Evaluation of Light Pollution in Global Protected Areas from 1992 to 2018
"> Figure 1
<p>The proposed analyses framework of light pollution in global PAs by combining different light pollution categories (<b>a</b>) and the temporal trend of NTL in polluted PAs (<b>b</b>). Note: PAs are simplified as ellipses for illustration.</p> "> Figure 2
<p>Conceptual illustration of light pollution categories of non-polluted (<b>a</b>), continuously polluted (<b>b</b>), and discontinuously polluted (<b>c</b>).</p> "> Figure 3
<p>Conceptual illustration of buffer intervals around PA revealed by the first polluted buffer (<b>a</b>) and the high-intensity buffer (<b>b</b>). Note: yellow and purple were used to indicate different pollution intervals (i.e., the first pollution and high-intensity interval).</p> "> Figure 4
<p>Spatial distribution of different light pollution categories (<b>a</b>) and their composited visualization using continuously polluted (R), non-polluted (G), and discontinuously polluted (B) (<b>b</b>).</p> "> Figure 5
<p>The temporal trends of NTL worldwide in continuously polluted (<b>a</b>) and discontinuously polluted (<b>b</b>) PAs. The visualization of kernel density maps is composited by channels of increase (R), decrease (G), and no change (B). Note: the search radius of the kernel density is 5 degrees, and the weight is the natural logarithm of the area.</p> "> Figure 6
<p>The distance of PAs to the averaged first (<b>a</b>) and high-intensity (<b>b</b>) polluted buffers. The visualization of maps is composited by channels of distance to buffers (buffer <= 10, R; 10 < buffer < 25, G; buffer >= 25, B). Those red points with distances beyond 40 km are mainly caused by unstable light sources (e.g., ports, logging, and shipping).</p> "> Figure 7
<p>Distribution of global polluted PAs with high value of NTL in the high-intensity interval (<b>a</b>) and their temporal trends of NTL over the past decades (<b>b</b>). Detailed cases in (<b>c</b>–<b>g</b>) in (<b>a</b>) can be found in enlarged views. Note: the mean value of NTL and temporal trend of annual NTL sum in the high-intensity interval were visualized by the kernel density approach to identify these five global hotspots.</p> "> Figure 8
<p>The relationship between light pollution (i.e., the ratio of polluted PA with an increasing trend) and urbanization (i.e., the increasing rate of impervious surface areas).</p> ">
Abstract
:1. Introduction
2. Datasets
2.1. The Global Protected Area
2.2. The Harmonized Global Nighttime Light Data
3. Methodology
3.1. Definition of Light Pollution Categories
3.2. The Temporal Trends of Nighttime Light
4. Results
4.1. Spatially Explicit Distribution of Light Pollution Categories
4.2. Temporal Trends of NTL in Different Light Pollution Categories
4.3. The Distance of Light Pollution to the Protected Areas
4.4. The Temporal Trends of NTL in High-Intensity Intervals
5. Discussion
5.1. The Influence of Policies on Light Pollution
5.2. The Ecological Impact of Light Pollution
5.3. The Relationship between Light Pollution and Urbanization
5.4. Uncertainty
