Sequential 90° Rotation of Dual-Polarized Antenna Elements in Linear Phased Arrays with Improved Cross-Polarization Level for Airborne Synthetic Aperture Radar Applications
"> Figure 1
<p>F-SAR Antenna carrier.</p> "> Figure 2
<p>Antenna multilayer structure.</p> "> Figure 3
<p>Antenna feeding layout and constructed prototype.</p> "> Figure 4
<p>Simulated and measured S-parameters.</p> "> Figure 5
<p>Simulated and measured radiation pattern of the single element @ <math display="inline"><semantics> <msub> <mi>f</mi> <mn>0</mn> </msub> </semantics></math> = 1.325 GHz.</p> "> Figure 6
<p>Picture of the antenna array in the DLR’s Compact Test Range.</p> "> Figure 7
<p>Manufactured normal array.</p> "> Figure 8
<p>Comparison simulation and measurement @ <math display="inline"><semantics> <msub> <mi>f</mi> <mn>0</mn> </msub> </semantics></math> = 1.325 GHz: co-polar patterns. Normal array. Uniform amplitude and phase distribution.</p> "> Figure 9
<p>Comparison simulation and measurement @ <math display="inline"><semantics> <msub> <mi>f</mi> <mn>0</mn> </msub> </semantics></math> = 1.325 GHz: co-polar & cross-polar patterns (<math display="inline"><semantics> <mrow> <mi>φ</mi> <mo>=</mo> <msup> <mn>90</mn> <mo>∘</mo> </msup> </mrow> </semantics></math>). Normal array. Uniform amplitude and phase distribution.</p> "> Figure 10
<p>Comparison simulation and measurement @ <math display="inline"><semantics> <msub> <mi>f</mi> <mn>0</mn> </msub> </semantics></math> = 1.325 GHz: normalized co-polar & cross-polar patterns (<math display="inline"><semantics> <mrow> <mi>φ</mi> <mo>=</mo> <msup> <mn>90</mn> <mo>∘</mo> </msup> </mrow> </semantics></math>). Normal array. Beamforming.</p> "> Figure 11
<p>Manufactured array performing a 180° rotation of antenna elements 2 and 4.</p> "> Figure 12
<p>Comparison normal array and array with 180° rotation @ <math display="inline"><semantics> <msub> <mi>f</mi> <mn>0</mn> </msub> </semantics></math> = 1.325 GHz: normalized co-polar and cross-polar patterns (<math display="inline"><semantics> <mrow> <mi>φ</mi> <mo>=</mo> <mspace width="3.33333pt"/> <msup> <mn>90</mn> <mo>∘</mo> </msup> </mrow> </semantics></math>). Uniform amplitude and phase distribution.</p> "> Figure 13
<p>Comparison normal array and array with 180° rotation @ <math display="inline"><semantics> <msub> <mi>f</mi> <mn>0</mn> </msub> </semantics></math> = 1.325 GHz: normalized co-polar & cross-polar patterns (<math display="inline"><semantics> <mrow> <mi>φ</mi> <mo>=</mo> <mspace width="3.33333pt"/> <msup> <mn>90</mn> <mo>∘</mo> </msup> </mrow> </semantics></math>). Beamforming.</p> "> Figure 14
<p>Sequential 90° rotation of the antenna elements.</p> "> Figure 15
<p>Comparison normal array and array with sequential 90° rotation @ <math display="inline"><semantics> <msub> <mi>f</mi> <mn>0</mn> </msub> </semantics></math> = 1.325 GHz: normalized co-polar & cross-polar patterns (<math display="inline"><semantics> <mrow> <mi>φ</mi> <mo>=</mo> <mspace width="3.33333pt"/> <msup> <mn>90</mn> <mo>∘</mo> </msup> </mrow> </semantics></math>). Uniform amplitude and phase distribution.</p> "> Figure 16
<p>Measured cross-polar suppression @ <math display="inline"><semantics> <msub> <mi>f</mi> <mn>0</mn> </msub> </semantics></math> = 1.325 GHz. Uniform amplitude and phase distribution. Horizontal polarization.</p> "> Figure 17
<p>Comparison normal array and array with sequential 90° rotation @ <math display="inline"><semantics> <msub> <mi>f</mi> <mn>0</mn> </msub> </semantics></math> = 1.325 GHz: normalized co-polar & cross-polar patterns (<math display="inline"><semantics> <mrow> <mi>φ</mi> <mo>=</mo> <mspace width="3.33333pt"/> <msup> <mn>90</mn> <mo>∘</mo> </msup> </mrow> </semantics></math>). Beamforming.</p> "> Figure 18
<p>Measured cross-polar suppression @ <math display="inline"><semantics> <msub> <mi>f</mi> <mn>0</mn> </msub> </semantics></math> = 1.325 GHz. Beamforming. Vertical polarization.</p> ">
Abstract
:1. Introduction
2. Airborne SAR System Requirements
3. Antenna Single Element
3.1. Bandwidth Enhancement: Dual Stacked Patch Configuration
