New Orthophoto Generation Strategies from UAV and Ground Remote Sensing Platforms for High-Throughput Phenotyping
"> Figure 1
<p>Challenges for orthophoto generation in agricultural fields: (<b>a</b>) sample LiDAR point cloud in an agricultural field with four-row plots showing height variation between neighboring plots and (<b>b</b>) example of double mapping problem when occlusions resulting from relief displacement are not considered.</p> "> Figure 2
<p>A schematic diagram of double mapping where sudden object space elevation variations cause duplicated spectral signatures in the orthophoto.</p> "> Figure 3
<p>Example of (<b>a</b>) a red–green–blue (RGB) image covering an agricultural field and (<b>b</b>) corresponding orthophoto.</p> "> Figure 4
<p>The unmanned aerial vehicle (UAV) mobile mapping system and onboard sensors used in this study.</p> "> Figure 5
<p>The ground mobile mapping system (PhenoRover) and onboard sensors used in this study.</p> "> Figure 6
<p>Orthophotos of the (<b>a</b>) maize and (<b>b</b>) sorghum fields used for the dataset acquisition for the experimental results.</p> "> Figure 7
<p>Schematic illustration of the indirect approach for orthophoto generation.</p> "> Figure 8
<p>Illustration of collinearity equations for (<b>a</b>) frame cameras and (<b>b</b>) push-broom scanners.</p> "> Figure 9
<p>Schematic illustration of the iterative ortho-rectification process for push-broom scanner scenes: (<b>a</b>) projection of a given object point onto the initial scan line, (<b>b</b>) projection of the same object point onto an updated scan line derived from previous step, (<b>c</b>) final projection with <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>≈</mo> <mn>0</mn> </mrow> </semantics></math>, and (<b>d</b>) assigning pixel spectral signature to the corresponding orthophoto cell.</p> "> Figure 10
<p>Sample digital surface model (DSM) generated using (<b>a</b>) 90th percentile, (<b>b</b>) cloth simulation, and (<b>c</b>) average height. A selected area for DSM comparison is shown in the black box. (<b>d</b>) Side view of the selected area showing the point cloud and generated DSMs using different approaches.</p> "> Figure 11
<p>A schematic diagram of (<b>a</b>) the original cloth simulation for digital terrain model (DTM) generation and (<b>b</b>) proposed approach for smooth DSM generation.</p> "> Figure 12
<p>An illustration of the smooth DSM using the average elevation within a row segment based on cloth simulation, together with the expected geolocation error.</p> "> Figure 13
<p>An example of derived seamlines—crossings between different colors—using different strategies: (<b>a</b>) closest image nadir point to a given orthophoto cell, (<b>b</b>) closest image nadir point to a given row segment, and (<b>c</b>) closest image nadir point to a given plant location. The black lines show the row segment boundaries.</p> "> Figure 14
<p>An example of scale-invariant feature transform (SIFT) matchings between the original frame image (<b>left</b>) and orthophoto (<b>right</b>) for a given row segment.</p> "> Figure 15
<p>Portions of generated orthophotos using different DSM smoothing and seamline control strategies: (<b>a</b>) orthophoto i, (<b>b</b>) orthophoto ii, (<b>c</b>) orthophoto iii, (<b>d</b>) orthophoto iv, (<b>e</b>) orthophoto v, and (<b>f</b>) orthophoto vi. Yellow lines represent the seamlines, white dashed lines represent row segment boundaries, and red circles highlight areas with induced discontinuities by insufficient DSM smoothing.</p> "> Figure 16
