An Unsupervised Urban Extent Extraction Method from NPP-VIIRS Nighttime Light Data
<p>Study area: (<b>A</b>) The spatial distribution of 25 evaluation areas; (<b>B</b>) 1 km grid population data of China in 2015; (<b>C</b>) 1km grid gross domestic product (GDP) data of China in 2015; (<b>D</b>) The 2015 NPP-VIIRS NTL data of China; (<b>E</b>) The 2015 normalized difference vegetation index (NDVI) data of China; (<b>F</b>) The nighttime land surface temperature (LST) data of China in 2015.</p> "> Figure 2
<p>The workflow of the proposed method.</p> "> Figure 3
<p>Average silhouette coefficient versus number of clusters.</p> "> Figure 4
<p>Comparison of NTL image filtering results: median filtering and mean filtering.</p> "> Figure 5
<p>Eight filtering direction templates.</p> "> Figure 6
<p>Extraction accuracy of urban extent under different neighborhood sizes: on the left is the different neighborhood sizes of the first stage (fixed neighborhood radius 4 in the second stage); on the right is the different neighborhood sizes of the second stage (fixed neighborhood radius 2 in the second stage).</p> "> Figure 7
<p>Urban extent extraction results: (<b>a</b>) Landsat8 OLI Images of selected cities, (<b>b</b>) VIIRS NTL images of selected city, (<b>c</b>) the urban extent extracted using our method, (<b>d</b>) the urban extent extracted using local optimal threshold (LOT), (<b>e</b>) the urban extent extracted using INNL-SVM.</p> "> Figure 8
<p>Comparing the urban pattern and spatial details between our results and other products (<b>a</b>) Landsat8 OLI Images (30 m), (<b>b</b>) the global artificial impervious area (GAIA) (30 m), (<b>c</b>) our results (500 m), (<b>d</b>) the global urban land based on a normalized urban areas composite index (NUACI-based GUL) (30 m), (<b>e</b>) the MODIS 500 (500 m), (<b>f</b>) the global urban expansion product based on a fully convolutional network (FCN) (500 m).</p> "> Figure 9
<p>Spatial Comparison of the results different methods for Beijing: (<b>a</b>) the inner part of urban; (<b>b</b>) the edge district of urban; the yellow box is the area zooming in of the google image.</p> "> Figure 10
<p>Urban expansion from 2013 to 2018 for Shanghai and Lanzhou.</p> "> Figure 11
<p>Growth of urban areas from 2013 to 2018.</p> "> Figure 12
<p>The spatial distribution of nighttime light intensity in Lhasa and Urumqi (yellow and red boxes indicate areas zoomed in column 3 and 4, respectively).</p> "> Figure 13
<p>Analysis of overestimation urban area for Ningbo: (black box is the overestimation area zoomed in column 1, which was indicated by “A” in text).</p> "> Figure 14
<p>The Sensitivity analysis of parameters: (<b>a</b>–<b>c</b>) were the results of all parameter combinations; (<b>d</b>) was the results withR2 = 4; (<b>e</b>) was the results with R1 = 2; (<b>f</b>) was the results with N = 1.</p> ">
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
- (1)
- Remote Sensing Data
- (2)
- Auxiliary Data
- (3)
- Other Global Urban Data Products
3. Method
3.1. The Spatial Context Constrained Clustering Algorithm
3.2. Urban Edge District Detection
3.3. Urban Pixels Recognition in the Urban Edge District
3.4. Accuracy Evaluation
4. Results
4.1. Selection of Neighborhood Size
4.2. Accuracy and Comparison
4.3. Comparison with Other Products
5. Discussion
5.1. The Proposed Method Can Effectively Extract Urban Extent from NPP-VIIRS NTL
5.2. The Disadvantages of the Proposed Method
5.3. The Sensitivity Analysis of Parameters