3.2. Aperture Coupling Feeding
3.3. Cavity-Box
3.4. Manufactured Prototype
4. Antenna Array
- The spacing between the antenna elements is chosen to be 0.6, calculated at the center frequency of operation . Due to its compact implementation, an inter-element spacing of up to 0.48 can be also considered if a higher degree of integration is desired [6]. However, for this work, a greater distance between antenna elements has to be used due to mechanical reasons, since the geometrical 90° rotation of the elements limits the access of the antenna feeding connectors.
- Each antenna is manufactured separately, and it disposes its own independent feeding; therefore, no integrated feeding network for the array is required. This allows a more flexible control of the array feeding, since two measurement scenarios with different amplitude and phase distribution are analyzed.
- The array is built along the y-axis. The same coordinate system for the array as shown in Figure 3 is considered.
- The antenna feeding ports (–, –) correspond to the antenna element numeration (1–5), starting from the left.
- The measurement setup is performed using a 1:6 power divider, model ZB6PD-17-S of Mini-Circuits [38], in order to feed the array elements. In addition, the triangular amplitude tapering is implemented by means of 3 dB and 10 dB attenuators, namely models 18AH-03 and 18AH-10, respectively, from API Inmet. Both power splitters and attenuators are not considered within the calibration.
- The phase control of each antenna element is adjusted with self-manufactured cables with the corresponding electrical length. All the cables dispose of comparable lengths in order to assure a similar phase variation within the desired frequency range.
- All the measurements are carried out with a rectangular aluminum plate (50.1 × 104.2 cm) that is attached to the array, as it is shown in Figure 6. This allows for fixing the structure under testing on top of the positioner tower of the Compact Test Range.
- The simulated and measured results are presented for the center frequency of operation 1.325 GHz.
4.1. Normal Array
4.1.1. Uniform Amplitude and Phase Distribution
4.1.2. Beamforming
4.2. Array with 180° Rotation of the Antenna Elements
4.2.1. Uniform Amplitude and Phase Distribution
4.2.2. Beamforming
4.3. Array with Sequential 90° Rotation of the Antenna Elements
4.3.1. Uniform Amplitude and Phase Distribution
4.3.2. Beamforming
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Ban, Y.; Jacob, A.; Gamba, P. Spaceborne SAR data for global urban mapping at 30 m resolution using a robust urban extractor. ISPRS J. Photogramm. Remote Sens. 2015, 103, 28–37. [Google Scholar] [CrossRef]
- Cerutti-Maori, D.; Klare, J.; Brenner, A.R.; Ender, J.G. Wide Area Traffic Monitoring with the SAR/GMTI System PAMIR. Trans. Geosci. Remote Sens. 2008, 46, 3019–3030. [Google Scholar] [CrossRef]
- Brusch, S.; Lehner, S.; Fritz, T.; Soccorsi, M.; Soloviev, A.; van Schie, B. Ship Surveillance with TerraSAR-X. Trans. Geosci. Remote Sens. 2011, 49, 1092–1103. [Google Scholar] [CrossRef]
- Almeida-Filho, R.; Rosenqvist, A.; Shimabukuro, Y.E.; Silva-Gomez, R. Detecting deforestation with multitemporal L-band SAR imagery:a case study in western Brazilian Amazonia. Int. J. Remote Sens. 2006, 28, 1383–1390. [Google Scholar] [CrossRef]
- Limbach, M.; Gabler, B.; Horn, R.; Kość, A.; Di Maria, A.; Scheiber, R. P-band antenna array for airborne SAR application and DBF SAR demonstration. In Proceedings of the 2015 9th European Conference on Antennas and Propagation (EuCAP), Lisbon, Portugal, 13–17 April 2015; pp. 1–5. [Google Scholar]
- Lorente, D.; Limbach, M.; Gabler, B. L-Band Antenna Array for Next, Generation DLR Airborne SAR Sensor. In Proceedings of the 2019 12th German Microwave Conference (GeMiC), Stuttgart, Germany, 25–27 March 2019; pp. 182–185. [Google Scholar]
- IEEE Standard Letter Designations for Radar-Frequency Bands. Available online: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=29086 (accessed on 30 March 2021).