<p>Detected row centerlines (blue dashed lines) superimposed on (<b>a</b>) orthophoto i, (<b>b</b>) orthophoto ii, (<b>c</b>) orthophoto iii, (<b>d</b>) orthophoto iv, (<b>e</b>) orthophoto v, and (<b>f</b>) orthophoto vi.</p> "> Figure 17
<p>SIFT-based matchings between the original frame image (left) and generated orthophoto for a given row segment using different DSM smoothing and seamline control strategies (right) for: (<b>a</b>) orthophoto i, (<b>b</b>) orthophoto ii, (<b>c</b>) orthophoto iii, (<b>d</b>) orthophoto iv, (<b>e</b>) orthophoto v, and (<b>f</b>) orthophoto vi.</p> "> Figure 18
<p>Generated orthophotos using different image datasets captured by UAV frame cameras and PhenoRover push-broom scanners over maize and sorghum fields: (<b>a</b>) orthophoto I, (<b>b</b>) orthophoto II, (<b>c</b>) orthophoto III, (<b>d</b>) orthophoto IV, (<b>e</b>) orthophoto V, and (<b>f</b>) orthophoto VI. The magenta circles in orthophotos I, II, and III and in orthophotos IV, V, and VI represent the same point (included for easier comparison of the visual quality of the different orthophotos).</p> "> Figure 19
<p>Generated orthophotos using UAV push-broom scanner imagery over maize and sorghum fields: (<b>a</b>) orthophoto VII, (<b>b</b>) orthophoto VIII, (<b>c</b>) orthophoto IX, and (<b>d</b>) orthophoto X. Yellow dashed lines represent the seamlines and red boxes highlight the difference.</p> "> Figure 20
<p>Generated orthophotos using PhenoRover frame camera images using different seamline control strategies: (<b>a</b>) Voronoi network seamline control, (<b>b</b>) row segment boundary seamline control, and (<b>c</b>) plant boundary seamline control (plant locations are shown as magenta dots and row centerlines are represented by blue dashed lines). The seamlines are represented by the yellow lines and the red ellipses highlight regions with discontinuity and relief displacement artifacts; the magenta circles in (<b>a</b>–<b>c</b>) refer to the same location (included for easier comparison of the visual quality of the different orthophotos).</p> ">
Abstract
:1. Introduction
2. Related Work
- The DSM is not precise enough to describe the covered object space (i.e., model each stalk, tassel/panicle, and leaf);
- The visibility/occlusion of DSM cells results in double-mapped areas in the orthophoto;
- The mosaicking process inevitably results in discontinuities across the boundary between two rectified images (i.e., at seamline locations).
3. Data Acquisition Systems and Dataset Description
3.1. Impact of Canopy on GNSS/INS-Derived Trajectory
3.2. Study Sites and Dataset Description
4. Proposed Methodology
4.1. Point Positioning Equations and Ortho-Rectification for Frame Cameras and Push-Broom Scanners
4.2. Smooth DSM Generation
4.3. Controlling Seamline Locations Away from Tassels/Panicles
4.4. Orthophoto Quality Assessment
5. Experimental Results and Discussion
- (a)
- Different approaches for smooth DSM generation, which can be used for both frame camera and push-broom scanner imagery, including the use of 90th percentile elevation within the different cells, cloth-simulation of such DSM, and elevation averaging within the row segments of cloth-based DSM;
- (b)
- A control strategy to avoid the seamlines crossing individual row segments within derived orthophotos from frame camera images and push-broom scanner scenes captured by a UAV platform;
- (c)
- A control strategy to avoid the seamlines crossing individual plant locations within derived orthophotos from frame camera images captured by a ground platform; and
- (d)
- Quality control metric to evaluate the visual characteristics of derived orthophotos from frame camera images captured by a UAV platform.