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Longcore, T.; Rich, C. Ecological light pollution. Front. Ecol. Environ. 2004, 2, 191–198. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.; Zhao, M.; Zhao, X. A harmonized global nighttime light dataset 1992–2018. Sci. Data 2020, 7, 1–9. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.; Eom, J.; Yu, S.; Asrar, G.R. Projecting global urban area growth through 2100 based on historical time series data and future Shared Socioeconomic Pathways. Earth’s Future 2019, 7, 351–362. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhou, Y.; Zhu, Z.; Cao, W. A national dataset of 30 m annual urban extent dynamics (1985–2015) in the conterminous United States. Earth Syst. Sci. Data 2020, 12, 357–371. [Google Scholar] [CrossRef] [Green Version]
- Gaston, K.J.; Bennie, J.; Davies, T.W.; Hopkins, J. The ecological impacts of nighttime light pollution: A mechanistic appraisal. Biol. Rev. 2013, 88, 912–927. [Google Scholar] [CrossRef] [PubMed]
- Schulze, K.; Knights, K.; Coad, L.; Geldmann, J.; Leverington, F.; Eassom, A.; Marr, M.; Butchart, S.H.; Hockings, M.; Burgess, N.D. An assessment of threats to terrestrial protected areas. Conserv. Lett. 2018, 11, e12435. [Google Scholar] [CrossRef] [Green Version]
- Visconti, P.; Butchart, S.H.; Brooks, T.M.; Langhammer, P.F.; Marnewick, D.; Vergara, S.; Yanosky, A.; Watson, J.E. Protected area targets post-2020. Science 2019, 364, 239–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhilin, L.; Gong, X.; Chen, J.; Mills, J.; Songnian, L.; Zhu, X.; Peng, T.; Hao, W. Functional requirements of systems for visualization of Sustainable Development Goal (SDG) indicators. J. Geovisualization Spat. Anal. 2020, 4, 1–10. [Google Scholar] [CrossRef]
- Guo, H. Big Earth Data in Support of the Sustainable Development Goals (2019); Secience Press: Beijing, China, 2019. [Google Scholar]
- Xu, W.; Pimm, S.L.; Du, A.; Su, Y.; Fan, X.; An, L.; Liu, J.; Ouyang, Z. Transforming protected area management in China. Trends Ecol. Evol. 2019, 34, 762–766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hannah, L.; Midgley, G.; Andelman, S.; Araújo, M.; Hughes, G.; Martinez-Meyer, E.; Pearson, R.; Williams, P. Protected area needs in a changing climate. Front. Ecol. Environ. 2007, 5, 131–138. [Google Scholar] [CrossRef]
- Hölker, F.; Wolter, C.; Perkin, E.K.; Tockner, K. Light pollution as a biodiversity threat. Trends Ecol. Evol. 2010, 25, 681–682. [Google Scholar] [CrossRef]
- Davies, T.W.; Smyth, T. Why artificial light at night should be a focus for global change research in the 21st century. Glob. Chang. Biol. 2018, 24, 872–882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennie, J.; Duffy, J.P.; Davies, T.W.; Correa-Cano, M.E.; Gaston, K.J. Global trends in exposure to light pollution in natural terrestrial ecosystems. Remote Sens. 2015, 7, 2715–2730. [Google Scholar] [CrossRef] [Green Version]
- Seymoure, B.; Buxton, R.; White, J.; Linares, C.; Fristrup, K.; Crooks, K.; Wittemyer, G.; Angeloni, L. Anthropogenic light disrupts natural light cycles in critical conservation areas. SSRN 2019. [Google Scholar] [CrossRef]
- Gaston, K.J.; Davies, T.W.; Bennie, J.; Hopkins, J. Reducing the ecological consequences of night-time light pollution: Options and developments. J. Appl. Ecol. 2012, 49, 1256–1266. [Google Scholar] [CrossRef] [Green Version]