- Huang, Y.; Zhang, Q.; Ferro-Famil, L. Forest Height Estimation Using a Single-Pass Airborne L-Band Polarimetric and Interferometric SAR System and Tomographic Techniques. Remote Sens. 2021, 13, 487. [Google Scholar] [CrossRef]
- Merzouki, A.; McNairn, H.; Powers, J.; Friesen, M. Synthetic Aperture Radar (SAR) Compact Polarimetry for Soil Moisture Retrieval. Remote Sens. 2019, 11, 2227. [Google Scholar] [CrossRef] [Green Version]
- Martone, M.; Rizzoli, P.; Wecklich, C.; González, C.; Bueso-Bello, J.L.; Valdo, P.; Schulze, D.; Zink, M.; Krieger, G.; Moreira, A. The global forest/non-forest map from TanDEM-X interferometric SAR data. Remote Sens. Environ. 2018, 205, 352–373. [Google Scholar] [CrossRef]
- Reigber, A.; Schreiber, E.; Trappschuh, K.; Pasch, S.; Müller, G.; Kirchner, D.; Geßwein, D.; Schewe, S.; Nottensteiner, A.; Limbach, M.; et al. The High-Resolution Digital-Beamforming Airborne SAR System DBFSAR. Remote Sens. 2020, 12, 1710. [Google Scholar] [CrossRef]
- Horn, R.; Nottensteiner, A.; Reigber, A.; Fischer, J.; Scheiber, R. F-SAR—DLR’s new multifrequency polarimetric airborne SAR. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009; pp. 902–905. [Google Scholar]
- Huber., S.; de Almeida, F.Q.; Villano, M.; Younis, M.; Krieger, G.; Moreira, A. Tandem-L: A Technical Perspective on Future Spaceborne SAR Sensors for Earth Observation. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4792–4807. [Google Scholar] [CrossRef] [Green Version]
- Kość, A.; Di Maria, A.; Limbach, M.; Horn, R.; Reigber, A. A 5 way lumped-elements Wilkinson power divider. In Proceedings of the 2013 7th European Conference on Antennas and Propagation (EuCAP), Gothenburg, Sweden, 8–12 April 2013; pp. 357–360. [Google Scholar]
- Lorente, D.; Schreiber, A.; Limbach, M.; Esteban, H.; Boria, V.E. High Permittivity CPW-SIW Power Divider for Antenna Feed Networks in Airborne Phased Arrays Applications. In Proceedings of the 2020 17th European Radar Conference (EuRAD), Utrecht, The Netherlands, 10–15 January 2021; pp. 254–257. [Google Scholar]
- Limbach, M.; Di Maria, A.; Reigber, A.; Gabler, B.; Horn, R.; Kosc, A. S-Band Antenna for Airborne Polarimetric and Interferometric SAR-Applications. In Proceedings of the 2013 7th European Conference on Antennas and Propagation (EuCAP), Gothenburg, Sweden, 8–12 April 2013; pp. 2968–2972. [Google Scholar]
- Di Maria, A.; Limbach, M.; Horn, R.; Reigber, A. Design and Measurements of a C-Band Array for High Power High Bandwidth SAR Application. In Proceedings of the 2013 7th European Conference on Antennas and Propagation (EuCAP), Gothenburg, Sweden, 8–12 April 2013; pp. 1803–1806. [Google Scholar]
- Woelders, K.; Granholm, J. Cross-Polarization and Sidelobe Suppressionin Dual Linear Polarization Antenna Arrays. IEEE Trans. Antennas Propag. 1997, 45, 1727–1740. [Google Scholar] [CrossRef] [Green Version]