5.1. Impact of DSM Smoothing and Seamline Control Strategies on Derived Orthophotos from UAV Frame Camera Imagery
5.2. Quality Verification of Generated Orthophotos Using UAV Frame Camera and Push-Broom Scanner Imagery, as Well as Ground Push-Broom Scanner Imagery over Maize and Sorghum Fields
5.3. Quality Verification of Generated Orthophotos Using Ground Frame Camera Imagery
6. Conclusions and Directions for Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Araus, J.L.; Kefauver, S.C.; Zaman-Allah, M.; Olsen, M.S.; Cairns, J.E. Translating high-throughput phenotyping into genetic gain. Trends Plant Sci. 2018, 23, 451–466. [Google Scholar] [CrossRef] [Green Version]
- Hunt, E.R.; Dean Hively, W.; Fujikawa, S.J.; Linden, D.S.; Daughtry, C.S.T.; McCarty, G.W. Acquisition of NIR-green-blue digital photographs from unmanned aircraft for crop monitoring. Remote Sens. 2010, 2, 290–305. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Zhang, X.; Gao, C.; Qiu, X.; Tian, Y.; Zhu, Y.; Cao, W. Rapid mosaicking of unmanned aerial vehicle (UAV) images for crop growth monitoring using the SIFT algorithm. Remote Sens. 2019, 11, 1226. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, I.; Eramian, M.; Ovsyannikov, I.; Van Der Kamp, W.; Nielsen, K.; Duddu, H.S.; Rumali, A.; Shirtliffe, S.; Bett, K. Automatic detection and segmentation of lentil crop breeding plots from multi-spectral images captured by UAV-mounted camera. In Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision, WACV 2019, Waikoloa, HI, USA, 7–11 January 2019; pp. 1673–1681. [Google Scholar]
- Chen, Y.; Baireddy, S.; Cai, E.; Yang, C.; Delp, E.J. Leaf segmentation by functional modeling. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, CA, USA, 16–17 June 2019; Volume 2019, pp. 2685–2694. [Google Scholar]
- Maimaitijiang, M.; Sagan, V.; Sidike, P.; Hartling, S.; Esposito, F.; Fritschi, F.B. Soybean yield prediction from UAV using multimodal data fusion and deep learning. Remote Sens. Environ. 2020, 237, 111599. [Google Scholar] [CrossRef]
- Miao, C.; Pages, A.; Xu, Z.; Rodene, E.; Yang, J.; Schnable, J.C. Semantic segmentation of sorghum using hyperspectral data identifies genetic associations. Plant Phenomics 2020, 2020, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Milioto, A.; Lottes, P.; Stachniss, C. Real-time semantic segmentation of crop and weed for precision agriculture robots leveraging background knowledge in CNNs. In Proceedings of the IEEE International Conference on Robotics and Automation, Brisbane, Australia, 21–25 May 2018; pp. 2229–2235. [Google Scholar]
- Xu, R.; Li, C.; Paterson, A.H. Multispectral imaging and unmanned aerial systems for cotton plant phenotyping. PLoS ONE 2019, 14, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Ribera, J.; He, F.; Chen, Y.; Habib, A.F.; Delp, E.J. Estimating phenotypic traits from UAV based RGB imagery. arXiv 2018, arXiv:1807.00498. [Google Scholar]
- Ribera, J.; Chen, Y.; Boomsma, C.; Delp, E.J. Counting plants using deep learning. In Proceedings of the 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Montreal, QC, Canada, 14–16 November 2017; pp. 1344–1348. [Google Scholar]
- Valente, J.; Sari, B.; Kooistra, L.; Kramer, H.; Mücher, S. Automated crop plant counting from very high-resolution aerial imagery. Precis. Agric. 2020, 21, 1366–1384. [Google Scholar] [CrossRef]
- Habib, A.F.; Kim, E.-M.; Kim, C.-J. New Methodologies for True Orthophoto Generation. Photogramm. Eng. Remote Sens. 2007, 73, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Habib, A.; Zhou, T.; Masjedi, A.; Zhang, Z.; Evan Flatt, J.; Crawford, M. Boresight Calibration of GNSS/INS-Assisted Push-Broom Hyperspectral Scanners on UAV Platforms. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1734–1749. [Google Scholar] [CrossRef]
- Ravi, R.; Lin, Y.J.; Elbahnasawy, M.; Shamseldin, T.; Habib, A. Simultaneous system calibration of a multi-LiDAR multi-camera mobile mapping platform. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1694–1714. [Google Scholar] [CrossRef]