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, K.; Chen, Y. A Genetic Algorithm-Based Urban Cluster Automatic Threshold Method by Combining VIIRS DNB, NDVI, and NDBI to Monitor Urbanization. Remote Sens. 2018, 10, 277. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Jeon, S.; Kim, S.; Choi, C. Prediction and comparison of urban growth by land suitability index mapping using GIS and RS in South Korea. Landsc. Urban Plan. 2011, 99, 104–114. [Google Scholar] [CrossRef]
- He, C.; Liu, Z.; Tian, J.; Ma, Q. Urban expansion dynamics and natural habitat loss in China: A multiscale landscape perspective. Glob. Chang. Biol. 2014, 20, 2886–2902. [Google Scholar] [CrossRef] [PubMed]
- Seto, K.C.; Fragkias, M.; Güneralp, B.; Reilly, M.K. A Meta-Analysis of Global Urban Land Expansion. PLoS ONE 2011, 6, e23777. [Google Scholar] [CrossRef]
- Schneider, A.; Friedl, M.A.; Potere, D. Mapping global urban areas using MODIS 500-m data: New methods and datasets based on ‘urban ecoregions’. Remote Sens. Environ. 2010, 114, 1733–1746. [Google Scholar] [CrossRef]
- Liu, X.; Ning, X.; Wang, H.; Wang, C.; Zhang, H.; Meng, J. A Rapid and Automated Urban Boundary Extraction Method Based on Nighttime Light Data in China. Remote Sens. 2019, 11, 1126. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Weng, Q. Estimating impervious surfaces from medium spatial resolution imagery using the self-organizing map and multi-layer perceptron neural networks. Remote Sens. Environ. 2009, 113, 2089–2102. [Google Scholar] [CrossRef]
- Zhou, Y.; Smith, S.J.; Elvidge, C.D.; Zhao, K.; Thomson, A.M.; Imhoff, M.L. A cluster-based method to map urban area from DMSP/OLS nightlights. Remote Sens. Environ. 2014, 147, 173–185. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R. Mapping city lights with nighttime data from the DMSP Operational Linescan System. Photogramm. Eng. Remote Sens. 1997, 63, 727–734. [Google Scholar]
- Imhoff, M.L.; Lawrence, W.T.; Stutzer, D.C.; Elvidge, C.D. A technique for using composite DMSP/OLS “City Lights” satellite data to map urban area. Remote Sens. Environ. 1997, 61, 361–370. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Safran, J.; Tuttle, B.; Sutton, P.; Cinzano, P.; Pettit, D.R.; Arvesen, J.; Small, C. Potential for global mapping of development via a nightsat mission. GeoJournal 2007, 69, 45–53. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Erwin, E.H.; Baugh, K.E.; Ziskin, D.; Tuttle, B.T.; Ghosh, T.; Sutton, P.C. Overview of DMSP nightime lights and future possibilities. In Proceedings of the 2009 Joint Urban Remote Sensing Event, Shanghai, China, 20–22 May 2009; Institute of Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2009; pp. 1–5. [Google Scholar]
- Hu, X.; Qian, Y.; Pickett, S.; Zhou, W. Urban mapping needs up-to-date approaches to provide diverse perspectives of current urbanization: A novel attempt to map urban areas with nighttime light data. Landsc. Urban Plan. 2020, 195, 103709. [Google Scholar] [CrossRef]
- Zhou, Y.; Smith, S.J.; Zhao, K.; Imhoff, M.L.; Thomson, A.M.; Bond-Lamberty, B.; Asrar, G.R.; Zhang, X.; He, C.; Elvidge, C.D. A global map of urban extent from nightlights. Environ. Res. Lett. 2015, 10, 54011. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Asrar, G.R.; Smith, S.J.; Imhoff, M. A global record of annual urban dynamics (1992–2013) from nighttime lights. Remote Sens. Environ. 2018, 219, 206–220. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, P.; Chen, H.; Huang, Q.; Jiang, H.; Zhang, Z.; Zhang, Y.; Luo, X.; Sun, S. A novel method for urban area extraction from VIIRS DNB and MODIS NDVI data: A case study of Chinese cities. Int. J. Remote Sens. 2017, 38, 6094–6109. [Google Scholar] [CrossRef]
- Ma, W.; Li, P. An Object Similarity-Based Thresholding Method for Urban Area Mapping from Visible Infrared Imaging Radiometer Suite Day/Night Band (VIIRS DNB) Data. Remote Sens. 2018, 10, 263. [Google Scholar] [CrossRef] [Green Version]
