Sparse SAR Imaging and Quantitative Evaluation Based on Nonconvex and TV Regularization
"> Figure 1
<p>Schematic diagram of sparse SAR imaging model.</p> "> Figure 2
<p>Flow chart of the proposed algorithm combining variable splitting and modified ADMM.</p> "> Figure 3
<p>Various factors affecting SAR imaging results.</p> "> Figure 4
<p>Optical remote sensing image of experimental areas (provided by Google Earth). (<b>a</b>) Scene 1 corresponding to data 1. (<b>b</b>) Scene 2 corresponding to data 2. The size of scene 1 is 8673 m (vertical direction) × 8867 m (horizontal direction). The size of scene 2 is 19,228 m (vertical direction) × 4935 m (horizontal direction).</p> "> Figure 5
<p>Experimental results for data 1 under full sampling condition. (<b>a</b>) Chirp scaling. (<b>b</b>) CSA + multilook processing using a 5 by 5 window. (<b>c</b>) <math display="inline"><semantics> <msub> <mi>L</mi> <mn>1</mn> </msub> </semantics></math> regularization. (<b>d</b>) <math display="inline"><semantics> <msub> <mi>L</mi> <mn>1</mn> </msub> </semantics></math> and TV regularization. (<b>e</b>) Nonconvex and TV regularization. The vertical direction of the image is the azimuth direction, and the horizontal direction is the range direction. SAR data 1 occupies 1404 (azimuth) × 3941 (range) sampling points, and the size of the corresponding scene is 8673 m (azimuth) × 8867 m (range). All the images are plotted with the same color map.</p> "> Figure 6
<p>Experimental results for data 2 under full sampling condition. (<b>a</b>) Chirp scaling. (<b>b</b>) CSA + multilook processing using a 9 by 9 window. (<b>c</b>) <math display="inline"><semantics> <msub> <mi>L</mi> <mn>1</mn> </msub> </semantics></math> regularization. (<b>d</b>) <math display="inline"><semantics> <msub> <mi>L</mi> <mn>1</mn> </msub> </semantics></math> and TV regularization. (<b>e</b>) Nonconvex and TV regularization. The vertical direction of the image is the azimuth direction, and the horizontal direction is the range direction. SAR data 2 occupies 3115 (azimuth) × 4387 (range) sampling points, and the size of the corresponding scene is 19,228 m (azimuth) × 4935 m (range). All the images are plotted with the same color map.</p> "> Figure 7
<p>The slice along the azimuth direction of data 2. (<b>a</b>) The edge of the rainforest. (<b>b</b>) The simulated point target.</p> "> Figure 8
<p>Experimental results for data 1 under downsampling condition. (<b>a</b>) Chirp scaling. (<b>b</b>) CSA + Multilook processing using a 5 by 5 window. (<b>c</b>) <math display="inline"><semantics> <msub> <mi>L</mi> <mn>1</mn> </msub> </semantics></math> regularization. (<b>d</b>) <math display="inline"><semantics> <msub> <mi>L</mi> <mn>1</mn> </msub> </semantics></math> and TV regularization. (<b>e</b>) Nonconvex and TV regularization. The vertical direction of the image is the azimuth direction, and the horizontal direction is the range direction. SAR data 1 occupies 1404 (azimuth) × 3941 (range) sampling points, and the size of the corresponding scene is 8673 m (azimuth) × 8867 m (range). All the images are plotted with the same color map.</p> "> Figure 9
<p>Simulation results under different downsampling conditions. (<b>a</b>–<b>c</b>,<b>g</b>–<b>i</b>): the reconstruction results of the chirp scaling algorithm. (<b>d</b>–<b>f</b>,<b>j</b>–<b>l</b>): the reconstruction results of the proposed method. The top two rows: from left to right the ratios of azimuth downsampling are 80%, 70% and 60%. The bottom two rows: from left to right the ratios of azimuth downsampling are 50%, 40% and 30%.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sparse SAR Imaging Formation
