Distance–Intensity Image Strategy for Pulsed LiDAR Based on the Double-Scale Intensity-Weighted Centroid Algorithm
<p>Schematic diagram of the pulsed LiDAR system.</p> "> Figure 2
<p>Flowchart of the DSIW waveform centroid algorithm.</p> "> Figure 3
<p>Experimental equipment diagram.</p> "> Figure 4
<p>Echoes of the standard diffuse reflector with a bidirectional reflectivity factor (BRF) of 50% at different distances.</p> "> Figure 5
<p>The laser echoes of the tests: (<b>a</b>) a laser echo in test.1;(<b>b</b>) a laser echo in test.2; (<b>c</b>) a laser echo in test.3; (<b>d</b>) a laser echo in test.4; (<b>e</b>) a laser echo in test.5; (<b>f</b>) a laser echo in test.6.</p> "> Figure 6
<p>The histogram of ranging error distribution: (<b>a</b>) the ranging error distribution of each method in test.1; (<b>b</b>) the ranging error distribution of each method in test.2; (<b>c</b>) the ranging error distribution of each method in test.3.</p> "> Figure 7
<p>Fitting result of BRF and laser echo intensity. (<b>a</b>) Relationship of BRF and the echo peak value, (<b>b</b>) relationship of BRF and the echo integral value, and (<b>c</b>) relationship of BRF and the amplitude of the echo’s centroid.</p> "> Figure 8
<p>The scanning target and its point clouds. (<b>a</b>) The scanning target, (<b>b</b>) point cloud without intensity data, and (<b>c</b>,<b>d</b>) the distance–intensity point clouds of the target.</p> "> Figure 8 Cont.
<p>The scanning target and its point clouds. (<b>a</b>) The scanning target, (<b>b</b>) point cloud without intensity data, and (<b>c</b>,<b>d</b>) the distance–intensity point clouds of the target.</p> ">
Abstract
:1. Introduction
2. LiDAR Transmission Mechanism and System Description
2.1. LiDAR Transmission Mechanism
2.2. Pulsed LiDAR System and Its Operating Principle
3. Methodology
3.1. Methods of Distance Acquisition
3.2. Methods of Intensity Recording
3.3. Double-Scale Intensity-Weighted Waveform Centroid Algorithm (DSIW)
4. Experiments and Evaluation
4.1. Experimental System
4.2. Ranging Accuracy and Ranging Robustness with Different Time Measurement Methods
4.3. Rationality and Robustness of Laser Echo Intensity Data with Different Recording Methods
4.4. Distance–Intensity Imaging by the DSIW Waveform Centroid Algorithm
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Garcia-Moreno, A.I. Dynamic multi-sensor platform for efficient 3D-digitalization of cities. J. Comput. Inf. Ence Eng. 2019, 20, 1–15. [Google Scholar]
- Yindan, Z.; Chen, G.; Vukomanovic, J.; Singh, K.K.; Meentemeyer, R.K. Recurrent Shadow Attention Model (RSAM) for shadow removal in high-resolution urban land-cover mapping. Remote Sens. Environ. 2020, 247, 111945. [Google Scholar]
- He, P.; Wang, X.; Wan, Y.; Xu, J.; Yang, W. Automatic Registration Between Low-Altitude LiDAR Point Clouds and Aerial Images Using Road Features. J. Indian Soc. Remote Sens. 2018, 46. [Google Scholar] [CrossRef]
- Goodin, C.; Doude, M.; Hudson, C.; Carruth, D. Enabling Off-Road Autonomous Navigation-Simulation of LIDAR in Dense Vegetation. Electronics 2018, 7, 154. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.K.; Kim, J.W.; Kim, J.H.; Jung, T.H.; Park, Y.J.; Ko, Y.H.; Jung, S. Experimental Studies of Autonomous Driving of a Vehicle on the Road Using LiDAR and DGPS. In Proceedings of the International Conference on Control, Automation and Systems (ICCAS), Busan, Korea, 13–16 October 2015; pp. 1366–1369. [Google Scholar]
- Jia, S.; Zhang, M.; Zhu, J. Gabor Wavelet Based Feature Extraction and Fusion for Hyperspectral and Lidar Remote Sensing Data. In Proceedings of the IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018. [Google Scholar]
