Three-Dimensional Time Series Movement of the Cuolangma Glaciers, Southern Tibet with Sentinel-1 Imagery
"> Figure 1
<p>Study area and SAR dataset coverages: (<b>a</b>) Spatial coverage of ascending and descending Sentinel-1 datasets represented on SRTM DEM; (<b>b</b>) The terrain of glacier No.1, (<b>c</b>) The terrain of glacier No.2.</p> "> Figure 2
<p>The distributions of temporal and perpendicular baselines of ascending and descending offset pairs used in this study: (<b>a</b>) shows the offset pairs generated by ascending Sentinel-1 data; (<b>b</b>) shows the offset pairs generated by descending Sentinel-1 data.</p> "> Figure 3
<p>Flowchart of 3D time series displacement estimation.</p> "> Figure 4
<p>The 3D velocities maps and optical images of the two glaciers. Color represents the vertical velocity and arrows represents the horizontal velocity. (<b>a</b>) the 3D velocities for glacier No.1; (<b>b</b>) the 3D velocities for glacier No.2; (<b>c</b>) Landsat-8 image of glacier No.1 in 2018; the red rectangle indicates the stable region; (<b>d</b>) Landsat-8 image of glacier No.2 in 2018.</p> "> Figure 5
<p>3D velocities and elevations of glacier No.1 and glacier No.2 in 2018, where red and green lines represent the horizontal and vertical annual velocity, respectively. Profiles of AA′ and BB′ are shown on <a href="#remotesensing-12-03466-f004" class="html-fig">Figure 4</a>a and profiles of CC′ and DD′ are shown on <a href="#remotesensing-12-03466-f004" class="html-fig">Figure 4</a>b. The error bar indicated the standard deviation of the velocity in the area near the selected profiles. (<b>a</b>) Profile A-A′; (<b>b</b>) Profile B-B′; (<b>c</b>) Profile C-C′; (<b>d</b>) Profile D-D′.</p> "> Figure 6
<p>Time series of 3D displacement for glacier No.1 from 23 January to 25 December, 2018. Color represents the vertical displacement and arrows represent the horizontal displacement. (<b>a</b>) 20180123–20180429; (<b>b</b>) 20180123–20180604; (<b>c</b>) 20180123–20180803; (<b>d</b>) 20180123–20181002; (<b>e</b>) 20180123–20181225.</p> "> Figure 7
<p>Time series of 3D displacement for glacier No.2 from 23 January to 25 December, 2018. Color represents the vertical displacement and arrows represent the horizontal displacement. (<b>a</b>) 20180123–20180429; (<b>b</b>) 20180123–20180604; (<b>c</b>) 20180123–20180803; (<b>d</b>) 20180123–20181002; (<b>e</b>) 20180123–20181225.</p> "> Figure 8
<p>3D deformation time series for points P1-P6. Red square and green triangle represent the horizontal and vertical time series movement, respectively. Locations of P1-P3 are shown on <a href="#remotesensing-12-03466-f006" class="html-fig">Figure 6</a>a and P4-P6 are shown on <a href="#remotesensing-12-03466-f007" class="html-fig">Figure 7</a>a. Negative values refer to downward movement. The red error bars indicated the STD of the average 3<math display="inline"><semantics> <mrow> <mtext> </mtext> <mo>×</mo> <mo> </mo> </mrow> </semantics></math>3 pixels in horizontal directions and the green error bars indicated the errors for vertical direction. (<b>a</b>)–(<b>f</b>) represents the 3D time series displacement of points P1-P6, respectively.</p> "> Figure 9
<p>Correlation between glaciers horizontal velocities and precipitation in 2018. (<b>a</b>) point P2 at glacier No.1; (<b>b</b>) point P4 at glacier No.2. Locations of points P2 and P4 are shown on <a href="#remotesensing-12-03466-f006" class="html-fig">Figure 6</a> and <a href="#remotesensing-12-03466-f007" class="html-fig">Figure 7</a>, respectively. The error bars indicated by the STD of the average 3 × 3 pixels in horizontal direction.</p> "> Figure 10
<p>Graph of the 3D glacier displacement in four different periods. (<b>a</b>) the horizontal displacement for glacier No.1; (<b>b</b>) the vertical displacement for glacier No.1; (<b>c</b>) the horizontal displacement for glacier No.2; (<b>d</b>) the vertical displacement for glacier No.2; DJF: December, January, February; MAM: March, April, May; JJA: June, July, August; SON: September, October, November. The positive values indicate upward movement while the negative values show downward movement, respectively.</p> "> Figure 11
<p>Diagrammatic representation of debris-covered glacier regimes. (<b>a</b>) Regime 1: active ice flow; (<b>b</b>) Regime 2: downwasting ice; (<b>c</b>) Regime 3: calving retreat. Red arrows represent basal flowing, red dotted lines represent the equilibrium line altitudes (ELAS), blue circles represent small lakes, blue shadow represents the basal surface, light orange shadow represents the terrain, orange shadow represents the surface at the terminal of a glacier, the white strips at the terminal in (<b>a</b>,<b>b</b>) represent the flow of glacial melting, gray shading in (<b>c</b>) indicates a glacial lake, and green shadow indicates the surface at the terminal of a lake. (modified from Been et al. [<a href="#B2-remotesensing-12-03466" class="html-bibr">2</a>]).</p> ">