2.2. Nonconvex and TV Regularization
2.3. Variable Splitting and Modified ADMM
- is a continuous function that is possibly nonsmooth and nonconvex, and can be rewritten as the difference of two convex functions;
- can be written as ;
- the objective function is lower-bounded;
Algorithm 1 Variable splitting and modified ADMM for nonconvex and total variation regularization |
|
2.4. Sparse SAR Imaging Evaluation Index
- Physical Significance of Sparse SAR Imaging Results
- Radiometric Accuracy
- Radiometric Resolution
- Spatial Resolution
3. Results
3.1. GF-3 SAR Data Description
3.2. Data Processing and Image Quality Assessment
- Experiment 1
- Experiment 2
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Ender, J.H. On compressive sensing applied to radar. Signal Process. 2010, 90, 1402–1414. [Google Scholar] [CrossRef]
- Zhang, B.; Hong, W.; Wu, Y. Sparse microwave imaging: Principles and applications. Sci. China Inf. Sci. 2012, 55, 1722–1754. [Google Scholar] [CrossRef] [Green Version]
- Cetin, M.; Stojanovic, I.; Onhon, O.; Varshney, K.; Samadi, S.; Karl, W.C.; Willsky, A.S. Sparsity-driven synthetic aperture radar imaging: Reconstruction, autofocusing, moving targets, and compressed sensing. IEEE Signal Process. Mag. 2014, 31, 27–40. [Google Scholar] [CrossRef]
- Ao, D.; Wang, R.; Hu, C.; Li, Y. A Sparse SAR Imaging Method Based on Multiple Measurement Vectors Model. Remote Sens. 2017, 9, 297. [Google Scholar] [CrossRef] [Green Version]
- Bi, H.; Zhang, B.; Zhu, X.X.; Jiang, C.; Hong, W. Extended Chirp Scaling-Baseband Azimuth Scaling-Based Azimuth-Range Decouple L1 Regularization for TOPS SAR Imaging via CAMP. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3748–3763. [Google Scholar] [CrossRef]
- Baraniuk, R.; Steeghs, P. Compressive radar imaging. In Proceedings of the 2007 IEEE Radar Conference, Waltham, MA, USA, 17–20 April 2007; pp. 128–133. [Google Scholar]
- Alonso, M.T.; López-Dekker, P.; Mallorquí, J.J. A novel strategy for radar imaging based on compressive sensing. IEEE Trans. Geosci. Remote Sens. 2010, 48, 4285–4295. [Google Scholar] [CrossRef] [Green Version]
- Patel, V.M.; Easley, G.R.; Healy, D.M., Jr.; Chellappa, R. Compressed synthetic aperture radar. IEEE J. Sel. Top. Signal Process. 2010, 4, 244–254. [Google Scholar] [CrossRef]
- Osher, S.; Ruan, F.; Xiong, J.; Yao, Y.; Yin, W. Sparse recovery via differential inclusions. Appl. Comput. Harmon. Anal. 2016, 41, 436–469. [Google Scholar] [CrossRef] [Green Version]
- Candes, E.; Tao, T. The Dantzig selector: Statistical estimation when p is much larger than n. Ann. Stat. 2007, 35, 2313–2351. [Google Scholar]
- Güven, H.E.; Güngör, A.; Cetin, M. An augmented lagrangian method for complex-valued compressed sar imaging. IEEE Trans. Comput. Imaging 2016, 2, 235–250. [Google Scholar] [CrossRef]
- Selesnick, I. Sparse regularization via convex analysis. IEEE Trans. Signal Process. 2017, 65, 4481–4494. [Google Scholar] [CrossRef]
