An Improved Quadtree Sampling Method for InSAR Seismic Deformation Inversion
<p>The flowchart of the SQS algorithm.</p> "> Figure 2
<p>Multi-scale filter saliency extraction. The gray area is the original map. The pink expansion area fills in the null value. When extracting the average saliency of an image, <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="bold-italic">W</mi> <mn mathvariant="bold">2</mn> </msub> </mrow> </semantics></math> is fixed and <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="bold-italic">W</mi> <mn mathvariant="bold">1</mn> </msub> </mrow> </semantics></math> is a sequence. The result is the average of the saliency results with different <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="bold-italic">W</mi> <mn mathvariant="bold">1</mn> </msub> </mrow> </semantics></math>.</p> "> Figure 3
<p>Saliency graphs of co-seismic deformation of the 2019 Mw7.1 Ridgecrest earthquake obtained by different filter window sizes and their average. The co-seismic deformation was obtained from the ascending orbit of Sentinel-1.</p> "> Figure 4
<p>SQS and QS results of simulation experiment 1. (<b>a</b>,<b>e</b>) Raw LOS deformation based on the parameters of SE 1 in <a href="#remotesensing-13-01678-t001" class="html-table">Table 1</a>. (<b>b</b>,<b>f</b>) Deformation fields with regular noise (±7.3 cm). (<b>c</b>,<b>g</b>) SQS results and (<b>d</b>,<b>h</b>) QS results of the ascending and descending deformation. The warm color denotes the deformation toward the satellite, and the cool color denotes that away from the satellite. The sampling parameters are shown in <a href="#remotesensing-13-01678-t002" class="html-table">Table 2</a>.</p> "> Figure 5
<p>The linear inversion results obtained using the SQS and QS sampling points. (<b>a</b>) Input slips. (<b>b</b>,<b>c</b>) Inverted slip based on SQS and QS. (<b>d</b>,<b>e</b>) Residuals between the inverted and input slips. The geometry of fault is based on the parameters of SE 2 in <a href="#remotesensing-13-01678-t001" class="html-table">Table 1</a>.</p> "> Figure 6
<p>SQS and QS results of simulation experiment 2. The raw LOS deformation is based on the parameters of SE 2 in <a href="#remotesensing-13-01678-t001" class="html-table">Table 1</a> and <a href="#remotesensing-13-01678-f005" class="html-fig">Figure 5</a>. The noise is based on the atmospheric noise from the real data, with a maximum of 15.2 cm. The sampling parameters are shown in <a href="#remotesensing-13-01678-t002" class="html-table">Table 2</a>.</p> "> Figure 7
<p>Resolution of the inversion results based on the point sampled by SQS and QS. (<b>a</b>) Input slips. (<b>b</b>,<b>c</b>) Inverted slips based on SQS and QS. (<b>d</b>,<b>e</b>) Residuals between the inverted models and input slips. The fault geometry is based on the parameters shown in SE 3 of <a href="#remotesensing-13-01678-t001" class="html-table">Table 1</a>.</p> "> Figure 8
<p>Geological background and data coverage of the study area. Big stars are the epicenter of the Dingri earthquake provided by CENC and USGS. The small blue star is the epicenter of the M4.0 aftershock provided by USGS. Circles are the historical earthquakes, and the color indicates the depth. Red lines are faults [<a href="#B26-remotesensing-13-01678" class="html-bibr">26</a>]. White dotted lines are the coverages of SAR data.</p> "> Figure 9
<p>SQS and QS results of the deformation fields of the Dingri event. (<b>a</b>,<b>c</b>) Ascending and descending results based on SQS. (<b>b</b>,<b>d</b>) Ascending and descending results based on QS.</p> "> Figure 10