- Gneeniss, A.S.; Mills, J.P.; Miller, P.E. In-flight photogrammetric camera calibration and validation via complementary lidar. ISPRS J. Photogramm. Remote Sens. 2015, 100, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Hasheminasab, S.M.; Ravi, R.; Habib, A. LiDAR-aided interior orientation parameters refinement strategy for consumer-grade cameras onboard UAV remote sensing systems. Remote Sens. 2020, 12, 2268. [Google Scholar] [CrossRef]
- Wang, Q.; Yan, L.; Sun, Y.; Cui, X.; Mortimer, H.; Li, Y. True orthophoto generation using line segment matches. Photogramm. Rec. 2018, 33, 113–130. [Google Scholar] [CrossRef]
- Rau, J.Y.; Chen, N.Y.; Chen, L.C. True orthophoto generation of built-up areas using multi-view images. Photogramm. Eng. Remote Sens. 2002, 68, 581–588. [Google Scholar]
- Kuzmin, Y.P.; Korytnik, S.A.; Long, O. Polygon-based true orthophoto generation. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2004, 35, 529–531. [Google Scholar]
- Amhar, F.; Jansa, J.; Ries, C. The generation of true orthophotos using a 3D building model in conjunction with a conventional DTM. Int. Arch. Photogramm. Remote Sens. 1998, 32, 16–22. [Google Scholar]
- Chandelier, L.; Martinoty, G. A radiometric aerial triangulation for the equalization of digital aerial images and orthoimages. Photogramm. Eng. Remote Sens. 2009, 75, 193–200. [Google Scholar] [CrossRef]
- Pan, J.; Wang, M.; Li, D.; Li, J. A Network-Based Radiometric Equalization Approach for Digital Aerial Orthoimages. IEEE Geosci. Remote Sens. Lett. 2010, 7, 401–405. [Google Scholar] [CrossRef]
- Milgram, D. Computer methods for creating photomosaics. IEEE Trans. Comput. 1975, 100, 1113–1119. [Google Scholar] [CrossRef]
- Kerschner, M. Seamline detection in colour orthoimage mosaicking by use of twin snakes. ISPRS J. Photogramm. Remote Sens. 2001, 56, 53–64. [Google Scholar] [CrossRef]
- Pan, J.; Wang, M. A Seam-line Optimized Method Based on Difference Image and Gradient Image. In Proceedings of the 2011 19th International Conference on Geoinformatics, Shanghai, China, 24–26 June 2011. [Google Scholar]
- Chon, J.; Kim, H.; Lin, C. Seam-line determination for image mosaicking: A technique minimizing the maximum local mismatch and the global cost. ISPRS J. Photogramm. Remote Sens. 2010, 65, 86–92. [Google Scholar] [CrossRef]
- Yu, L.; Holden, E.; Dentith, M.C.; Zhang, H.; Yu, L.; Holden, E.; Dentith, M.C.; Zhang, H. Towards the automatic selection of optimal seam line locations when merging optical remote-sensing images. Int. J. Remote Sens. 2012, 1161. [Google Scholar] [CrossRef]
- Fernandez, E.; Garfinkel, R.; Arbiol, R. Mosaicking of aerial photographic maps via seams defined by bottleneck shortest paths. Oper. Res. 1998, 46, 293–304. [Google Scholar] [CrossRef] [Green Version]
- Fernández, E.; Martí, R. GRASP for seam drawing in mosaicking of aerial photographic maps. J. Heuristics 1999, 5, 181–197. [Google Scholar] [CrossRef]
- Chen, Q.; Sun, M.; Hu, X.; Zhang, Z. Automatic seamline network generation for urban orthophoto mosaicking with the use of a digital surface model. Remote Sens. 2014, 6, 12334–12359. [Google Scholar] [CrossRef] [Green Version]
- Wan, Y.; Wang, D.; Xiao, J.; Lai, X.; Xu, J. Automatic determination of seamlines for aerial image mosaicking based on vector roads alone. ISPRS J. Photogramm. Remote Sens. 2013, 76, 1–10. [Google Scholar] [CrossRef]
- Pang, S.; Sun, M.; Hu, X.; Zhang, Z. SGM-based seamline determination for urban orthophoto mosaicking. ISPRS J. Photogramm. Remote Sens. 2016, 112, 1–12. [Google Scholar] [CrossRef]
- Guo, W.; Zheng, B.; Potgieter, A.B.; Diot, J.; Watanabe, K.; Noshita, K.; Jordan, D.R.; Wang, X.; Watson, J.; Ninomiya, S.; et al. Aerial imagery analysis—Quantifying appearance and number of sorghum heads for applications in breeding and agronomy. Front. Plant Sci. 2018, 871. [Google Scholar] [CrossRef] [Green Version]
- Duan, T.; Zheng, B.; Guo, W.; Ninomiya, S.; Guo, Y.; Chapman, S.C. Comparison of ground cover estimates from experiment plots in cotton, sorghum and sugarcane based on images and ortho-mosaics captured by UAV. Funct. Plant Biol. 2017, 44, 169–183. [Google Scholar] [CrossRef]
- Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Applanix APX-15 Datasheet. Available online: https://www.applanix.com/products/dg-uavs.htm (accessed on 26 April 2020).
