Towards Including Dynamic Vegetation Parameters in the EUMETSAT H SAF ASCAT Soil Moisture Products
"> Figure 1
<p>Five years of ASCAT data at Stillwater, Oklahoma (<math display="inline"><semantics> <mrow> <mn>36</mn> <mo>.</mo> <msup> <mn>1</mn> <mo>∘</mo> </msup> <mo> </mo> <mi mathvariant="normal">N</mi> <mspace width="3.33333pt"/> <mn>97</mn> <mo>.</mo> <msup> <mn>1</mn> <mo>∘</mo> </msup> </mrow> </semantics></math> W), to illustrate the estimated variations in (<b>a</b>) slope and curvature and (<b>b</b>) dry and wet references. The difference between the wet and dry reference, <math display="inline"><semantics> <mrow> <mo>Δ</mo> <msup> <mi>σ</mi> <mo>∘</mo> </msup> </mrow> </semantics></math> indicated in grey, is a measure of the sensitivity of backscatter (<math display="inline"><semantics> <msubsup> <mi>σ</mi> <mn>40</mn> <mo>∘</mo> </msubsup> </semantics></math>) to soil moisture.</p> "> Figure 2
<p>United States Climate Research Network (USCRN) Soil Moisture Stations, coloured by ESA CCI Land Cover Class. The numbers in square brackets indicate the number of occurrences of each type.</p> "> Figure 3
<p>USCRN Soil Moisture Stations, coloured by Köppen–Geiger (KG) Climate Class. The numbers in square brackets indicate the number of occurrences of each type.</p> "> Figure 4
<p>Pearson correlation coefficient (R), unbiased RMSD and bias between in situ soil moisture and soil moisture retrieved using vegetation parameters derived from climatological (clim) values.</p> "> Figure 5
<p>Box plots of the Pearson correlation coefficient (R), unbiased RMSD and bias between in situ soil moisture and soil moisture retrieved using vegetation parameters derived from climatological values, sorted by ESA CCI Land Cover Class (<b>a</b>–<b>c</b>) and Köppen–Geiger Climate Class (<b>d</b>–<b>f</b>). The box extends from the lower to upper quartile values of the data, with a line at the median. The lower whisker is at the lowest datum above Q1 − 1.5 * (Q3 − Q1) and the upper whisker at the highest datum below Q3 + 1.5 * (Q3 − Q1), where Q1 and Q3 are the first and third quartiles. Outliers are indicated as diamonds.</p> "> Figure 6
<p>Difference in the Pearson correlation coefficient (R), unbiased RMSD and bias between in situ soil moisture and soil moisture retrieved using vegetation parameters derived using Dynamic Vegetation Parameters (DVPs) (hw = 21) and those derived from climatological values.</p> "> Figure 7
<p>Box plot of the difference in the Pearson correlation coefficient (R), unbiased RMSD and bias between in situ soil moisture and soil moisture retrieved using vegetation parameters derived using dynamic vegetation parameters (<math display="inline"><semantics> <mi>λ</mi> </semantics></math> = 21 days) and those derived from climatological values. Data are binned by ESA CCI Land Cover Class (<b>a</b>–<b>c</b>) and Köppen–Geiger Climate Class (<b>d</b>–<b>f</b>). The box extends from the lower to upper quartile values of the data, with a line at the median. The lower whisker is at the lowest datum above Q1 − 1.5 * (Q3 − Q1) and the upper whisker at the highest datum below Q3 + 1.5 * (Q3 − Q1), where Q1 and Q3 are the first and third quartiles. Outliers are indicated as diamonds.</p> "> Figure 8
<p>Comparison of the dry reference estimated using vegetation parameters from climatology and dynamic vegetation parameters at three stations that indicate modest to significant improvement in R when DVPs are used. Results are presented for (<b>a</b>) Chillecothe (<b>b</b>) Bowling Green and (<b>c</b>) Lander stations.</p> "> Figure 9
<p>(<b>a</b>–<b>d</b>) The influence of the kernel half-width (in days 11: orange, 21: blue or 31: green) on the dynamic vegetation parameters and estimated dry reference at Stillwater, Oklahoma, in 2010.</p> "> Figure 10
<p>Impact of the kernel half-width (<math display="inline"><semantics> <mi>λ</mi> </semantics></math>) on R, ubRMSD and bias between in situ and soil moisture retrieved using dynamic vegetation parameters. Half-widths of <math display="inline"><semantics> <mi>λ</mi> </semantics></math> = 11 and <math display="inline"><semantics> <mi>λ</mi> </semantics></math> = 31 are compared to the default value of <math display="inline"><semantics> <mi>λ</mi> </semantics></math> = 21 in the top and bottom rows, respectively</p> "> Figure 11
<p>Box plot of the difference in (<b>a</b>) Pearson correlation coefficient (R), (<b>b</b>) unbiased RMSD and (<b>c</b>) bias between in situ soil moisture and soil moisture retrieved using vegetation parameters derived using dynamic vegetation parameters (<math display="inline"><semantics> <mi>λ</mi> </semantics></math> on x-axis) and those derived from climatological values for all stations. The box extends from the lower to upper quartile values of the data, with a line at the median. The lower whisker is at the lowest datum above Q1 − 1.5 * (Q3 − Q1) and the upper whisker at the highest datum below Q3 + 1.5 * (Q3 − Q1), where Q1 and Q3 are the first and third quartiles. Outliers are omitted for clarity.</p> "> Figure 12