<p>Slip distribution models based on SQS (<b>a</b>) and QS (<b>b</b>) points and the difference (<b>c</b>); wrapped deformation of Dingri event (<b>d</b>,<b>g</b>); forward results based on figures a (<b>e</b>,<b>h</b>) and b (<b>f</b>,<b>i</b>) respectively.</p> "> Figure 11
<p>Inversion resolution of the Dingri event based on the points sampled by SQS and QS. (<b>a</b>) Input slips. (<b>b</b>,<b>c</b>) Inverted slip based on SQS and QS results. (<b>d</b>,<b>e</b>) Residuals between the inverted models and input slips.</p> "> Figure 12
<p>Difference of SQS results with different parameters. (<b>a</b>) Raw deformation. (<b>b</b>) Difference in results when only <math display="inline"><semantics> <mrow> <msub> <mi>W</mi> <mn>1</mn> </msub> </mrow> </semantics></math> was changed. (<b>c</b>) Difference in results when only <math display="inline"><semantics> <mrow> <msub> <mi>W</mi> <mn>2</mn> </msub> </mrow> </semantics></math> was changed. (<b>d</b>) Difference in results when only the binarization threshold was changed. The parameters used in the figures are consistent with SE 1 Ascending in <a href="#remotesensing-13-01678-t002" class="html-table">Table 2</a>, except for the parameters indicating the changes.</p> ">
Abstract
:1. Introduction
2. The Saliency-Based Quadtree Sampling Algorithm
- (1)
- Set size for and for (search window). is a sequence and (1 ≤ ≤ , is the length of sequence). For example, ,;
- (2)
- Expand the normalized deformation graph by and fill it with null values;
- (3)
- Calculate the average and of the non-null points of and ;
- (4)
- Calculate the saliency ;
- (5)
- The saliency of all points in window is assigned as ;
- (6)
- Move and until the entire deformation graph is traversed to obtain ;
- (7)
- Repeat steps 2–6 with different values;
- (8)
- Calculate the average of multiple saliency graphs .
3. Simulation Experiments
3.1. Simulation Experiment 1: Comparison the Sampling Results between SQS and QS
3.2. Simulation Experiment 2: Linear Inversion Results Based on SQS and QS
3.3. Simulation Experiment 3: The Resolution of the Inversion Results Based on SQS and QS
4. Case Study
4.1. Background
4.2. Sampling Results of Co-Seismic Deformations of the Dingri Event
4.3. Source Parameters of the Dingri Event
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Massonnet, D.; Rossi, M.; Carmona, C.; Adragna, F.; Peltzer, G.; Feigl, K.; Rabaute, T. The displacement field of the Landers earthquake mapped by radar interferometry. Nature 1993, 364, 138–142. [Google Scholar] [CrossRef]
- Biggs, J.; Wright, T.J. How satellite InSAR has grown from opportunistic science to routine monitoring over the last decade. Nat. Commun. 2020, 11, 1–4. [Google Scholar] [CrossRef]
- Simons, M. Coseismic Deformation from the 1999 Mw 7.1 Hector Mine, California, Earthquake as Inferred from InSAR and GPS Observations. Bull. Seism. Soc. Am. 2002, 92, 1390–1402. [Google Scholar] [CrossRef]
- He, P.; Wen, Y.; Ding, K.; Xu, C. Normal Faulting in the 2020 Mw 6.2 Yutian Event: Implications for Ongoing E–W Thinning in Northern Tibet. Remote Sens. 2020, 12, 3012. [Google Scholar] [CrossRef]
- Ross, Z.E.; Idini, B.; Jia, Z.; Stephenson, O.L.; Zhong, M.; Wang, X.; Zhan, Z.; Simons, M.; Fielding, E.J.; Yun, S.-H.; et al. Hierarchical interlocked orthogonal faulting in the 2019 Ridgecrest earthquake sequence. Science 2019, 366, 346–351. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, M.E.; Simons, M.; Rosen, P.A.; Hensley, S.; Webb, F.H. Co-seismic slip from the 1995 July 30Mw = 8.1 Antofagasta, Chile, earthquake as constrained by InSAR and GPS observations. Geophys. J. Int. 2002, 150, 362–376. [Google Scholar] [CrossRef] [Green Version]
