Spectral–Spatial Feature Partitioned Extraction Based on CNN for Multispectral Image Compression
"> Figure 1
<p>(<b>a</b>) 2D convolution; (<b>b</b>) 1D spectral convolution.</p> "> Figure 2
<p>(<b>a</b>) Normal convolution; (<b>b</b>) group convolution.</p> "> Figure 3
<p>The correlation matrix between filters of adjacent layers: (<b>a</b>) 1 group; (<b>b</b>) 2 groups; (<b>c</b>) 4 groups; (<b>d</b>) 8 groups; (<b>e</b>) the correlation illustration.</p> "> Figure 4
<p>The flow diagram of the proposed network.</p> "> Figure 5
<p>(<b>a</b>) The forward network; (<b>b</b>) the backward network.</p> "> Figure 6
<p>(<b>a</b>) Spectral block; (<b>b</b>) spatial block.</p> "> Figure 7
<p>The Importance-Net.</p> "> Figure 8
<p>Average PSNR of 7 band test images at different bit rates.</p> "> Figure 9
<p>PSNR of recovered images: (<b>a</b>) ah_chun; (<b>b</b>) ah_xia.; (<b>c</b>) hunan_chun; (<b>d</b>) tj_dong.</p> "> Figure 10
<p>The visual comparison of the recovered images (each column represents the same image).</p> "> Figure 10 Cont.
<p>The visual comparison of the recovered images (each column represents the same image).</p> "> Figure 11
<p>Partial enlarged view of ah_xia.</p> "> Figure 11 Cont.
<p>Partial enlarged view of ah_xia.</p> "> Figure 12
<p>Average PSNR of 8 band test images at different bit rates.</p> "> Figure 13
<p>PSNR of recovered images: (<b>a</b>) test2; (<b>b</b>) test8; (<b>c</b>) test14; (<b>d</b>) test16.</p> "> Figure 14
<p>The visual comparison of the recovered images (each column represents the same image).</p> "> Figure 14 Cont.
<p>The visual comparison of the recovered images (each column represents the same image).</p> "> Figure 15
<p>Partial enlarged view of test8.</p> "> Figure 15 Cont.
<p>Partial enlarged view of test8.</p> "> Figure 16
<p>Average spectral angle (SA) curve of 7 band test images.</p> "> Figure 17
<p>Average SA curve of 8 band test images.</p> ">
Abstract
:1. Introduction
2. Proposed Method
2.1. Spectral Feature Extraction Module
2.2. Spatial Feature Extraction Module
2.3. Framework of the Proposed Network
2.3.1. The Forward Network and the Backward Network
2.3.2. Quantization and Entropy Coding
2.4. Rate-Distortion Optimizer
3. Experimental Settings and Training
3.1. Datasets
3.2. Parameter Settings
3.3. The Training Process
4. Results and Discussion
4.1. The Evaluation Criterion
4.2. Experimental Results
4.2.1. Spatial Information Recovery
4.2.2. Spectral Information Recovery
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, Y.; Zhang, H.K.; Shen, Q. Spectral–Spatial Classification of Hyperspectral Imagery with 3D Convolutional Neural Network. Remote Sens. 2017, 9, 67. [Google Scholar] [CrossRef] [Green Version]
- Gelli, G.; Poggi, G. Compression of multispectral images by spectral classification and transform coding. IEEE Trans. Image Proc. 1999, 8, 476–489. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.L. Research on Hyperspectral Image Compression Method. Master’s Thesis, Nanjing University of Science and Technology, Nanjing, China, 2008. [Google Scholar]
- Li, Y.S.; Wu, C.K.; Chen, J.; Xiang, L.B. Spectral satellite image compression based on wavelet transform. Acta Opt. Sin. 2001, 21, 691–695. [Google Scholar]
- Nian, Y.J.; Liu, Y.; Ye, Z. Pairwise KLT-based compression for multispectral images. Sens. Imaging 2016, 17, 1–15. [Google Scholar] [CrossRef]
- Slyz, M.; Zhang, L. A block-based inter-band lossless hyperspectral image compressor. In Proceedings of the IEEE Data Compression Conference, Snowbird, UT, USA, 29–31 March 2005; pp. 427–436. [Google Scholar] [CrossRef] [Green Version]
- Qian, S.E. Hyperspectral data compression using a fast vector quantization algorithm. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1791–1798. [Google Scholar] [CrossRef]
- Hao, P.; Shi, Q. Reversible integer KLT for progressive-to-lossless compression of multiple component images. In Proceedings of the IEEE International Conference on Image Processing, Barcelona, Spain, 14–17 September 2003; p. I-633. [Google Scholar] [CrossRef] [Green Version]
- Abousleman, G.P.; Marcellin, M.W.; Hunt, B.R. Compression of hyperspectral imagery using the 3-D DCT and hybrid DPCM/DCT and entropy-constrained trellis coded quantization. In Proceedings of the Conference on Data Compression, Snowbird, UT, USA, 28–30 March 1995. [Google Scholar] [CrossRef]
- Sweldens, W. The Lifting Scheme: A Custom-Design Construction of Biorthogonal Wavelets. Appl. Comput. Harmon. Anal. 1996, 3, 186–200. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.L.; Pearlman, W.A. Three-dimensional wavelet-based compression of hyperspectral images. In Hyperspectral Data Compression; Springer: Troy, NY, USA, 2006; pp. 273–308. ISBN 978-038-728-579-5. [Google Scholar]