- Wei, Z.; Zhang, B.; Wu, Y. A SAR imaging method based on generalized minimax-concave penalty. Sci. China Inf. Sci. 2019, 62, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Gong, P.; Zhang, C.; Lu, Z.; Huang, J.; Ye, J. A general iterative shrinkage and thresholding algorithm for non-convex regularized optimization problems. In Proceedings of the International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; pp. 37–45. [Google Scholar]
- Uḡur, S.; Arıkan, O. SAR image reconstruction and autofocus by compressed sensing. Digit. Signal Process. 2012, 22, 923–932. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, J.G.; Zhang, B.; Hong, W.; Wu, Y.R. Adaptive total variation regularization based SAR image despeckling and despeckling evaluation index. IEEE Trans. Geosci. Remote Sens. 2014, 53, 2765–2774. [Google Scholar] [CrossRef] [Green Version]
- Kang, M.S.; Kim, K.T. Compressive sensing based SAR imaging and autofocus using improved Tikhonov regularization. IEEE Sens. J. 2019, 19, 5529–5540. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, M.; Zhou, G.; Wei, Z.; Zhang, B.; Wu, Y. An Accurate Sparse SAR Imaging Method for Enhancing Region-Based Features Via Nonconvex and TV Regularization. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 350–363. [Google Scholar] [CrossRef]
- Zhang, Y.; Miao, W.; Lin, Z.; Gao, H.; Shi, S. Millimeter-Wave InSAR Image Reconstruction Approach by Total Variation Regularized Matrix Completion. Remote Sens. 2018, 10, 1053. [Google Scholar] [CrossRef] [Green Version]
- Afonso, M.V.; Bioucas-Dias, J.M.; Figueiredo, M.A.T. Fast Image Recovery Using Variable Splitting and Constrained Optimization. IEEE Trans. Image Process. 2010, 19, 2345–2356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afonso, M.V.; Bioucas-Dias, J.M.; Figueiredo, M.A.T. An Augmented Lagrangian Approach to the Constrained Optimization Formulation of Imaging Inverse Problems. IEEE Trans. Image Process. 2011, 20, 681–695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Q.; Li, Z.; Zhang, P.; Tao, H.; Zeng, J. A preliminary evaluation of the GaoFen-3 SAR radiation characteristics in land surface and compared with Radarsat-2 and Sentinel-1A. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1040–1044. [Google Scholar] [CrossRef]
- Mittermayer, J.; Younis, M.; Metzig, R.; Wollstadt, S.; Martínez, J.M.; Meta, A. TerraSAR-X system performance characterization and verification. IEEE Trans. Geosci. Remote Sens. 2009, 48, 660–676. [Google Scholar] [CrossRef]
- Oliver, C.; Quegan, S. Understanding Synthetic Aperture Radar Images; SciTech Publishing: Raleigh, NC, USA, 2004. [Google Scholar]
- Cozzolino, D.; Verdoliva, L.; Scarpa, G.; Poggi, G. Nonlocal CNN SAR Image Despeckling. Remote Sens. 2020, 12, 1006. [Google Scholar] [CrossRef] [Green Version]
- Chambolle, A. An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 2004, 20, 89–97. [Google Scholar]
- Fang, J.; Xu, Z.; Zhang, B.; Hong, W.; Wu, Y. Fast compressed sensing SAR imaging based on approximated observation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 7, 352–363. [Google Scholar] [CrossRef] [Green Version]
- Potter, L.C.; Ertin, E.; Parker, J.T.; Cetin, M. Sparsity and compressed sensing in radar imaging. Proc. IEEE 2010, 98, 1006–1020. [Google Scholar] [CrossRef]
- Lee, J.S.; Jurkevich, L.; Dewaele, P.; Wambacq, P.; Oosterlinck, A. Speckle filtering of synthetic aperture radar images: A review. Remote Sens. Rev. 1994, 8, 313–340. [Google Scholar] [CrossRef]
- Raney, R.K.; Runge, H.; Bamler, R.; Cumming, I.G.; Wong, F.H. Precision SAR processing using chirp scaling. IEEE Trans. Geosci. Remote Sens. 1994, 32, 786–799. [Google Scholar] [CrossRef]