- Xu, Z.; Guan, K.; Casler, N.; Peng, B.; Wang, S. A 3D convolutional neural network method for land cover classification using LiDAR and multi-temporal Landsat imagery. ISPRS J. Photogramm. Remote Sens. 2018, 144, 423–434. [Google Scholar] [CrossRef]
- Yang, J.Q.; Gu, G.; Qian, W.; Ren, K.; Chen, Q. Pulsed light time-of-flight measurement based on differential hysteresis timing discrimination method. Opt. Express 2020, 28, 23554–23568. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, H.; Xu, X. Influence of time discrimination methods on ranging distribution of pulsed laser detecting tilted plane. Optik 2019, 179, 305–314. [Google Scholar] [CrossRef]
- Fieber, K.D.; Davenport, I.J.; Ferryman, J.M.; Gurney, R.J.; Walker, J.P.; Hacker, J.M. Analysis of full-waveform LiDAR data for classification of an orange orchard scene. ISPRS J. Photogramm. Remote Sens. 2013, 82, 63–82. [Google Scholar] [CrossRef] [Green Version]
- Hoefle, B.; Pfeifer, N. Correction of laser scanning intensity data: Data and model-driven approaches. ISPRS J. Photogramm. Remote Sens. 2007, 62, 415–433. [Google Scholar] [CrossRef]
- Chen, B.; Shi, S.; Gong, W.; Sun, J.; Chen, B.; Du, L.; Yang, J.; Guo, K.; Zhao, X. True-Color Three-Dimensional Imaging and Target Classification Based on Hyperspectral LiDAR. Remote Sens. 2019, 11, 1541. [Google Scholar] [CrossRef] [Green Version]
- Challis, K.; Carey, C.; Kincey, M.; Howard, A.J. Assessing the preservation potential of temperate, lowland alluvial sediments using airborne lidar intensity. J. Archaeol. Ence 2011, 38, 301–311. [Google Scholar] [CrossRef]
- Lin, H.; Zhang, Y.; Mei, L. A fluorescence Scheimpflug LiDAR developed for three-dimension profiling of plants. Opt. Express 2020, 28, 9269–9279. [Google Scholar] [CrossRef]
- Luo, S.; Chen, J.M.; Wang, C.; Gonsamo, A.; Qin, H. Comparative Performances of Airborne LiDAR Height and Intensity Data for Leaf Area Index Estimation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 11, 300–310. [Google Scholar] [CrossRef]
- Blackburn, T.G.; Gerstmayr, E.; Mangles, S.P.D.; Marklund, M. Model-independent inference of laser intensity. Phys. Rev. Accel. Beams 2019, 23. [Google Scholar]
- Nilson, P.M.; Davies, J.R.; Theobald, W.; Jaanimagi, P.A.; Mileham, C.; Jungquist, R.K.; Stoeckl, C.; Begishev, I.A.; Solodov, A.A.; Myatt, J.F.; et al. Time-Resolved Measurements of Hot-Electron Equilibration Dynamics in High-Intensity Laser Interactions with Thin-Foil Solid Targets. Phys. Rev. Lett. 2012, 108, 085002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, W. Radiometric calibration of small-footprint full-waveform airborne laser scanner measurements: Basic physical concepts. ISPRS J. Photogramm. Remote Sens. 2010, 65, 505–513. [Google Scholar] [CrossRef]
- Tan, K.; Cheng, X. Modeling hemispherical reflectance for natural surfaces based on terrestrial laser scanning backscattered intensity data. Opt. Express 2016, 24, 22971. [Google Scholar] [CrossRef]
- Jiang, Y.; Karpf, S.; Jalali, B. Time-stretch LiDAR as a spectrally scanned time-of-flight ranging camera. Nat. Photonics 2020, 14. [Google Scholar] [CrossRef]
- Wagner, W.; Ullrich, A.; Ducic, V.; Melzer, T.; Studnicka, N. Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner. ISPRS J. Photogramm. Remote Sens. 2006, 60, 100–112. [Google Scholar] [CrossRef]
- Koldunov, M.F.; Manenkov, A.A.; Pokotilo, I.L. Pulse-width and pulse-shape dependencies of laser-induced damage threshold to transparent optical materials. In Proceedings of the SPIE—The International Society for Optical Engineering; SPIE: Bellingham, WA, USA, 1996; Volume 2714, pp. 718–730. [Google Scholar]