- Owens, A.C.; Cochard, P.; Durrant, J.; Farnworth, B.; Perkin, E.K.; Seymoure, B. Light pollution is a driver of insect declines. Biol. Conserv. 2020, 241, 108259. [Google Scholar] [CrossRef]
- Owens, A.C.; Lewis, S.M. The impact of artificial light at night on nocturnal insects: A review and synthesis. Ecol. Evol. 2018, 8, 11337–11358. [Google Scholar] [CrossRef] [Green Version]
- Lewanzik, D.; Voigt, C.C. Artificial light puts ecosystem services of frugivorous bats at risk. J. Appl. Ecol. 2014, 51, 388–394. [Google Scholar] [CrossRef]
- Giavi, S.; Blösch, S.; Schuster, G.; Knop, E. Artificial light at night can modify ecosystem functioning beyond the lit area. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Bennie, J.; Davies, T.W.; Cruse, D.; Gaston, K.J. Ecological effects of artificial light at night on wild plants. J. Ecol. 2016, 104, 611–620. [Google Scholar] [CrossRef] [Green Version]
- Knop, E.; Zoller, L.; Ryser, R.; Gerpe, C.; Hörler, M.; Fontaine, C. Artificial light at night as a new threat to pollination. Nature 2017, 548, 206–209. [Google Scholar] [CrossRef]
- Guetté, A.; Godet, L.; Juigner, M.; Robin, M. Worldwide increase in Artificial Light At Night around protected areas and within biodiversity hotspots. Biol. Conserv. 2018, 223, 97–103. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.; Zhu, Z.; Liang, L.; Yu, B.; Cao, W. Mapping annual urban dynamics (1985–2015) using time series of Landsat data. Remote Sens. Environ. 2018, 216, 674–683. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Asrar, G.R.; Smith, S.J.; Imhoff, M. A global record of annual urban dynamics (1992–2013) from nighttime lights. Remote Sens. Environ. 2018, 219, 206–220. [Google Scholar] [CrossRef]
- Zhao, M.; Zhou, Y.; Li, X.; Cao, W.; He, C.; Yu, B.; Li, X.; Elvidge, C.D.; Cheng, W.; Zhou, C. Applications of satellite remote sensing of nighttime light observations: Advances, challenges, and perspectives. Remote Sens. 2019, 11, 1971. [Google Scholar] [CrossRef] [Green Version]
- Levin, N.; Kyba, C.C.; Zhang, Q.; de Miguel, A.S.; Román, M.O.; Li, X.; Portnov, B.A.; Molthan, A.L.; Jechow, A.; Miller, S.D. Remote sensing of night lights: A review and an outlook for the future. Remote Sens. Environ. 2020, 237, 111443. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y. Urban mapping using DMSP/OLS stable night-time light: A review. Int. J. Remote Sens. 2017, 38, 6030–6046. [Google Scholar] [CrossRef]
- Turner, W.; Spector, S.; Gardiner, N.; Fladeland, M.; Sterling, E.; Steininger, M. Remote sensing for biodiversity science and conservation. Trends Ecol. Evol. 2003, 18, 306–314. [Google Scholar] [CrossRef]
- Briant, G.; Gond, V.; Laurance, S.G. Habitat fragmentation and the desiccation of forest canopies: A case study from eastern Amazonia. Biol. Conserv. 2010, 143, 2763–2769. [Google Scholar] [CrossRef]
- Pauwels, J.; Le Viol, I.; Azam, C.; Valet, N.; Julien, J.-F.; Bas, Y.; Lemarchand, C.; de Miguel, A.S.; Kerbiriou, C. Accounting for artificial light impact on bat activity for a biodiversity-friendly urban planning. Landsc. Urban Plan. 2019, 183, 12–25. [Google Scholar] [CrossRef]
- Gaynor, K.M.; Hojnowski, C.E.; Carter, N.H.; Brashares, J.S. The influence of human disturbance on wildlife nocturnality. Science 2018, 360, 1232–1235. [Google Scholar] [CrossRef] [Green Version]