- Shi, K.; Huang, C.; Yu, B.; Yin, B.; Huang, Y.; Wu, J. Evaluation of NPP-VIIRS night-time light composite data for extracting built-up urban areas. Remote Sens. Lett. 2014, 5, 358–366. [Google Scholar] [CrossRef]
- Yu, B.; Tang, M.; Wu, Q.; Yang, C.; Deng, S.; Shi, K.; Peng, C.; Wu, J.; Chen, Z. Urban Built-Up Area Extraction From Log- Transformed NPP-VIIRS Nighttime Light Composite Data. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1279–1283. [Google Scholar] [CrossRef]
- Milesi, C.; Elvidge, C.D.; Nemani, R.R.; Running, S.W. Assessing the impact of urban land development on net primary productivity in the southeastern United States. Remote Sens. Environ. 2003, 86, 401–410. [Google Scholar] [CrossRef]
- Henderson, M.; Yeh, E.T.; Gong, P.; Elvidge, C.; Baugh, K. Validation of urban boundaries derived from global night-time satellite imagery. Int. J. Remote Sens. 2003, 24, 595–609. [Google Scholar] [CrossRef]
- He, C.; Shi, P.; Li, J.; Chen, J.; Pan, Y.; Li, J.; Zhuo, L.; Ichinose, T. Restoring urbanization process in China in the 1990s by using non-radiance-calibrated DMSP/OLS nighttime light imagery and statistical data. Chin. Sci. Bull. 2006, 51, 1614–1620. [Google Scholar] [CrossRef]
- Xie, Y.; Weng, Q. Updating urban extents with nighttime light imagery by using an object-based thresholding method. Remote Sens. Environ. 2016, 187, 1–13. [Google Scholar] [CrossRef]
- Zhai, W.; Han, B.; Cheng, C. Evaluation of Luojia 1–01 Nighttime Light Imagery for Built-Up Urban Area Extraction: A Case Study of 16 Cities in China. IEEE Geosci. Remote Sens. Lett. 2019, 17, 1802–1806. [Google Scholar] [CrossRef]
- Cao, X.; Chen, J.; Imura, H.; Higashi, O. A SVM-based method to extract urban areas from DMSP-OLS and SPOT VGT data. Remote Sens. Environ. 2009, 113, 2205–2209. [Google Scholar] [CrossRef]
- Jing, W.; Yang, Y.; Yue, X.; Zhao, X. Mapping Urban Areas with Integration of DMSP/OLS Nighttime Light and MODIS Data Using Machine Learning Techniques. Remote Sens. 2015, 7, 12419–12439. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.; Coco, G.; Gao, J. Extraction of urban built-up areas from nighttime lights using artificial neural network. Geocarto Int. 2019, 35, 1049–1066. [Google Scholar] [CrossRef]
- Liu, X.; De Sherbinin, A.; Zhan, Y. Mapping Urban Extent at Large Spatial Scales Using Machine Learning Methods with VIIRS Nighttime Light and MODIS Daytime NDVI Data. Remote Sens. 2019, 11, 1247. [Google Scholar] [CrossRef] [Green Version]
- He, C.; Liu, Z.; Gou, S.; Zhang, Q.; Zhang, J.; Xu, L. Detecting global urban expansion over the last three decades using a fully convolutional network. Environ. Res. Lett. 2019, 14, 034008. [Google Scholar] [CrossRef]
- Ma, X.; Tong, X.; Liu, S.; Luo, X.; Xie, H.; Li, C. Optimized Sample Selection in SVM Classification by Combining with DMSP-OLS, Landsat NDVI and GlobeLand30 Products for Extracting Urban Built-Up Areas. Remote Sens. 2017, 9, 236. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Xu, L.; Gao, S.; Xu, N.; Yan, B. Adaptive Segmentation of Remote Sensing Images Based on Global Spatial Information. Sensors 2019, 19, 2385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dou, Y.; Liu, Z.; He, C.; Yue, H. Urban Land Extraction Using VIIRS Nighttime Light Data: An Evaluation of Three Popular Methods. Remote Sens. 2017, 9, 175. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.L. China Population Spatial Distribution Kilometer Grid Dataset; Data Registration and Publishing System of Resource and Environmental Science Data Center of the Chinese Academy of Sciences, 2017; Available online: http://www.resdc.cn/DOI (accessed on 24 May 2020).