<p>The influence of kernel half-width (<math display="inline"><semantics> <mi>λ</mi> </semantics></math>) on the Pearson correlation coefficient (R) at rainfed cropland (<b>a</b>), broadleaf forest (<b>b</b>), needleleaf forest (<b>c</b>), shrubland (<b>d</b>) and grassland (<b>e</b>) sites. Differences are shown with respect to the R based on vegetation parameters from climatology.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. TU Wien Soil Moisture Retrieval
2.2. Study Domain
2.3. ASCAT Processing
2.4. Performance Assessment
3. Results
3.1. Climatology
3.2. Including Dynamic Vegetation Parameters
3.3. Influence of the Kernel Half-Width
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Srivastava, P.K. Satellite Soil Moisture: Review of Theory and Applications in Water Resources. Water Resour. Manag. 2017, 31, 3161–3176. [Google Scholar] [CrossRef]
- Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J.; et al. The Soil Moisture Active Passive (SMAP) Mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Waldteufel, P.; Wigneron, J.; Martinuzzi, J.; Font, J.; Berger, M. Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1729–1735. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Waldteufel, P.; Wigneron, J.; Delwart, S.; Cabot, F.; Boutin, J.; Escorihuela, M.; Font, J.; Reul, N.; Gruhier, C.; et al. The SMOS Mission: New Tool for Monitoring Key Elements ofthe Global Water Cycle. Proc. IEEE 2010, 98, 666–687. [Google Scholar] [CrossRef] [Green Version]
- Wagner, W.; Hahn, S.; Kidd, R.; Melzer, T.; Bartalis, Z.; Hasenauer, S.; Figa-Saldaña, J.; de Rosnay, P.; Jann, A.; Schneider, S.; et al. The ASCAT Soil Moisture Product: A Review of its Specifications, Validation Results, and Emerging Applications. Meteorol. Z. 2013, 22, 5–33. [Google Scholar] [CrossRef] [Green Version]
- Brocca, L.; Crow, W.T.; Ciabatta, L.; Massari, C.; Rosnay, P.d.; Enenkel, M.; Hahn, S.; Amarnath, G.; Camici, S.; Tarpanelli, A.; et al. A Review of the Applications of ASCAT Soil Moisture Products. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2285–2306. [Google Scholar] [CrossRef]
- Steele-Dunne, S.C.; McNairn, H.; Monsivais-Huertero, A.; Judge, J.; Liu, P.W.; Papathanassiou, K. Radar Remote Sensing of Agricultural Canopies: A Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2249–2273. [Google Scholar] [CrossRef] [Green Version]
- Wagner, W.; Lemoine, G.; Borgeaud, M.; Rott, H. A study of vegetation cover effects on ERS scatterometer data. IEEE Trans. Geosci. Remote Sens. 1999, 37, 938–948. [Google Scholar] [CrossRef]
- Bartalis, Z.; Wagner, W.; Naeimi, V.; Hasenauer, S.; Scipal, K.; Bonekamp, H.; Figa, J.; Anderson, C. Initial soil moisture retrievals from the MetOP-A Advanced Scatterometer (ASCAT). Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef] [Green Version]
- Naeimi, V.; Scipal, K.; Bartalis, Z.; Hasenauer, S.; Wagner, W. An Improved Soil Moisture Retrieval Algorithm for ERS and MetOP Scatterometer Observations. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1999–2013. [Google Scholar] [CrossRef]
- Hahn, S.; Reimer, C.; Vreugdenhil, M.; Melzer, T.; Wagner, W. Dynamic Characterization of the Incidence Angle Dependence of Backscatter Using MetOP ASCAT. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2348–2359. [Google Scholar] [CrossRef]
- Melzer, T. Vegetation modelling in WARP 6.0. In Proceedings of the EUMETSAT Meteorological Satellite Conference, Vienna, Austria, 16–20 September 2013; pp. 16–20. [Google Scholar]
- Steele-Dunne, S.C.; Hahn, S.; Wagner, W.; Vreugdenhil, M. Investigating vegetation water dynamics and drought using MetOP ASCAT over the North American Grasslands. Remote Sens. Environ. 2019, 224, 219–235. [Google Scholar] [CrossRef]
- Pfeil, I.; Wagner, W.; Forkel, M.; Dorigo, W.; Vreugdenhil, M. Does ASCAT observe the spring reactivation in temperate deciduous broadleaf forests? Remote Sens. Environ. 2020, 250, 112042. [Google Scholar] [CrossRef]
- Hahn, S.; Wagner, W.; Steele-Dunne, S.C.; Vreugdenhil, M.; Melzer, T. Improving ASCAT Soil Moisture Retrievals With an Enhanced Spatially Variable Vegetation Parameterization. IEEE Trans. Geosci. Remote Sens. 2020, 1–16. [Google Scholar] [CrossRef]
- Vreugdenhil, M.; Dorigo, W.A.; Wagner, W.; De Jeu, R.A.; Hahn, S.; Van Marle, M.J. Analyzing the Vegetation Parameterization in the TU-Wien ASCAT Soil Moisture Retrieval. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3513–3531. [Google Scholar] [CrossRef]
- Wagner, W.; Noll, J.; Borgeaud, M.; Rott, H. Monitoring soil moisture over the Canadian Prairies with the ERS scatterometer. IEEE Trans. Geosci. Remote Sens. 1999, 37, 206–216. [Google Scholar] [CrossRef]
- EUMETSAT H SAF. Available online: http://hsaf.meteoam.it/ (accessed on 1 December 2020).