- McLaren, J.D.; Buler, J.J.; Schreckengost, T.; Smolinsky, J.A.; Boone, M.; van Loon, E.; Dawson, D.K.; Walters, E.L. Artificial light at night confounds broad-scale habitat use by migrating birds. Ecol. Lett. 2018, 21, 356–364. [Google Scholar] [CrossRef]
- Davies, T.W.; Duffy, J.P.; Bennie, J.; Gaston, K.J. The nature, extent, and ecological implications of marine light pollution. Front. Ecol. Environ. 2014, 12, 347–355. [Google Scholar] [CrossRef] [Green Version]
- Xiang, W.; Tan, M. Changes in light pollution and the causing factors in china’s protected areas, 1992–2012. Remote Sens. 2017, 9, 1026. [Google Scholar] [CrossRef] [Green Version]
- Fan, L.; Zhao, J.; Wang, Y.; Ren, Z.; Zhang, H.; Guo, X. Assessment of Night-Time Lighting for Global Terrestrial Protected and Wilderness Areas. Remote Sens. 2019, 11, 2699. [Google Scholar] [CrossRef] [Green Version]
- Gaston, K.J.; Duffy, J.P.; Bennie, J. Quantifying the erosion of natural darkness in the global protected area system. Conserv. Biol. 2015, 29, 1132–1141. [Google Scholar] [CrossRef]
- Horváth, G.; Kriska, G.; Malik, P.; Robertson, B. Polarized light pollution: A new kind of ecological photopollution. Front. Ecol. Environ. 2009, 7, 317–325. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, J.Q.; de Jong, M.; van Grunsven, R.H.; Matson, K.D.; Haussmann, M.F.; Meerlo, P.; Visser, M.E.; Spoelstra, K. Restless roosts: Light pollution affects behavior, sleep, and physiology in a free-living songbird. Glob. Chang. Biol. 2017, 23, 4987–4994. [Google Scholar] [CrossRef]
- Davies, T.W.; Duffy, J.P.; Bennie, J.; Gaston, K.J. Stemming the tide of light pollution encroaching into marine protected areas. Conserv. Lett. 2016, 9, 164–171. [Google Scholar] [CrossRef] [Green Version]
- Falchi, F.; Cinzano, P.; Elvidge, C.D.; Keith, D.M.; Haim, A. Limiting the impact of light pollution on human health, environment and stellar visibility. J. Environ. Manag. 2011, 92, 2714–2722. [Google Scholar] [CrossRef]
- Elsen, P.R.; Monahan, W.B.; Merenlender, A.M. Reply to You et al.: The World Database on Protected Areas is an invaluable resource for global conservation assessments and planning. Proc. Natl. Acad. Sci. USA 2018, 115, E9029–E9030. [Google Scholar] [CrossRef] [Green Version]
- Failler, P.; Touron-Gardic, G.; Traore, M.-S. Is Aichi Target 11 progress correctly measured for developing countries? Trends Ecol. Evol. 2019, 34, 875–879. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.S.; Andelman, S.J.; Bakarr, M.I.; Boitani, L.; Brooks, T.M.; Cowling, R.M.; Fishpool, L.D.; Da Fonseca, G.A.; Gaston, K.J.; Hoffmann, M. Effectiveness of the global protected area network in representing species diversity. Nature 2004, 428, 640–643. [Google Scholar] [CrossRef] [PubMed]
- Bingham, H.C.; Bignoli, D.J.; Lewis, E.; MacSharry, B.; Burgess, N.D.; Visconti, P.; Deguignet, M.; Misrachi, M.; Walpole, M.; Stewart, J.L. Sixty years of tracking conservation progress using the world database on protected areas. Nat. Ecol. Evol. 2019, 3, 737–743. [Google Scholar] [CrossRef] [PubMed]
- Lewis, E.; MacSharry, B.; Juffe-Bignoli, D.; Harris, N.; Burrows, G.; Kingston, N.; Burgess, N.D. Dynamics in the global protected-area estate since 2004. Conserv. Biol. 2019, 33, 570–579. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y. A stepwise calibration of global DMSP/OLS stable nighttime light data (1992–2013). Remote Sens. 2017, 9, 637. [Google Scholar]