- Dragotti, P.L.; Poggi, G.; Ragozini, A.R.P. Compression of multispectral images by three-dimensional SPIHT algorithm. IEEE Trans. Geosci. Remote Sens. 2000, 38, 416–428. [Google Scholar] [CrossRef]
- LeCun, Y.; Jackel, L.; Bottou, L.; Cortes, C.; Denker, J.S.; Drucker, H.; Guyon, I.; Müller, U.A.; Säckinger, E.; Simard, P.; et al. Learning algorithms for classification: A comparison on handwritten digit recognition. In Neural Networks: The Statistical Mechanics Perspective; World Scientific: Singapore, 1995; pp. 261–276. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems, Red Hook, NY, USA, 3–6 December 2012; pp. 1097–1105. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. Comput. Sci. 2014, arXiv:1409.1556v6. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.Q.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef] [Green Version]
- Ballé, J.; Laparra, V.; Simoncelli, E. End-to-end Optimized Image Compression. In Proceedings of the 2017 International Conference on Learning Representations (ICLR), Toulon, France, 24–26 April 2017. [Google Scholar]
- Jiang, F.; Tao, W.; Liu, S.; Ren, J.; Guo, X.; Zhao, D. An End-to-End Compression Framework Based on Convolutional Neural Networks. IEEE Trans. Circuits Syst. Video Technol. 2018, 28, 3007–3018. [Google Scholar] [CrossRef] [Green Version]
- Kong, F.; Zhou, Y.; Shen, Q.; Wen, K. End-to-end Multispectral Image Compression Using Convolutional Neural Network. Chin. J. Lasers 2019, 46, 1009001-1. [Google Scholar] [CrossRef]
- Zhong, Z.; Li, J.; Luo, Z.; Chapman, M. Spectral–Spatial Residual Network for Hyperspectral Image Classification: A 3-D Deep Learning Framework. IEEE Trans. Geosci. Remote Sens. 2018, 56, 847–858. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1026–1034. [Google Scholar] [CrossRef] [Green Version]
- A Tutorial on Filter Groups. Available online: https://blog.yani.io/filter-group-tutorial/ (accessed on 9 August 2020).
- Shi, W.Z.; Caballero, J.; Huszar, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1874–1883. [Google Scholar]
- Toderici, G.; O’Malley, S.M.; Hwang, S.J.; Vincent, D.; Minnen, D.; Baluja, S.; Covell, M.; Sukthankar, R. Variable rate image compression with recurrent neural networks. arXiv 2015, arXiv:1511.06085v2. [Google Scholar]
- Li, M.; Zuo, W.; Gu, S.; Zhao, D.; Zhang, D. Learning Convolutional Networks for Content-Weighted Image Compression. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3214–3223. [Google Scholar] [CrossRef] [Green Version]
- Misra, D. Mish: A Self Regularized Non-Monotonic Activation Function. arXiv 2019, arXiv:1908.08681. [Google Scholar]
- Christophe, E.; Leger, D.; Mailhes, C. Quality criteria benchmark for hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2103–2114. [Google Scholar] [CrossRef] [Green Version]
Parameter | Value |
---|---|
Batch Size | 16, 32 |
Learning Rate | 1 × 10−4, 1 × 10−5 |
Inter-Channels | 36, 48 |
5 × 10−4, 1 × 10−3, 1 × 10−1, 5 × 10−1, 1, 5, 8 |
Methods | ah_chun | ah_xia | hunan_chun | tj_dong |
---|---|---|---|---|
Proposed | 0.0251 | 0.0192 | 0.0182 | 0.0180 |
ResConv | 0.0265 | 0.0211 | 0.0206 | 0.0201 |
3D-SPIHT | 0.0286 | 0.0301 | 0.0249 | 0.0253 |
JPEG2000 | 0.0324 | 0.0298 | 0.0255 | 0.0394 |
Methods | Test2 | Test8 | Test14 | Test16 |
---|---|---|---|---|
Proposed | 0.0348 | 0.0300 | 0.0289 | 0.0251 |
ResConv | 0.0411 | 0.0377 | 0.0327 | 0.0312 |
3D-SPIHT | 0.0576 | 0.0645 | 0.0571 | 0.0505 |
JPEG2000 | 0.0514 | 0.0517 | 0.0443 | 0.0397 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, F.; Hu, K.; Li, Y.; Li, D.; Zhao, S. Spectral–Spatial Feature Partitioned Extraction Based on CNN for Multispectral Image Compression. Remote Sens. 2021, 13, 9. https://doi.org/10.3390/rs13010009
Kong F, Hu K, Li Y, Li D, Zhao S. Spectral–Spatial Feature Partitioned Extraction Based on CNN for Multispectral Image Compression. Remote Sensing. 2021; 13(1):9. https://doi.org/10.3390/rs13010009
Chicago/Turabian StyleKong, Fanqiang, Kedi Hu, Yunsong Li, Dan Li, and Shunmin Zhao. 2021. "Spectral–Spatial Feature Partitioned Extraction Based on CNN for Multispectral Image Compression" Remote Sensing 13, no. 1: 9. https://doi.org/10.3390/rs13010009
APA StyleKong, F., Hu, K., Li, Y., Li, D., & Zhao, S. (2021). Spectral–Spatial Feature Partitioned Extraction Based on CNN for Multispectral Image Compression. Remote Sensing, 13(1), 9. https://doi.org/10.3390/rs13010009