Method | A1 | A2 | A3 | A4 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CSA | 10.912 | / | 11.383 | / | 1.0432 | 11.664 | / | 1.0689 | 12.374 | / | 1.1340 |
CSA + ML | 10.906 | / | 11.375 | / | 1.0430 | 11.671 | / | 1.0701 | 12.367 | / | 1.1340 |
8.2309 | 0.2457 | 8.6820 | 0.2373 | 1.0548 | 8.9710 | 0.2309 | 1.0899 | 9.6036 | 0.2239 | 1.1668 | |
and TV | 7.1261 | 0.3469 | 7.5889 | 0.3333 | 1.0649 | 7.8861 | 0.3239 | 1.1067 | 8.5145 | 0.3119 | 1.1948 |
MC and TV | 10.557 | 0.0325 | 11.077 | 0.0269 | 1.0493 | 11.447 | 0.0186 | 1.0843 | 12.141 | 0.0188 | 1.1500 |
Method | ENL | (dB) | Target | ||
---|---|---|---|---|---|
CSA CSA + ML and TV MC and TV | 2.3668 2.3661 1.4625 1.4029 2.3665 | 1.7217 0.1104 1.5837 0.0255 0.0193 | 0.8889 13.8518 0.3690 21.080 79.340 | 3.1401 1.0335 4.2263 0.8558 0.4621 | F1 |
CSA CSA + ML and TV MC and TV | 2.2768 2.2763 1.3752 1.3124 2.2759 | 1.5575 0.0871 1.4180 0.0217 0.0170 | 0.9093 16.2510 0.3644 21.667 83.403 | 3.1148 0.9624 4.2434 0.8452 0.4513 | F2 |
CSA CSA + ML and TV MC and TV | 2.2863 2.2864 1.3844 1.3218 2.2853 | 1.5989 0.1027 1.4597 0.0244 0.0183 | 0.8932 13.9013 0.3587 19.548 78.162 | 3.1347 1.0319 4.2646 0.8855 0.4654 | F3 |
CSA CSA + ML and TV MC and TV | 2.2835 2.2834 1.3823 1.3192 2.2827 | 1.6114 0.1056 1.4701 0.0240 0.0183 | 0.8941 13.4943 0.3551 19.774 77.959 | 3.1461 1.0456 4.2782 0.8809 0.4660 | F4 |
Method | ENL | (dB) | Target | |||
---|---|---|---|---|---|---|
CSA CSA + ML & TV MC & TV | 9.8115 9.8021 6.9433 6.0151 9.1418 | / / 0.2923 0.3869 0.0683 | 27.237 1.8626 37.382 1.1548 1.4164 | 0.9657 14.094 0.3524 8.5602 16.120 | 3.0484 1.0256 4.2889 1.2768 0.9659 | A1 |
CSA CSA + ML & TV MC & TV | 10.073 10.068 7.3991 6.5702 9.7939 | / / 0.2655 0.3477 0.0277 | 29.682 2.5807 42.103 1.8127 1.7385 | 0.9339 10.730 0.3553 6.5064 15.075 | 3.0852 1.1570 4.2777 1.4365 0.9953 | A2 |
CSA CSA + ML & TV MC & TV | 10.340 10.334 7.8030 6.7917 9.9845 | / / 0.2454 0.3432 0.0344 | 29.943 2.1585 43.340 1.5232 1.3465 | 0.9755 13.516 0.3838 8.2740 20.227 | 3.0373 1.0449 4.1732 1.2958 0.8719 | A3 |
CSA CSA + ML & TV MC & TV | 10.726 10.725 8.1305 7.2285 10.557 | / / 0.2420 0.3261 0.0158 | 32.826 2.6600 48.634 1.8624 1.7436 | 0.9576 11.815 0.3714 7.6652 17.463 | 3.0576 1.1090 4.2176 1.3392 0.9318 | A4 |
MC & TV | Downsampling Ratio | |||||
---|---|---|---|---|---|---|
80% | 70% | 60% | 50% | 40% | 30% | |
0.0241 | 0.0276 | 0.0357 | 0.0704 | 0.1195 | 0.2402 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Zhang, B.; Zhou, G.; Zhong, L.; Wu, Y. Sparse SAR Imaging and Quantitative Evaluation Based on Nonconvex and TV Regularization. Remote Sens. 2021, 13, 1643. https://doi.org/10.3390/rs13091643
Xu Z, Zhang B, Zhou G, Zhong L, Wu Y. Sparse SAR Imaging and Quantitative Evaluation Based on Nonconvex and TV Regularization. Remote Sensing. 2021; 13(9):1643. https://doi.org/10.3390/rs13091643
Chicago/Turabian StyleXu, Zhongqiu, Bingchen Zhang, Guoru Zhou, Lihua Zhong, and Yirong Wu. 2021. "Sparse SAR Imaging and Quantitative Evaluation Based on Nonconvex and TV Regularization" Remote Sensing 13, no. 9: 1643. https://doi.org/10.3390/rs13091643
APA StyleXu, Z., Zhang, B., Zhou, G., Zhong, L., & Wu, Y. (2021). Sparse SAR Imaging and Quantitative Evaluation Based on Nonconvex and TV Regularization. Remote Sensing, 13(9), 1643. https://doi.org/10.3390/rs13091643