- Wagner, W.; Lemoine, G.; Rott, H. A Method for Estimating Soil Moisture from ERS Scatterometer and Soil Data. Remote Sens. Environ. 1999, 70, 191–207. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer Science & Business Media: Berlin, Germany, 2009. [Google Scholar]
- Bell, J.E.; Palecki, M.A.; Baker, C.B.; Collins, W.G.; Lawrimore, J.H.; Leeper, R.D.; Hall, M.E.; Kochendorfer, J.; Meyers, T.P.; Wilson, T.; et al. U.S. Climate Reference Network Soil Moisture and Temperature Observations. J. Hydrometeorol. 2013, 14, 977–988. [Google Scholar] [CrossRef]
- Dorigo, W.A.; Wagner, W.; Hohensinn, R.; Hahn, S.; Paulik, C.; Xaver, A.; Gruber, A.; Drusch, M.; Mecklenburg, S.; van Oevelen, P.; et al. The International Soil Moisture Network: A data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci. 2011, 15, 1675–1698. [Google Scholar] [CrossRef] [Green Version]
- Morrison, K.; Wagner, W. Explaining Anomalies in SAR and Scatterometer Soil Moisture Retrievals From Dry Soils with Subsurface Scattering. IEEE Trans. Geosci. Remote Sens. 2020, 58, 2190–2197. [Google Scholar] [CrossRef] [Green Version]
- Bartalis, Z.; Scipal, K.; Wagner, W. Azimuthal anisotropy of scatterometer measurements over land. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2083–2092. [Google Scholar] [CrossRef]
- Entekhabi, D.; Reichle, R.H.; Koster, R.D.; Crow, W.T. Performance Metrics for Soil Moisture Retrievals and Application Requirements. J. Hydrometeorol. 2010, 11, 832–840. [Google Scholar] [CrossRef]
- Vermunt, P.C.; Khabbazan, S.; Steele-Dunne, S.C.; Judge, J.; Monsivais-Huertero, A.; Guerriero, L.; Liu, P.W. Response of Subdaily L-Band Backscatter to Internal and Surface Canopy Water Dynamics. IEEE Trans. Geosci. Remote Sens. 2020. [Google Scholar] [CrossRef]
- Vreugdenhil, M.; Hahn, S.; Melzer, T.; Bauer-Marschallinger, B.; Reimer, C.; Dorigo, W.A.; Wagner, W. Assessing Vegetation Dynamics Over Mainland Australia With MetOP ASCAT. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2240–2248. [Google Scholar] [CrossRef]
- Stoffelen, A.; Aaboe, S.; Calvet, J.C.; Cotton, J.; Chiara, G.D.; Saldaña, J.F.; Mouche, A.A.; Portabella, M.; Scipal, K.; Wagner, W. Scientific Developments and the EPS-SG Scatterometer. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2086–2097. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steele-Dunne, S.C.; Hahn, S.; Wagner, W.; Vreugdenhil, M. Towards Including Dynamic Vegetation Parameters in the EUMETSAT H SAF ASCAT Soil Moisture Products. Remote Sens. 2021, 13, 1463. https://doi.org/10.3390/rs13081463
Steele-Dunne SC, Hahn S, Wagner W, Vreugdenhil M. Towards Including Dynamic Vegetation Parameters in the EUMETSAT H SAF ASCAT Soil Moisture Products. Remote Sensing. 2021; 13(8):1463. https://doi.org/10.3390/rs13081463
Chicago/Turabian StyleSteele-Dunne, Susan C., Sebastian Hahn, Wolfgang Wagner, and Mariette Vreugdenhil. 2021. "Towards Including Dynamic Vegetation Parameters in the EUMETSAT H SAF ASCAT Soil Moisture Products" Remote Sensing 13, no. 8: 1463. https://doi.org/10.3390/rs13081463
APA StyleSteele-Dunne, S. C., Hahn, S., Wagner, W., & Vreugdenhil, M. (2021). Towards Including Dynamic Vegetation Parameters in the EUMETSAT H SAF ASCAT Soil Moisture Products. Remote Sensing, 13(8), 1463. https://doi.org/10.3390/rs13081463