- Granholm, J.; Woelders, K. Dual polarization stacked microstrip patch antenna array with very low cross-polarization. IEEE Trans. Antennas Propag. 2001, 49, 1393–1402. [Google Scholar] [CrossRef] [Green Version]
- Saeidi-Manesh, H.; Zhang, G. High-Isolation, Low Cross-Polarization, Dual-Polarization, Hybrid Feed Microstrip Patch Array Antenna for MPAR Application. IEEE Trans. Antennas Propag. 2018, 66, 2326–2332. [Google Scholar] [CrossRef]
- Saeidi-Manesh, H.; Karimkashi, S.; Zhang, G.; Doviak, R. High-Isolation Low Cross-polarization Phased-Array Antenna for MPAR Application. Radio Sci. 2017, 52, 1544–1557. [Google Scholar] [CrossRef]
- Saeidi-Manesh, H.; Zhang, G. Challenges and Limitations of the Cross-Polarization Suppression in Dual-Polarization Antenna Arrays Using Identical Subarrays. IEEE Trans. Antennas Propag. 2019, 68, 2853–2866. [Google Scholar] [CrossRef]
- Florencio, R.; Encinar, J.A.; Boix, R.R.; Pérez-Palomino, G.; Toso, G. Cross-polar reduction in reflectarray antennas by means of element rotation. In Proceedings of the 2016 10th European Conference on Antennas and Propagation (EuCAP), Davos, Switzerland, 10–15 April 2016. [Google Scholar]
- Yin, W.; Liang, X.; Chen, A.; Zhang, Z.; Shi, L.; Guan, F.; Liu, X.; Zi, J. Cross-polarization suppression for patch array antennas via generalized Kerker effects. Opt. Express 2020, 28, 40–47. [Google Scholar] [CrossRef]
- Fan, F.; Yan, Z.; Xu, P.; Tan, K. Sequential Rotation Feeds Microstrip Array. Microwaves&RF 2013, 52, 55–58. [Google Scholar]
- Greda, L.K.; Dreher, A. Tx-terminal phased array for satellite communication at Ka-band. In Proceedings of the 2007 European Microwave Conference, Munich, Germany, 9–12 October 2007. [Google Scholar]
- Hu, W.; Wen, G.; Inserra, D.; Huang, Y.; Li, J.; Chen, Z. A Circularly Polarized Antenna Array with Gain Enhancement for Long-Range UHF RFID Systems. Electronics 2019, 8, 400. [Google Scholar] [CrossRef] [Green Version]
- Baggen, L.; Holzwarth, S.; Simon, W.; Litzsche, O. Phased array using the sequential rotation principle: Analysis of coupling effects. In Proceedings of the IEEE International Symposium on Phased Array Systems and Technology 2003, Boston, MA, USA, 14–17 October 2003. [Google Scholar]
- Deng, C.; Li, Y.; Zhang, Z.; Feng, Z. A Wideband Sequential-Phase Fed Circularly Polarized Patch Array. IEEE Trans. Antennas Propag. 2014, 62, 3890–3893. [Google Scholar] [CrossRef]
- Garcia-Garcia, Q. Linear arrays of sequentially rotated circularly polarized patch radiators. Microw. Opt. Technol. Lett. 2000, 25, 387–390. [Google Scholar] [CrossRef]
- Garcia-Garcia, Q. Scanning properties of sequential rotated linear arrays of circularly polarized patch. Microw. Opt. Technol. Lett. 2001, 30, 343–350. [Google Scholar] [CrossRef]
- Pozar, D.M. Microstrip Antennas. Proc. IEEE 1992, 80, 79–91. [Google Scholar] [CrossRef]
- Pozar, D.M. A Review of Aperture Coupled Microstrip Antennas: History, Operation, Development, and Applications. 1996. Available online: http://www.ecs.umass.edu/ece/pozar/aperture.pdf (accessed on 7 April 2021).
