20170905_L1A0004074551-MSS | Level 1A | 2017-9-5 |
GF2_PMS2_E118.3_N41.6_20170905_L1A0004074551-PAN | Level 1A | 2017-9-5 | |
GF2_PMS2_E118.3_N41.6_20170905_L1A0004074552-MSS | Level 1A | 2017-9-5 | |
GF2_PMS2_E118.3_N41.6_20170905_L1A0004074552-PAN | Level 1A | 2017-9-5 | |
Sentinel-2 | S2A_MSIL1C_20170922T025541_N0205_R032_T50TNM_20170922T030440 | Level-1C | 2017-9-22 |
S2A_MSIL1C_20170922T025541_N0205_R032_T50TPM_20170922T030440 | Level-1C | 2017-9-22 |
Image Category | Bands of Images | Range or Center of Wavelength(µm) | Spatial Resolution(m) |
---|---|---|---|
GF-2 | Band 1 Pan | 0.450–0.900 | 1 |
Band 2 Blue | 0.450–0.520 | 4 | |
Band 3 Green | 0.520–0.590 | 4 | |
Band 4 Red | 0.630–0.690 | 4 | |
Band 5NIR | 0.770–0.890 | 4 | |
Sentinel-2 | Band 2 Blue | 0.4966 | 10 |
Band 3 Green | 0.5600 | 10 | |
Band 4 Red | 0.6645 | 10 | |
Band 5 Vegetation Red Edge_1 | 0.7039 | 20 | |
Band 6 Vegetation Red Edge_2 | 0.7402 | 20 | |
Band 7 Vegetation Red Edge_3 | 0.7825 | 20 | |
Band 8 NIR | 0.8351 | 10 | |
Band 8A Vegetation Red Edge_4 | 0.8648 | 20 | |
Band 11 SWIR_1 | 1.6137 | 20 | |
Band 12 SWIR_2 | 2.2024 | 20 |
Variable Type | Variable Number | Description |
---|---|---|
Spectral variables | 14 | GF-2: Blue, Green, Red, NIR |
Sentinel-2: Blue, Green, Red, Vegetation Red Edge_1, Vegetation Red Edge_2, Vegetation Red Edge_3, NIR, Vegetation Red Edge_3, SWIR_1, SWIR_2 | ||
Vegetation indices | 175 | NDVI ij = (Band i − Band j)/(Band i + Band j) NDVI ijk = (Band i + Band j − Band k)/(Band i + Band j + Band k) |
RVI i_j= Band i/Band j | ||
DVI i_j= Band i/Band j | ||
EVI = 2.5 × (BandNir − BandRed)/(BandNir + 6 ×BandRed − 7.5 ×BandBlue + 1) | ||
SAVIk= (BandNir − BandRed) × (1 + n)/(BandNir + BandRed + n), n = 0.1, 0.25,0.35,0.5. | ||
ARVI = (BandNir − (2 × BandRed−BandBlue))/(BandNir + (2×BandRed − BandBlue)) | ||
MSR = 0.5 × (120 × (BandNir − BandGreen) − 200 × (BandRed − BandGreen) | ||
Texture features | 672 | Mean (M), Variance (V), Homogeneity (H), Contrast (Con), Dissimilarity (D), Entropy (E), Second moment (S), Correlation (Cor) |
Terrain factors | 3 | Elevation, Slope, Aspect |
Method | Model | Selected Variables | R2 | Corr | RMSE | RMSEr (%) | MAE |
---|---|---|---|---|---|---|---|
RF | RFR | S2_NDVI3_8, S2_NDVI6_10, S2_VRE4_W5_M, S2_NDVI5_10_2, S2_SWIR1, S2_NDVI3_6, GF2_Red, S2_Green_W5_Con, GF2_Red_W11_E, S2_NDVI4_10_2 | 0.457 | 0.678 | 72.92 | 30.72 | 57.67 |
SRF | RFR | S2_NDVI3_8, GF2_Red_W3_M, S2_Green_W13_S, S2_SWIR2_W7_H | 0.653 | 0.815 | 58.30 | 24.56 | 48.51 |
KNN-FIFS | KNN | GF2_Red_W13_M, GF2_Red_W3_M, S2_DVI4_5, S2_SWIR2_W9_D | 0.632 | 0.798 | 60.09 | 25.31 | 48.91 |
DC_FSCK | KNN | GF2_Red_W13_M, S2_VRE4_W11_Cor, S2_RVI3_4, S2_RVI6_8, GF2_NIR_W13_S, GF2_NIR W11_S, GF2_Red_W5_S | 0.634 | 0.826 | 59.88 | 25.23 | 48.35 |
AFCO-RFR | RFR | GF2_Red_W3_M, S2_Green_W13_S, S2_SWIR2_W7_H, S2_RVI2_5, S2_ SWIR2_W7_V | 0.751 | 0.874 | 49.41 | 20.82 | 39.87 |
AFCO-KNN | KNN | GF2_Red_W13_M, S2_NIR_W5_S, S2_VRE4_W11_Cor, S2_RVI3_4, S2_RVI6_8, GF2-NIR_W13_S, GF2-NIR_W11_S, GF2_Red_W5_S,GF2_Red_W13_S | 0.663 | 0.833 | 57.44 | 24.20 | 45.33 |
Data Scenario | Model | Selected Variables | R2 | Corr | RMSE | RMSEr(%) | MAE |