- Zhao, M.; Zhou, Y.; Li, X.; Zhou, C.; Cheng, W.; Li, M.; Huang, K. Building a Series of Consistent Night-Time Light Data (1992–2018) in Southeast Asia by Integrating DMSP-OLS and NPP-VIIRS. IEEE Trans. Geosci. Remote Sens. 2019, 58, 1843–1856. [Google Scholar] [CrossRef]
- Román, M.O.; Wang, Z.; Sun, Q.; Kalb, V.; Miller, S.D.; Molthan, A.; Schultz, L.; Bell, J.; Stokes, E.C.; Pandey, B. NASA’s Black Marble nighttime lights product suite. Remote Sens. Environ. 2018, 210, 113–143. [Google Scholar] [CrossRef]
- Fernandes, R.; Leblanc, S.G. Parametric (modified least squares) and non-parametric (Theil–Sen) linear regressions for predicting biophysical parameters in the presence of measurement errors. Remote Sens. Environ. 2005, 95, 303–316. [Google Scholar] [CrossRef]
- Hamed, K.H.; Rao, A.R. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Sayemuzzaman, M.; Jha, M.K. Seasonal and annual precipitation time series trend analysis in North Carolina, United States. Atmos. Res. 2014, 137, 183–194. [Google Scholar] [CrossRef]
- Jiang, W.; Yuan, L.; Wang, W.; Cao, R.; Zhang, Y.; Shen, W. Spatio-temporal analysis of vegetation variation in the Yellow River Basin. Ecol. Indic. 2015, 51, 117–126. [Google Scholar] [CrossRef]
- Li, X.; Gong, P.; Zhou, Y.; Wang, J.; Bai, Y.; Chen, B.; Hu, T.; Xiao, Y.; Xu, B.; Yang, J. Mapping global urban boundaries from the global artificial impervious area (GAIA) data. Environ. Res. Lett. 2020, 15, 094044. [Google Scholar] [CrossRef]
- Nolte, C.; Agrawal, A.; Barreto, P. Setting priorities to avoid deforestation in Amazon protected areas: Are we choosing the right indicators? Environ. Res. Lett. 2013, 8, 015039. [Google Scholar] [CrossRef]
- Liu, X.; Huang, Y.; Xu, X.; Li, X.; Li, X.; Ciais, P.; Lin, P.; Gong, K.; Ziegler, A.D.; Chen, A. High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015. Nat. Sustain. 2020, 4, 1–7. [Google Scholar] [CrossRef]
- Isobe, S. Japanese Government Official Guideline for Reduction of Light Pollution; Symposium-International Astronomical Union, Cambridge University Press: Cambridge, UK, 2001; pp. 117–119. [Google Scholar]
- Du, M.; Wang, L.; Zou, S.; Shi, C. Modeling the census tract level housing vacancy rate with the Jilin1-03 satellite and other geospatial data. Remote Sens. 2018, 10, 1920. [Google Scholar] [CrossRef] [Green Version]
- Falchi, F.; Furgoni, R.; Gallaway, T.A.; Rybnikova, N.A.; Portnov, B.A.; Baugh, K.; Cinzano, P.; Elvidge, C.D. Light pollution in USA and Europe: The good, the bad and the ugly. J. Environ. Manag. 2019, 248, 109227. [Google Scholar] [CrossRef]
- Kyba, C.C. Is light pollution getting better or worse? Nat. Astron. 2018, 2, 267–269. [Google Scholar] [CrossRef]
- Zielinska-Dabkowska, K.M.; Xavia, K.; Bobkowska, K. Assessment of Citizens’ Actions against Light Pollution with Guidelines for Future Initiatives. Sustainability 2020, 12, 4997. [Google Scholar] [CrossRef]
- Lyytimäki, J. Nature’s nocturnal services: Light pollution as a non-recognised challenge for ecosystem services research and management. Ecosyst. Serv. 2013, 3, e44–e48. [Google Scholar] [CrossRef]