- Rowe, W.S.T.; Waterhouse, R.B. Investigation into the performance of proximity coupled stacked patches. IEEE Trans. Antennas Propag. 2006, 54, 1693–1698. [Google Scholar] [CrossRef] [Green Version]
- Bugaj, M.; Wnuk, M. Bandwidth Optimization of Aperture-Coupled Stacked Patch Antenna. In Advancement in Microstrip Antennas with Recent Applications; Kishk, A., Ed.; IntechOpen: London, UK, 2013. [Google Scholar]
- Pozar, D.M.; Targonski, S.D. Improved coupling for aperture coupled microstrip antenna. IEEE Electron Device Lett. 1991, 27, 1129–1131. [Google Scholar] [CrossRef]
- Limbach, M.; Gabler, B.; Di Maria, A.; Horn, R.; Reigber, A. DLR Compact Test Range facility. In Proceedings of the 2012 6th European Conference on Antennas and Propagation (EuCAP), Prague, Czech Republic, 26–30 March 2012; pp. 1276–1280. [Google Scholar]
- Mini-Circuits 6 Way Power Splitter/Combiner ZB6PD-17-S Data Sheet. Available online: https://www.minicircuits.com/pdfs/ZB6PD-17-S.pdf (accessed on 30 March 2021).
Name | Substrate | Thickness | |
---|---|---|---|
Substrate Patch 1 | Rogers RT/Duroid 6006 | 6.15 | mm |
Foam 1 | Rohacell HF 51 | 1.06 | mm |
Substrate Patch 1 | Rogers RT/Duroid 6006 | 6.15 | mm |
Foam 2 | Rohacell HF 51 | 1.06 | mm |
Feed Substrate 1 | FR4 Epoxy | 4.4 | mm |
Feed Substrate 2 | FR4 Epoxy | 4.4 | mm |
Foam 3 | Rohacell HF 51 | 1.06 | mm |
Top patch length | 59.6 mm | Bottom patch length | 65.6 mm |
Top patch width | 58.8 mm | Bottom patch length | 63.8 mm |
End Line 1 length | 18.5 mm | End Line 2 length | 28.5 mm |
Line 1 length | 25.95 mm | Line 2 length | 52.3 mm |
Line 1 width | 1.85 mm | Line 2 width | 4.15 mm |
Slot 1 length | 40 mm | Slot 2 length | 37 mm |
Slot 1 width | 2.5 mm | Slot 2 width | 2.5 mm |
Edge 1 length | 11 mm | Edge 2 length | 11 mm |
Edge 1 width | 2.5 mm | Edge 2 width | 2.5 mm |
Slot offset 1 | 17 mm | Slot offset 2 | 10 mm |
Port H | Amplitude | Phase | Port V | Amplitude | Phase |
---|---|---|---|---|---|
−10 dB | 0° | −10 dB | 0° | ||
−3 dB | 120° | −3 dB | 120° | ||
0 dB | 240° | 0 dB | 240° | ||
−3 dB | 0° | −3 dB | 0° | ||
−10 dB | 120° | −10 dB | 120° |
Port H | Amplitude | Phase | Port V | Amplitude | Phase |
---|---|---|---|---|---|
0 dB | 0° | 0 dB | 0° | ||
0 dB | 180° | 0 dB | 180° | ||
0 dB | 0° | 0 dB | 0° | ||
0 dB | 180° | 0 dB | 180° | ||
0 dB | 0° | 0 dB | 0° |
Port H | Amplitude | Phase | Port V | Amplitude | Phase |
---|---|---|---|---|---|
0 dB | 0° | 0 dB | 0° | ||
0 dB | 70° | 0 dB | 110° | ||
0 dB | 180° | 0 dB | 180° | ||
0 dB | 250° | 0 dB | −70° | ||
0 dB | 0° | 0 dB | 0° |
Polarization H | Polarization V | |||
---|---|---|---|---|