---|---|---|---|---|---|---|---|
GF-2 | RFR | Red_W3_M, Green_W3_M, Red_W13_M, Red_W9_Cor, NIR_W9_H, Red_W13_E, RVI1_2, NIR_W13_Con, Green_W9_Cor, NIR_W13_D, Red_W13_Con, Blue_W3_M | 0.655 | 0.815 | 58.12 | 24.48 | 45.21 |
KNN | Red_W13_M, Red_W3_M, Red_W7_H, NIR_W9_H, SAVI0.35, NIR W11_S | 0.650 | 0.820 | 58.60 | 24.69 | 44.00 | |
Sentinel-2 | RFR | Red_W3_M, VRE3_W5_V, VRE1_W13_S, SWIR1_W13_V, VRE4_W13_E, Aspect, NIR_W13_Cor, SWIR1_W5_M, Slope, Elevation, SWIR2_W13_Cor, SWIR2_W13_S | 0.614 | 0.793 | 61.51 | 25.91 | 48.53 |
KNN | NDVI2_5, VRE4_W13_H, Red_W13_S, VRE4_W13_S, NIR_W13_S, VRE4_W11_H, VRE1_W13_S, VRE3_W13_S, VRE2_W13_S, NIR_W11_S | 0.612 | 0.785 | 61.64 | 25.96 | 47.42 |
Data Scenario | Feature Variable Selection Method | Model | Tuned Hyperparameters | Hyperparameter Configurations |
---|---|---|---|---|
Integrated data of GF-2 and Sentinel-2 | RF | RFR | n_estimators | 26 |
max_features | 3 | |||
SRF | RFR | n_estimators | 42 | |
max_features | 2 | |||
KNN-FIFS | KNN | metric, weights | Mahalanobis, distance, | |
n_neighbors | 2 | |||
DC_FSCK | KNN | metric, weights | Minkowski, distance, | |
n_neighbors, p | 2, 1 | |||
AFCO | RFR | n_estimators | 24 | |
max_features | 2 | |||
KNN | metric, weights | Minkowski, distance, | ||
n_neighbors, p | 2, 1 | |||
GF-2 | AFCO | RFR | n_estimators | 16 |
max_features | 3 | |||
KNN | metric, weights | Minkowski, distance | ||
n_neighbors, p | 3, 1 | |||
Sentinel-2 | AFCO | RFR | n_estimators | 16 |
max_features | 2 | |||
KNN | metric, weights | Minkowski, distance | ||
n_neighbors, p | 2, 2 |
Predictive Variables and Intercept | Nonstandard Coefficient | Standard Coefficient | t | Sig. | Collinearity Statistics | ||
---|---|---|---|---|---|---|---|
B | Standard Error | Beta | Tolerance | VIF | |||
Intercept | 420.141 | 45.194 | 9.296 | 0.000 | |||
GF2_Red_W3_M | −43.375 | 13.297 | −0.394 | −3.262 | 0.002 | 0.549 | 1.822 |
S2_RVI2_5 | −480.664 | 245.057 | −0.215 | −1.961 | 0.054 | 0.668 | 1.497 |
S2_Green_W13_S | 117.667 | 109.950 | 0.121 | 1.070 | 0.288 | 0.629 | 1.591 |
S2_SWIR2_W7_H | 56.558 | 38.189 | 0.164 | 1.481 | 0.143 | 0.654 | 1.528 |
S2_SWIR2_W7_V | −0.294 | 5.223 | −0.006 | −0.056 | 0.955 | 0.782 | 1.278 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Lin, H.; Long, J.; Xu, X. Mapping the Growing Stem Volume of the Coniferous Plantations in North China Using Multispectral Data from Integrated GF-2 and Sentinel-2 Images and an Optimized Feature Variable Selection Method. Remote Sens. 2021, 13, 2740. https://doi.org/10.3390/rs13142740
Li X, Lin H, Long J, Xu X. Mapping the Growing Stem Volume of the Coniferous Plantations in North China Using Multispectral Data from Integrated GF-2 and Sentinel-2 Images and an Optimized Feature Variable Selection Method. Remote Sensing. 2021; 13(14):2740. https://doi.org/10.3390/rs13142740
Chicago/Turabian StyleLi, Xinyu, Hui Lin, Jiangping Long, and Xiaodong Xu. 2021. "Mapping the Growing Stem Volume of the Coniferous Plantations in North China Using Multispectral Data from Integrated GF-2 and Sentinel-2 Images and an Optimized Feature Variable Selection Method" Remote Sensing 13, no. 14: 2740. https://doi.org/10.3390/rs13142740