- Salmon, M.; Tolbert, M.G.; Painter, D.P.; Goff, M.; Reiners, R. Behavior of loggerhead sea turtles on an urban beach. II. Hatchling orientation. J. Herpetol. 1995, 29, 568–576. [Google Scholar] [CrossRef]
- Lao, S.; Robertson, B.A.; Anderson, A.W.; Blair, R.B.; Eckles, J.W.; Turner, R.J.; Loss, S.R. The influence of artificial light at night and polarized light on bird-building collisions. Biol. Conserv. 2020, 241, 108358. [Google Scholar] [CrossRef]
- Venter, O.; Sanderson, E.W.; Magrach, A.; Allan, J.R.; Beher, J.; Jones, K.R.; Possingham, H.P.; Laurance, W.F.; Wood, P.; Fekete, B.M. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 2016, 7, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, D.R.; Clark, M.; Buchanan, G.M.; Ficetola, G.F.; Rondinini, C.; Tilman, D. Proactive conservation to prevent habitat losses to agricultural expansion. Nat. Sustain. 2020, 4, 314–322. [Google Scholar] [CrossRef]
- Shrestha, N.; Xu, X.; Meng, J.; Wang, Z. Vulnerabilities of protected lands in the face of climate and human footprint changes. Nat. Commun. 2021, 12, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Bará, S.; Rigueiro, I.; Lima, R.C. Monitoring transition: Expected night sky brightness trends in different photometric bands. J. Quant. Spectrosc. Radiat. Transf. 2019, 239, 106644. [Google Scholar] [CrossRef] [Green Version]
- de Miguel, A.S.; Kyba, C.C.; Aubé, M.; Zamorano, J.; Cardiel, N.; Tapia, C.; Bennie, J.; Gaston, K.J. Colour remote sensing of the impact of artificial light at night (I): The potential of the International Space Station and other DSLR-based platforms. Remote Sens. Environ. 2019, 224, 92–103. [Google Scholar] [CrossRef]
- Aubé, M.; Roby, J.; Kocifaj, M. Evaluating potential spectral impacts of various artificial lights on melatonin suppression, photosynthesis, and star visibility. PLoS ONE 2013, 8, e67798. [Google Scholar] [CrossRef] [Green Version]
- Gong, P.; Li, X.; Wang, J.; Bai, Y.; Chen, B.; Hu, T.; Liu, X.; Xu, B.; Yang, J.; Zhang, W. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sens. Environ. 2020, 236, 111510. [Google Scholar] [CrossRef]
- Gong, P.; Li, X.; Zhang, W. 40-Year (1978–2017) human settlement changes in China reflected by impervious surfaces from satellite remote sensing. Sci. Bull. 2019, 64, 756–763. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Gong, P.; Liang, L. A 30-year (1984–2013) record of annual urban dynamics of Beijing City derived from Landsat data. Remote Sens. Environ. 2015, 166, 78–90. [Google Scholar] [CrossRef]
- Kocifaj, M.; Kundracik, F.; Barentine, J.C.; Bará, S. Opacity Project data on CD for mean opacities and radiative accelerations. Mon. Not. R. Astron. Soc. 2021, 504, L40–L44. [Google Scholar] [CrossRef]
Continuously Polluted PAs | Discontinuously Polluted PAs | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SI (%) | II (%) | NC (%) | ID (%) | SD (%) | Sum | SI (%) | II (%) | NC (%) | ID (%) | SD (%) | Sum | |
Japan | 1.11 | 14.01 | 0.42 | 48.54 | 35.92 | 721 | 1.02 | 8.20 | 1.17 | 40.12 | 49.49 | 683 |
United Stated | 11.95 | 23.12 | 0.36 | 36.20 | 28.38 | 1674 | 6.36 | 18.25 | 0.35 | 38.83 | 36.22 | 4028 |
Africa | 53.85 | 26.92 | 0.00 | 11.54 | 7.69 | 78 | 45.95 | 27.44 | 0.00 | 17.46 | 9.15 | 481 |
Asia | 20.95 | 18.91 | 0.49 | 34.39 | 25.26 | 1227 | 28.07 | 22.47 | 0.67 | 26.23 | 22.56 | 2394 |