- Jonsson, S. Fault Slip Distribution of the 1999 Mw 7.1 Hector Mine, California, Earthquake, Estimated from Satellite Radar and GPS Measurements. Bull. Seism. Soc. Am. 2002, 92, 1377–1389. [Google Scholar] [CrossRef]
- Lohman, R.B.; Simons, M. Some thoughts on the use of InSAR data to constrain models of surface deformation: Noise structure and data downsampling. Geochem. Geophys. Geosyst. 2005, 6. [Google Scholar] [CrossRef]
- Wang, C.; Ding, X.; Li, Q.; Jiang, M. Equation-Based InSAR Data Quadtree Downsampling for Earthquake Slip Distribution Inversion. IEEE Geosci. Remote. Sens. Lett. 2014, 11, 2060–2064. [Google Scholar] [CrossRef]
- Wang, L.; Gao, H.; Feng, G.; Xu, W. Source parameters and triggering links of the earthquake sequence in central Italy from 2009 to 2016 analyzed with GPS and InSAR data. Tectonophysics 2018, 744, 285–295. [Google Scholar] [CrossRef]
- Gao, H. Research on InSAR Seismic Source Parameter Inversion and the Triggering Relationship between Earthquake. Master’s Thesis, East China University of Technology, Nanchang, China, 2018. (In Chinese with English Abstract). [Google Scholar]
- Itti, L.; Koch, C.; Niebur, E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 1254–1259. [Google Scholar] [CrossRef] [Green Version]
- Zhai, Y.; Shah, M. Visual attention detection in video sequences using spatiotemporal cues. In Proceedings of the 14th Annual ACM International Conference on Multimedia—MULTIMEDIA’06, Barbara, CA, USA, 21–25 October 2006; pp. 815–824. [Google Scholar] [CrossRef]
- Goferman, S.; Zelnik-Manor, L.; Tal, A. Context-Aware Saliency Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 34, 1915–1926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Achanta, R.; Estrada, F.; Wils, P.; Süsstrunk, S. Salient Region Detection and Segmentation. In Proceedings of the Lecture Notes in Computer Science, Sydney, NSW, Australia, 14–18 September 2008; pp. 66–75. [Google Scholar]
- Boomgaard, R.V.D.; Van Balen, R. Methods for fast morphological image transforms using bitmapped binary images. CVGIP Graph. Model. Image Process. 1992, 54, 252–258. [Google Scholar] [CrossRef]
- Haralick, R.M.; Linda, G.S. Computer and Robot Vision; Addison-Wesley: Boston, MA, USA, 1992; Volume I, pp. 28–48. [Google Scholar]
- Gonzalez, R.C.; Woods, R.E.; Eddins, S.L. Digital Image Processing Using MATLAB; Pearson Education India: Chennai, India, 2004. [Google Scholar]
- Okada, Y. Surface deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 1985, 75, 1135–1154. [Google Scholar]
- Wang, L.Y.; Gao, H.; Feng, G.C. Triggering relations and stress effects analysis of two Mw> 6 earthquakes in southwest Taiwan based on InSAR and GPS data. Acta Geod. Cartogr. Sin. 2019, 48, 1244. [Google Scholar] [CrossRef]
- Yin, A.; Harrison, T.M. Geologic Evolution of the Himalayan-Tibetan Orogen. Annu. Rev. Earth Planet. Sci. 2000, 28, 211–280. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Qing, S.Q.; Chen, K. On the seismogenic process of the 25 April 2015 Mw7.8 earthquake and future earthquake situation. China J. Geophys. 2015, 58, 1827–1833, (In Chinese with English Abstract). [Google Scholar]
- Wang, Y.Z.; Chen, S.; Chen, K. Source Model and Tectonic Implications of the 2020 Dingri Mw5.7 Earthquake Constrained by InSAR Data. Earthquake 2021, 41, 116–128, (In Chinese with English Abstract). [Google Scholar]