- Sun, T.; Xin, J. Pulse delay-controlled passive Q-switched laser with tunable pulse width. Opt. Eng. 2019, 58, 036102.1–036102.7. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Laser wavelength | 1064 nm |
Laser pulse width | 4 ns |
Angle of divergence | 0.5 mrad |
Transmitting system optical aperture | 32 mm |
Receiving system optical aperture | 50 mm |
Size of avalanche photodiode (APD) photosensitive surface | 3 mm |
APD response frequency band | 250 MHz |
Oscilloscope sampling rate | 5 GSa/s |
Oscilloscope bandwidth | 1 GHz |
Oscilloscope sampling digit | 14 bit |
Test | ABRE of DCFD | RSD of DCFD | ABRE of PK | RSD of PK | ABRE of GF | RSD of GF | ABRE of TC | RSD of TC | ABRE of DSIW | RSD of DSIW |
---|---|---|---|---|---|---|---|---|---|---|
No.1 | 0.54 ns | 1.43 ns | 0.37 ns | 0.32 ns | 0.34 ns | 0.01 ns | 2.41 ns | 0.46 ns | 0.30 ns | 0.26 ns |
No.2 | 0.40 ns | 0.00 ns | 0.27 ns | 0.24 ns | 0.25 ns | 0.23 ns | 0.36 ns | 0.00 ns | 0.21 ns | 0.19 ns |
No.3 | 0.40 ns | 0.00 ns | 0.25 ns | 0.25 ns | 0.23 ns | 0.19 ns | 0.26 ns | 0.00 ns | 0.20 ns | 0.19 ns |
No.4 | 1.66 ns | 5.67 ns | 1.19 ns | 1.42 ns | 0.51 ns | 0.32 ns | 18.60 ns | 0.28 ns | 0.31 ns | 0.22 ns |
No.5 | 0.40 ns | 0.00 ns | 0.72 ns | 0.32 ns | 0.45 ns | 0.32 ns | 12.11 ns | 0.22 ns | 0.21 ns | 0.22 ns |
No.6 | 0.40 ns | 0.00 ns | 0.32 ns | 0.21 ns | 0.30 ns | 0.21 ns | 0.36 ns | 0.00 ns | 0.21 ns | 0.17 ns |
No. of Test | Test 1 | Test 2 | Test 3 | Test 4 | Test 5 | Test 6 |
---|---|---|---|---|---|---|
DCFD algorithm | 95.64% | 100.00% | 100.00% | 95.22% | 100.00% | 100.00% |
PK algorithm | 99.00% | 100.00% | 100.00% | 79.44% | 100.00% | 100.00% |
GF algorithm | 99.22% | 100.00% | 100.00% | 79.76% | 100.00% | 100.00% |
TC algorithm | 77.50% | 100.00% | 100.00% | 66.08% | 75.20% | 100.00% |
DSIW algorithm | 100.00% | 100.00% | 100.00% | 97.00% | 100.00% | 100.00% |
Bidirectional Reflectivity Factor (BRF) | Average Waveform Peak Value | Standard Deviation of Waveform Peak Value | Average Waveform Integral value | Standard Deviation of Waveform Integral Value | Average Amplitude of Centroid by DSIW | Standard Deviation of Amplitude of Centroid by DSIW |
---|---|---|---|---|---|---|
10% | 0.1508 V | 0.0049 V | 1.9686 V | 0.0613 V | 0.1344 V | 0.0014 V |
20% | 0.2507 V | 0.0054 V | 3.1798 V | 0.0676 V | 0.2305 V | 0.0026 V |
35% | 0.4189 V | 0.0067 V | 5.3307 V | 0.0839 V | 0.3797 V | 0.0031 V |
50% | 0.5379 V | 0.0093 V | 6.8029 V | 0.0819 V | 0.4912 V | 0.0024 V |
75% | 0.7379 V | 0.0097 V | 9.2571 V | 0.1098 V | 0.6769 V | 0.0027 V |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, S.; Yang, G.; Li, Q.; Zhang, B.; Wang, Y.; Zhang, Y.; Wang, C. Distance–Intensity Image Strategy for Pulsed LiDAR Based on the Double-Scale Intensity-Weighted Centroid Algorithm. Remote Sens. 2021, 13, 432. https://doi.org/10.3390/rs13030432
Yan S, Yang G, Li Q, Zhang B, Wang Y, Zhang Y, Wang C. Distance–Intensity Image Strategy for Pulsed LiDAR Based on the Double-Scale Intensity-Weighted Centroid Algorithm. Remote Sensing. 2021; 13(3):432. https://doi.org/10.3390/rs13030432
Chicago/Turabian StyleYan, Shiyu, Guohui Yang, Qingyan Li, Bin Zhang, Yu Wang, Yu Zhang, and Chunhui Wang. 2021. "Distance–Intensity Image Strategy for Pulsed LiDAR Based on the Double-Scale Intensity-Weighted Centroid Algorithm" Remote Sensing 13, no. 3: 432. https://doi.org/10.3390/rs13030432
APA StyleYan, S., Yang, G., Li, Q., Zhang, B., Wang, Y., Zhang, Y., & Wang, C. (2021). Distance–Intensity Image Strategy for Pulsed LiDAR Based on the Double-Scale Intensity-Weighted Centroid Algorithm. Remote Sensing, 13(3), 432. https://doi.org/10.3390/rs13030432