- Velodyne Puck Lite Datasheet. Available online: https://velodynelidar.com/vlp-16-lite.html (accessed on 26 April 2020).
- Sony alpha7R. Available online: https://www.sony.com/electronics/interchangeable-lens-cameras/ilce-7r (accessed on 8 December 2020).
- Headwall Nano-Hyperspec Imaging Sensor Datasheet. Available online: http://www.analytik.co.uk/wp-content/uploads/2016/03/nano-hyperspec-datasheet.pdf (accessed on 5 January 2021).
- Applanix POSLV 125 Datasheet. Available online: https://www.applanix.com/products/poslv.htm (accessed on 26 April 2020).
- Velodyne Puck Hi-Res Datasheet. Available online: https://www.velodynelidar.com/vlp-16-hi-res.html (accessed on 26 April 2020).
- Velodyne HDL32E Datasheet. Available online: https://velodynelidar.com/hdl-32e.html (accessed on 26 April 2020).
- He, F.; Habib, A. Target-based and feature-based calibration of low-cost digital cameras with large field-of-view. In Proceedings of the ASPRS 2015 Annual Conference, Tampa, FL, USA, 4–8 May 2015. [Google Scholar]
- Ravi, R.; Shamseldin, T.; Elbahnasawy, M.; Lin, Y.J.; Habib, A. Bias impact analysis and calibration of UAV-based mobile LiDAR system with spinning multi-beam laser scanner. Appl. Sci. 2018, 8, 297. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, K.P.; Chapman, M.A.; Cannon, M.W.; Gong, P. An integrated INS/GPS approach to the georeferencing of remotely sensed data. Photogramm. Eng. Remote Sens. 1993, 59, 1667–1674. [Google Scholar]
- Lin, Y.C.; Cheng, Y.T.; Zhou, T.; Ravi, R.; Hasheminasab, S.M.; Flatt, J.E.; Troy, C.; Habib, A. Evaluation of UAV LiDAR for mapping coastal environments. Remote Sens. 2019, 11, 2893. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Qi, J.; Wan, P.; Wang, H.; Xie, D.; Wang, X.; Yan, G. An easy-to-use airborne LiDAR data filtering method based on cloth simulation. Remote Sens. 2016, 8, 501. [Google Scholar] [CrossRef]
- Lin, Y.C.; Habib, A. Quality control and crop characterization framework for multi-temporal UAV LiDAR data over mechanized agricultural fields. Remote Sens. Environ. 2021, 256, 112299. [Google Scholar] [CrossRef]
- Karami, A.; Crawford, M.; Delp, E.J. Automatic Plant Counting and Location Based on a Few-Shot Learning Technique. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5872–5886. [Google Scholar] [CrossRef]
- Hasheminasab, S.M.; Zhou, T.; Habib, A. GNSS/INS-assisted structure from motion strategies for UAV-based imagery over mechanized agricultural fields. Remote Sens. 2020, 12, 351. [Google Scholar] [CrossRef] [Green Version]
ID. | Data Collection Date | Crop | System | Sensors | Sensor-to-Object Distance (m) | Ground Speed (m/s) | Lateral Distance (m) |
---|---|---|---|---|---|---|---|
UAV-A1 | 17 July 2020 | Maize | UAV | LiDAR, RGB | 20 | 2.5 | 5 |
UAV-A2 | UAV | RGB, hyperspectral | 40 | 5.0 | 9 | ||
PR-A | PhenoRover | RGB, hyperspectral | 3–4 | 1.5 | 4 | ||
UAV-B1 | 20 July 2020 | Sorghum | UAV | LiDAR, RGB | 20 | 2.5 | 5 |
UAV-B2 | UAV | RGB, hyperspectral | 40 | 5.0 | 9 | ||
PR-B | PhenoRover | hyperspectral | 3–4 | 1.5 | 4 |