Simulation | Measurement | Simulation | Measurement | |
Normal Array | 28.6 dB | 22.87 dB | 30.46 dB | 28.1 dB |
Rotation 90° | 40.17 dB | 32.15 dB | 40.28 dB | 35.72 dB |
Port H | Amplitude | Phase | Port V | Amplitude | Phase |
---|---|---|---|---|---|
−10 dB | 0° | −10 dB | 0° | ||
−3 dB | 70° + 120° | −3 dB | 110° + 120° | ||
0 dB | 180° + 240° | 0 dB | 180° + 240° | ||
−3 dB | 250° | −3 dB | −70° | ||
−10 dB | 0° + 120° | −10 dB | 0° + 120° |
Polarization H | Polarization V | |||
---|---|---|---|---|
Simulation | Measurement | Simulation | Measurement | |
Normal Array | 28.75 dB | 22.82 dB | 30.14 dB | 26.04 dB |
Rotation 90° | 40.85 dB | 31.95 dB | 44.23 dB | 39.71 dB |
Ref. | Frequency Band | Array Topology | Antenna Unit | Cross-Polar Suppression |
---|---|---|---|---|
[18] | L-Band | 8 × 2 | Probe-fed patch | 38 dB |
[19] | L-Band | 8 × 2 | Probe-fed stacked patch | 39 dB |
[20] | S-Band | 6 × 6 | Hybrid-fed patch | 36 dB |
[21] | S-Band | 12 × 12 | Aperture coupled stacked patch | 30 dB |
[23] | X-Band | 20 × 20 | Orthogonal set of dipoles | 40 dB (simulated) |
[24] | X-Band | 8 × 8 | Single-polarized probe-fed U-Slot | Improvement 20 dB |
This work | L-Band | 5 × 1 | Cavity-box aperture coupled stacked patch | 39.7 dB |
Extension of this work | L-Band | 5 × 5 | Cavity-box aperture coupled stacked patch | 53.8 dB (simulated) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lorente, D.; Limbach, M.; Gabler, B.; Esteban, H.; Boria, V.E. Sequential 90° Rotation of Dual-Polarized Antenna Elements in Linear Phased Arrays with Improved Cross-Polarization Level for Airborne Synthetic Aperture Radar Applications. Remote Sens. 2021, 13, 1430. https://doi.org/10.3390/rs13081430
Lorente D, Limbach M, Gabler B, Esteban H, Boria VE. Sequential 90° Rotation of Dual-Polarized Antenna Elements in Linear Phased Arrays with Improved Cross-Polarization Level for Airborne Synthetic Aperture Radar Applications. Remote Sensing. 2021; 13(8):1430. https://doi.org/10.3390/rs13081430
Chicago/Turabian StyleLorente, Diego, Markus Limbach, Bernd Gabler, Héctor Esteban, and Vicente E. Boria. 2021. "Sequential 90° Rotation of Dual-Polarized Antenna Elements in Linear Phased Arrays with Improved Cross-Polarization Level for Airborne Synthetic Aperture Radar Applications" Remote Sensing 13, no. 8: 1430. https://doi.org/10.3390/rs13081430
APA StyleLorente, D., Limbach, M., Gabler, B., Esteban, H., & Boria, V. E. (2021). Sequential 90° Rotation of Dual-Polarized Antenna Elements in Linear Phased Arrays with Improved Cross-Polarization Level for Airborne Synthetic Aperture Radar Applications. Remote Sensing, 13(8), 1430. https://doi.org/10.3390/rs13081430