- Xu, X.L. China GDP Spatial Distribution Kilometer Grid Dataset; Data Registration and Publishing System of Resource and Environmental Science Data Center of the Chinese Academy of Sciences, 2017; Available online: http://www.resdc.cn/DOI (accessed on 24 May 2020).
- Gong, P.; Li, X.; Wang, J.; Bai, Y.; Chen, B.; Hu, T.; Liu, X.; Xu, B.; Yang, J.; Zhang, W.; et al. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sens. Environ. 2020, 236, 111510. [Google Scholar] [CrossRef]
- Liu, X.; Hu, G.; Chen, Y.; Li, X.; Xu, X.; Li, S.; Pei, F.; Wang, S. High-spatiotemporal multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform. Remote Sens. Environ. 2018, 209, 227–239. [Google Scholar] [CrossRef]
- Chandana, B.S.; Phanendra, M.L.; Babu, S.W. Remote Sensing Image Classification Based on Clustering Algorithms; Confianzit Org: Kerala, India, 2013. [Google Scholar]
- Dinh, D.-T.; Fujinami, T.; Huynh, V.-N. Estimating the Optimal Number of Clusters in Categorical Data Clustering by Silhouette Coefficient; Springer: Singapore, 2019; pp. 1–17. [Google Scholar]
City | Pop (Million Persons) | GDP (Billion RMB) | City | Pop (Million Persons) | GDP (Billion RMB) |
---|---|---|---|---|---|
Beijing | 13.39 | 2301.46 | Shanghai | 13.73 | 2483.84 |
Hohhot | 1.29 | 230.09 | Nanjing | 6.51 | 972.08 |
Tianjin | 10.22 | 1653.82 | Hangzhou | 5.16 | 872.20 |
Qingdao | 3.72 | 597.71 | Ningbo | 2.31 | 487.72 |
Shenyang | 5.29 | 589.12 | Jiaxing | 0.87 | 87.09 |
Jilin | 1.82 | 141.38 | Jinhua | 0.96 | 64.57 |
Xian | 6.04 | 513.64 | Yiwu | 0.77 | 104.51 |
Urumqi | 2.61 | 261.01 | Wuhan | 5.15 | 880.60 |
Lanzhou | 2.05 | 174.15 | Zhengzhou | 3.39 | 408.04 |
Lhasa | 0.22 | 19.69 | Guangzhou | 8.48 | 1810.04 |
Chongqing | 21.27 | 1320.63 | Shenzhen | 3.44 | 1750.29 |
Chengdu | 6.93 | 846.00 | Xiamen | 2.07 | 346.60 |
Kunming | 2.78 | 307.29 |
City | Our Method | LOT | INNL-SVM | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
OA | Kappa | OE | CE | OA | Kappa | OE | CE | OA | Kappa | OE | CE | |
AVG | 0.9625 | 0.7679 | 0.1714 | 0.2373 | 0.9622 | 0.7544 | 0.2209 | 0.2254 | 0.9571 | 0.7304 | 0.2255 | 0.2413 |
STD | 0.0264 | 0.0384 | 0.0720 | 0.0700 | 0.0261 | 0.0403 | 0.0451 | 0.0443 | 0.0308 | 0.0577 | 0.1141 | 0.0969 |
Beijing | 0.9563 | 0.7978 | 0.1397 | 0.2118 | 0.9522 | 0.7704 | 0.2020 | 0.2030 | 0.9523 | 0.7539 | 0.2808 | 0.1469 |