ID | Dataset | Sensor | Sensor-to-Object Distance (m) | Resolution (cm) | DSM | Seamline Control |
---|---|---|---|---|---|---|
i | UAV-A1 | RGB | 20 | 0.25 | 90th percentile | Voronoi network |
ii | Cloth simulation | Voronoi network | ||||
iii | Average elevation within a row segment | Voronoi network | ||||
iv | 90th percentile | Row segment boundary | ||||
v | Cloth simulation | Row segment boundary | ||||
vi | Average elevation within a row segment | Row segment boundary |
ID | Number of Established Matches | |||||
---|---|---|---|---|---|---|
Orthophoto i | Orthophoto ii | Orthophoto iii | Orthophoto iv | Orthophoto v | Orthophoto vi | |
1 | 868 | 1319 | 1610 | 1153 | 1802 | 2361 |
2 | 884 | 1504 | 1548 | 1118 | 2109 | 2273 |
3 | 136 | 248 | 463 | 720 | 1080 | 2329 |
4 | 651 | 1264 | 1829 | 998 | 1799 | 2788 |
5 | 185 | 418 | 616 | 830 | 1597 | 2452 |
6 | 780 | 1155 | 1303 | 1031 | 1701 | 2211 |
7 | 798 | 1297 | 1883 | 1074 | 1938 | 2890 |
8 | 1037 | 1618 | 1927 | 1481 | 2368 | 2935 |
9 | 966 | 1603 | 1651 | 1315 | 2474 | 2807 |
10 | 560 | 1409 | 1698 | 714 | 1981 | 2547 |
ID | Dataset | Sensor | Sensor-to-Object Distance (m) | Resolution (cm) | DSM | Seamline Control |
---|---|---|---|---|---|---|
I | UAV-A1 | RGB | 20 | 0.25 | Average elevation within a row segment | Row segment boundary |
II | UAV-A2 | RGB | 40 | 0.50 | ||
III | PR-A | hyperspectral | 3–4 | 0.50 | ||
IV | UAV-B1 | RGB | 20 | 0.25 | ||
V | UAV-B2 | RGB | 40 | 0.50 | ||
VI | PR-B | hyperspectral | 3–4 | 0.50 | ||
VII | UAV-A2 | hyperspectral | 40 | 4 | Average elevation within a row segment | Voronoi network |
VIII | UAV-A2 | Row segment boundary | ||||
IX | UAV-B2 | Voronoi network | ||||
X | UAV-B2 | Row segment boundary |
ID | Dataset | Sensor | Sensor-to-Object Distance (m) | Resolution (cm) | DSM | Seamline Control |
---|---|---|---|---|---|---|
1 | PR-A | RGB | 3–4 | 0.2 | Average elevation within a row segment | Voronoi network |
2 | Row segment boundary | |||||
3 | Plant boundary |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.-C.; Zhou, T.; Wang, T.; Crawford, M.; Habib, A. New Orthophoto Generation Strategies from UAV and Ground Remote Sensing Platforms for High-Throughput Phenotyping. Remote Sens. 2021, 13, 860. https://doi.org/10.3390/rs13050860
Lin Y-C, Zhou T, Wang T, Crawford M, Habib A. New Orthophoto Generation Strategies from UAV and Ground Remote Sensing Platforms for High-Throughput Phenotyping. Remote Sensing. 2021; 13(5):860. https://doi.org/10.3390/rs13050860
Chicago/Turabian StyleLin, Yi-Chun, Tian Zhou, Taojun Wang, Melba Crawford, and Ayman Habib. 2021. "New Orthophoto Generation Strategies from UAV and Ground Remote Sensing Platforms for High-Throughput Phenotyping" Remote Sensing 13, no. 5: 860. https://doi.org/10.3390/rs13050860
APA StyleLin, Y. -C., Zhou, T., Wang, T., Crawford, M., & Habib, A. (2021). New Orthophoto Generation Strategies from UAV and Ground Remote Sensing Platforms for High-Throughput Phenotyping. Remote Sensing, 13(5), 860. https://doi.org/10.3390/rs13050860