- Feng, G.; Li, Z.; Shan, X.; Zhang, L.; Zhang, G.; Zhu, J. Geodetic model of the 2015 April 25 Mw 7.8 Gorkha Nepal Earthquake and Mw 7.3 aftershock estimated from InSAR and GPS data. Geophys. J. Int. 2015, 203, 896–900. [Google Scholar] [CrossRef] [Green Version]
- Egoda, K.; Ekiyota, T.; Epokhrel, R.M.; Echiaro, G.; Ekatagiri, T.; Esharma, K.; Ewilkinson, S. The 2015 Gorkha Nepal Earthquake: Insights from Earthquake Damage Survey. Front. Built Environ. 2015, 1, 8. [Google Scholar] [CrossRef]
- Deng, Q.D.; Zhang, P.Z.; Ran, Y.K.; Yang, X.P.; Min, W.; Chu, Q.Z. Basic characteristics of active tectonics in China. Sci. China Ser. D Earth Sci. 2002, 32, 1020–1030, (In Chinese with English Abstract). [Google Scholar]
- He, L.; Feng, G.; Li, Z.; Feng, Z.; Gao, H.; Wu, X. Source parameters and slip distribution of the 2018 M 7.5 Palu, Indonesia earthquake estimated from space-based geodesy. Tectonophysics 2019, 772, 228216. [Google Scholar] [CrossRef]
- Sudhaus, H.; Jónsson, S. Improved source modelling through combined use of InSAR and GPS under consideration of correlated data errors: Application to the June 2000 Kleifarvatn earthquake, Iceland. Geophys. J. Int. 2009, 176, 389–404. [Google Scholar] [CrossRef] [Green Version]
- Ding, K.; He, P.; Wen, Y.; Chen, Y.; Wang, D.; Li, S.; Wang, Q. The 2017 Mw 7.3 Ezgeleh, Iran earthquake determined from InSAR measurements and teleseismic waveforms. Geophys. J. Int. 2018, 215, 1728–1738. [Google Scholar] [CrossRef]
Length (km) | Width (km) | Depth 1 (km) | Strike (°) | Dip (°) | Rake (°) | Strike Slip (m) | Dip Slip (m) | Mw | |
---|---|---|---|---|---|---|---|---|---|
SE 1 | 12.23 | 7.28 | 0 | 30 | 50 | 0 | 0.42 | 0 | 6.00 |
SE 2 2 | / | / | 0 | 30 | 50 | −90 | 0 | Figure 5a | 5.79 |
SE 3 2 | / | / | 0 | 30 | 50 | −90 | 0 | Figure 7a | 6.26 |
Event | Method | Window Segmentation | Saliency | |||||
---|---|---|---|---|---|---|---|---|
Min window | Max window | Segmentation threshold | Binarization threshold | W1 | W2 | Expansion times | ||
SE 1 Ascending | SQS | 2 | 64 | 0.03 | 0.08 | [4 6 8 12 16 24] | 140 | 1 |
QS | 2 | 64 | 0.5 cm | / | ||||
SE 1 Descending | SQS | 2 | 64 | 0.03 | 0.1 | [4 6 8 12 16 24] | 140 | 1 |
QS | 2 | 64 | 0.5 cm | / | ||||
SE 2 Ascending | SQS | 2 | 64 | 0.03 | 0.02 | [4 6 8 12 16] | 50 | 1 |
QS | 2 | 64 | 1.7 cm | / | ||||
SE 2 Descending | SQS | 2 | 64 | 0.03 | 0.02 | [4 6 8 12 16] | 50 | 1 |
QS | 2 | 64 | 2.7 cm | / | ||||
Dingri event Ascending | SQS | 8 | 128 | 0.03 | 0.03 | [8 12 16 24 32 48 64] | 200 | 1 |
QS | 8 | 128 | 0.3 cm | / | ||||
Dingri event Descending | SQS | 8 | 128 | 0.03 | 0.03 | [8 12 16 24 32 48 64] | 200 | 1 |
QS | 8 | 128 | 0.3 cm | / |
Method | Length (km) | Width (km) | Depth 1 (km) | Strike (°) | Dip (°) | Rake (°) | Strike Slip (m) | Dip Slip (m) | Mw |
---|---|---|---|---|---|---|---|---|---|
QS | 3.7 | 2.7 | 2.4 | 330 | 55 | −113 | 0.41 | 0.97 | 5.63 |
SQS | 3.9 | 2.9 | 2.2 | 330 | 52 | −96 | 0.09 | 0.81 | 5.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, H.; Liao, M.; Feng, G. An Improved Quadtree Sampling Method for InSAR Seismic Deformation Inversion. Remote Sens. 2021, 13, 1678. https://doi.org/10.3390/rs13091678
Gao H, Liao M, Feng G. An Improved Quadtree Sampling Method for InSAR Seismic Deformation Inversion. Remote Sensing. 2021; 13(9):1678. https://doi.org/10.3390/rs13091678
Chicago/Turabian StyleGao, Hua, Mingsheng Liao, and Guangcai Feng. 2021. "An Improved Quadtree Sampling Method for InSAR Seismic Deformation Inversion" Remote Sensing 13, no. 9: 1678. https://doi.org/10.3390/rs13091678