Europe | 23.73 | 29.13 | 0.39 | 38.16 | 8.59 | 4096 | 22.36 | 25.43 | 1.00 | 35.73 | 15.47 | 4601 |
North American | 13.27 | 21.58 | 0.39 | 34.56 | 30.19 | 2034 | 9.12 | 17.60 | 0.33 | 34.19 | 38.75 | 5811 |
Oceania | 23.73 | 29.66 | 0.85 | 28.81 | 16.95 | 118 | 18.33 | 26.09 | 0.90 | 36.10 | 18.58 | 1997 |
South American | 53.30 | 24.53 | 0.47 | 14.39 | 7.31 | 424 | 54.56 | 23.77 | 0.30 | 15.85 | 5.52 | 997 |
Global | 22.43 | 25.35 | 0.42 | 34.91 | 16.89 | 8141 | 41.55 | 18.40 | 0.23 | 21.93 | 17.90 | 16,509 |
The First Polluted Buffer (km) | The High-Intensity Buffer (km) | |||||||
---|---|---|---|---|---|---|---|---|
Type | Buffer ≤ 10 | 10 < Buffer < 25 | Buffer ≥ 25 | Sum | Buffer ≤ 10 | 10 < Buffer < 25 | Buffer ≥ 25 | Sum |
Ia | 521 (44%) | 427 (36%) | 229 (20%) | 1177 | 226 (17%) | 342 (27%) | 719 (56%) | 1287 |
Ib | 817 (57%) | 434 (31%) | 174 (12%) | 1425 | 273 (17%) | 418 (27%) | 889 (56%) | 1580 |
II | 1329 (57%) | 707 (31%) | 270 (12%) | 2306 | 903 (32%) | 759 (26%) | 1196 (42%) | 2858 |
III | 502 (44%) | 397 (34%) | 248 (22%) | 1147 | 297 (22%) | 347 (26%) | 696 (52%) | 1340 |
IV | 3801 (74%) | 1113 (21%) | 239 (5%) | 5153 | 2912 (38%) | 1796 (23%) | 3013 (39%) | 7721 |
V | 3195 (80%) | 656 (16%) | 173 (4%) | 4024 | 4231 (65%) | 1616 (25%) | 668 (10%) | 6515 |
VI | 696 (55%) | 461 (36%) | 120 (9%) | 1277 | 515 (15%) | 462 (14%) | 2372 (71%) | 3349 |
Sum | 10,861 (66%) | 4195 (25%) | 1453 (9%) | 16,509 | 9357 (38%) | 5740 (23%) | 9553 (39%) | 24,650 |
The Polluted Protected Areas | Impervious Surface Area | |||||
---|---|---|---|---|---|---|
Increasing | Decreasing | Total | 1992 (km2) | 2018 (km2) | Increasing Rate | |
Japan | 172 (12%) | 1221 | 1404 | 19,972 | 29,402 | 147.21% |
United Sated | 1578 (28%) | 4104 | 5702 | 162,000 | 272,000 | 167.90% |
Africa | 416 (74%) | 143 | 559 | 27,913 | 55,665 | 199.42% |
Asia | 1699 (47%) | 1900 | 3621 | 169,000 | 474,000 | 280.47% |
Europe | 4364 (50%) | 4271 | 8697 | 127,000 | 260,000 | 204.72% |
North American | 2262 (29%) | 5556 | 7845 | 185,000 | 320,000 | 172.97% |
Oceania | 950 (45%) | 1146 | 2115 | 7927 | 15,637 | 197.27% |
South American | 1111 (78%) | 305 | 1421 | 20,622 | 51,091 | 247.75% |
Global | 13,786 (56%) | 10,792 | 24,650 | 537,461 | 1,176,393 | 218.88% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mu, H.; Li, X.; Du, X.; Huang, J.; Su, W.; Hu, T.; Wen, Y.; Yin, P.; Han, Y.; Xue, F. Evaluation of Light Pollution in Global Protected Areas from 1992 to 2018. Remote Sens. 2021, 13, 1849. https://doi.org/10.3390/rs13091849
Mu H, Li X, Du X, Huang J, Su W, Hu T, Wen Y, Yin P, Han Y, Xue F. Evaluation of Light Pollution in Global Protected Areas from 1992 to 2018. Remote Sensing. 2021; 13(9):1849. https://doi.org/10.3390/rs13091849
Chicago/Turabian StyleMu, Haowei, Xuecao Li, Xiaoping Du, Jianxi Huang, Wei Su, Tengyun Hu, Yanan Wen, Peiyi Yin, Yuan Han, and Fei Xue. 2021. "Evaluation of Light Pollution in Global Protected Areas from 1992 to 2018" Remote Sensing 13, no. 9: 1849. https://doi.org/10.3390/rs13091849
APA StyleMu, H., Li, X., Du, X., Huang, J., Su, W., Hu, T., Wen, Y., Yin, P., Han, Y., & Xue, F. (2021). Evaluation of Light Pollution in Global Protected Areas from 1992 to 2018. Remote Sensing, 13(9), 1849. https://doi.org/10.3390/rs13091849