Hohhot | 0.9915 | 0.7573 | 0.3409 | 0.0985 | 0.9914 | 0.7858 | 0.2117 | 0.2078 | 0.9917 | 0.7794 | 0.2717 | 0.1520 |
Jinhua | 0.9736 | 0.7065 | 0.2098 | 0.3384 | 0.9727 | 0.6687 | 0.3170 | 0.3170 | 0.9685 | 0.6765 | 0.1747 | 0.4032 |
Shenyang | 0.9741 | 0.7589 | 0.2423 | 0.2119 | 0.9740 | 0.7620 | 0.2242 | 0.2242 | 0.9538 | 0.6782 | 0.0640 | 0.4389 |
Jilin | 0.9963 | 0.7573 | 0.2272 | 0.2541 | 0.9966 | 0.7687 | 0.2296 | 0.2296 | 0.9968 | 0.7860 | 0.2067 | 0.2180 |
Xian | 0.9734 | 0.7961 | 0.1385 | 0.2350 | 0.9733 | 0.7837 | 0.2016 | 0.2025 | 0.9765 | 0.8022 | 0.2199 | 0.1476 |
Urumqi | 0.9905 | 0.8263 | 0.1606 | 0.1768 | 0.9898 | 0.8113 | 0.1835 | 0.1835 | 0.9894 | 0.8211 | 0.0908 | 0.2423 |
Lanzhou | 0.9945 | 0.8256 | 0.2029 | 0.1378 | 0.9925 | 0.7848 | 0.1590 | 0.2577 | 0.9906 | 0.7493 | 0.1342 | 0.3322 |
Tianjin | 0.9496 | 0.7749 | 0.1715 | 0.2195 | 0.9450 | 0.7476 | 0.2211 | 0.2209 | 0.9111 | 0.6613 | 0.1190 | 0.4032 |
Qingdao | 0.9685 | 0.7236 | 0.1669 | 0.3341 | 0.9683 | 0.6893 | 0.2940 | 0.2940 | 0.9660 | 0.6419 | 0.3890 | 0.2834 |
Shanghai | 0.9165 | 0.7879 | 0.0840 | 0.2167 | 0.9125 | 0.7650 | 0.1769 | 0.1769 | 0.9034 | 0.7533 | 0.1182 | 0.2360 |
Nanjing | 0.9460 | 0.7801 | 0.1360 | 0.2350 | 0.9458 | 0.7674 | 0.2013 | 0.2013 | 0.9393 | 0.7514 | 0.1681 | 0.2540 |
Hangzhou | 0.9677 | 0.7443 | 0.1657 | 0.2996 | 0.9674 | 0.7194 | 0.2627 | 0.2637 | 0.9661 | 0.6707 | 0.3942 | 0.2031 |
Ningbo | 0.9525 | 0.7082 | 0.1658 | 0.3450 | 0.9553 | 0.6912 | 0.2845 | 0.2845 | 0.9545 | 0.6537 | 0.3911 | 0.2358 |
Jiaxing | 0.9554 | 0.6871 | 0.2560 | 0.3188 | 0.9541 | 0.6645 | 0.3107 | 0.3107 | 0.9537 | 0.6554 | 0.3326 | 0.3062 |
Yiwu | 0.9336 | 0.7536 | 0.1487 | 0.2579 | 0.9291 | 0.7278 | 0.2064 | 0.2529 | 0.9246 | 0.7326 | 0.1184 | 0.3050 |
Wuhan | 0.9607 | 0.7810 | 0.1492 | 0.2402 | 0.9597 | 0.7633 | 0.2143 | 0.2146 | 0.9467 | 0.6083 | 0.5081 | 0.1070 |
Zhengzhou | 0.9607 | 0.7807 | 0.1352 | 0.2517 | 0.9604 | 0.7634 | 0.2148 | 0.2148 | 0.9633 | 0.7498 | 0.3361 | 0.0859 |
Guangzhou | 0.9149 | 0.7328 | 0.0336 | 0.3413 | 0.9337 | 0.7479 | 0.2297 | 0.1952 | 0.9212 | 0.7375 | 0.0986 | 0.3053 |
Shenzhen | 0.9092 | 0.7940 | 0.1278 | 0.1488 | 0.9082 | 0.7906 | 0.1407 | 0.1423 | 0.8921 | 0.7446 | 0.2346 | 0.1139 |
Xiamen | 0.9350 | 0.8009 | 0.1328 | 0.1824 | 0.9283 | 0.7751 | 0.1801 | 0.1801 | 0.9253 | 0.7555 | 0.2442 | 0.1475 |
Lhasa | 0.9984 | 0.7383 | 0.3555 | 0.1338 | 0.9985 | 0.7836 | 0.2156 | 0.2156 | 0.9982 | 0.7733 | 0.1469 | 0.2913 |
Chongqing | 0.9921 | 0.7531 | 0.1623 | 0.3095 | 0.9924 | 0.7376 | 0.2584 | 0.2586 | 0.9919 | 0.7431 | 0.1855 | 0.3098 |
Chengdu | 0.9605 | 0.8036 | 0.0858 | 0.2472 | 0.9632 | 0.7998 | 0.1792 | 0.1802 | 0.9613 | 0.7784 | 0.2443 | 0.1506 |
Kunming | 0.9913 | 0.8288 | 0.1456 | 0.1868 | 0.9896 | 0.7907 | 0.2037 | 0.2041 | 0.9899 | 0.8039 | 0.1660 | 0.2143 |
City | Our Method | GAIA | NUACI-Based | MODIS500 | FCN | Landsat | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Area | Kappa | Area | Kappa | Area | Kappa | Area | Kappa | Area | Kappa | Area | |
Beijing | 8443 | 0.7978 | 12,935 | 0.5834 | 10,201 | 0.7012 | 14,085 | 0.6269 | 7712 | 0.7982 | 7736 |
Shanghai | 10,737 | 0.7879 | 11,155 | 0.6075 | 6744 | 0.6067 | 12,332 | 0.7494 | 10,630 | 0.8119 | 9181 |
Guangzhou | 6847 | 0.7328 | 6393 | 0.6124 | 4306 | 0.6165 | 6154 | 0.7137 | 5490 | 0.7440 | 4667 |
Wuhan | 3610 | 0.7810 | 4163 | 0.5759 | 2883 | 0.6850 | 3719 | 0.7065 | 4255 | 0.7214 | 3224 |
Lanzhou | 820 | 0.8256 | 1309 | 0.6376 | 1085 | 0.6725 | 1825 | 0.5308 | 1242 | 0.7083 | 887 |
Urumqi | 1606 | 0.8263 | 2963 | 0.6003 | 849 | 0.4396 | 1521 | 0.7722 | 1578 | 0.8137 | 1575 |
Kunming | 2259 | 0.8288 | 3016 | 0.6524 | 1920 | 0.6168 | 3685 | 0.5677 | 3519 | 0.6967 | 2150 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Zhang, F.; Du, Z.; Liu, R. An Unsupervised Urban Extent Extraction Method from NPP-VIIRS Nighttime Light Data. Remote Sens. 2020, 12, 3810. https://doi.org/10.3390/rs12223810
Chen X, Zhang F, Du Z, Liu R. An Unsupervised Urban Extent Extraction Method from NPP-VIIRS Nighttime Light Data. Remote Sensing. 2020; 12(22):3810. https://doi.org/10.3390/rs12223810
Chicago/Turabian StyleChen, Xiuxiu, Feng Zhang, Zhenhong Du, and Renyi Liu. 2020. "An Unsupervised Urban Extent Extraction Method from NPP-VIIRS Nighttime Light Data" Remote Sensing 12, no. 22: 3810. https://doi.org/10.3390/rs12223810
APA StyleChen, X., Zhang, F., Du, Z., & Liu, R. (2020). An Unsupervised Urban Extent Extraction Method from NPP-VIIRS Nighttime Light Data. Remote Sensing, 12(22), 3810. https://doi.org/10.3390/rs12223810