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. Datasets
3. Methods
3.1. Offset-Tracking
3.2. Estimation of 3D Deformation Fields
3.3. Time Series of 3D Displacement
4. Results and Analyses
4.1. 3D Glacier Velocities Fields
4.2. Time Series of 3D Glacier Movement
4.3. Uncertainty Analysis
5. Discussion
5.1. The Correlation between Precipitation and Glacier Surface Velocity
5.2. 3D Glacier Movement with Seasonal Characteristics
5.3. The Evolution of Debris-Covered Glaciers
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dyurgerov, M.B.; Meier, M.F. Twentieth century climate change: Evidence from small glaciers. Proc. Natl. Acad. Sci. USA 2000, 97, 1406–1411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Been, D.I.; Bolach, T.; Hands, K.; Gulley, J.; Luckman, A.; Nicholson, L.I.; Quincey, D.; Thompson, S.; Toumi, R.; Wiseman, S. Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards. Earth Sci. Rev. 2012, 114, 156–174. [Google Scholar] [CrossRef] [Green Version]
- Maurer, J.M.; Schaefer, J.M.; Rupper, S.; Corley, A. Acceleration of ice loss across the Himalayas over the past 40 years. Sci. Adv. 2019, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, O.; Bhattacharya, A.; Bhambri, R.; Bolch, T. Glacial lakes exacerbate Himalayan glacier mass loss. Sci. Rep. 2019, 9. [Google Scholar] [CrossRef] [Green Version]
- Kääb, A.; Berthier, E.; Nuth, C.; Gardelle, J.; Arnaud, Y. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 2012, 488, 495–498. [Google Scholar] [CrossRef]
- Gardelle, J.; Berthier, E.; Arnaud, Y. Slight mass gain of Karakoram glaciers in the early twenty-first century. Nat. Geosci. 2012, 5, 322–325. [Google Scholar] [CrossRef]
- Pellicciotti., F.; Stephan, C.; Miles, E.; Herreid, S.; Immerzeel, W.W.; Bolch, T. Mass-Balance changes of the debris-covered glaciers in the Langtang Himal, Nepal, from 1974 to 1999. J. Glaciol. 2015, 61, 373–386. [Google Scholar] [CrossRef] [Green Version]
- Kraaijenbrink, P.; Meijer, S.W.; Shea, J.M.; Pellicciotti, F.; Immerzeel, W.M. Seasonal surface velocities of a Himalayan glacier derived by automated correlation of unmanned aerial vehicle imagery. Ann. Glaciol. 2016, 57, 103–113. [Google Scholar] [CrossRef] [Green Version]
- Kääb, A. Combination of SRTM3 and repeat ASTER data for deriving alpine glacier flow velocities in the Bhutan Himalaya. Remote Sens. Environ. 2005, 94, 463–474. [Google Scholar] [CrossRef]
- Quincey, D.J.; Luckman, A.; Benn, D. Quantification of Everest region glacier velocities between 1992 and 2002, using satellite radar interferometry and feature tracking. J. Glaciol. 2009, 55, 596–606. [Google Scholar] [CrossRef] [Green Version]
- Berthier, E.; Raup, B.; Scambos, T. New velocity map and mass-balance estimate of Mertz Glacier, East Antarctica, derived from Landsat sequential imagery. J. Glaciol. 2003, 49, 503–511. [Google Scholar] [CrossRef] [Green Version]
- Trouvé, E.; Vasile, G.; Gay, M.; Bombrun, L.; Grussenmeyer, P.; Landes, T.; Nicolas, J.; Bolon, P.; Petillot, I.; Julea, A. Combining airborne photographs and spaceborne SAR data to monitor temperate glaciers: Potentials and limits. IEEE Trans. Geosci. Remote Sens. 2007, 45, 905–924. [Google Scholar] [CrossRef] [Green Version]
- Tong, X.; Liu, S.; Li, R.; Xie, H.; Liu, S.; Qiao, G.; Feng, T.; Feng, T.; Tian, Y.; Ye, Z. Multi-Track extraction of two-dimensional surface velocity by the combined use of differential and multiple-aperture InSAR in the Amery Ice Shelf, East Antarctica. Remote Sens. Environ. 2018, 204, 122–137. [Google Scholar] [CrossRef]
- Sundal, A.V.; Shepherd, A.; Nienow, P.; Hanna, E.; Palmer, S.; Huybrechts, P. Melt-Induced speed-up of Greenland ice sheet offset by efficient subglacial drainage. Nature 2011, 469, 521–524. [Google Scholar] [CrossRef] [PubMed]
- Nobakht, M.; Motagh, M.; Wetzel, H.U.; Roessner, S.; Kaufmann, H. The Inylchek Glacier in Kyrgyzstan, Central Asia: Insight on surface kinematics from optical remote sensing imagery. Remote Sens. 2014, 6, 841–856. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Li, J.; Zhao, R.; Ding, X. Glacier mass balance in the Qinghai-Tibet Plateau and its surroundings from the mid-1970s to 2000 based on Hexagon KH-9 and SRTM DEMs. Remote Sens. Environ. 2018, 210, 96–112. [Google Scholar] [CrossRef]
- Jeremie, M.; Eric, R.; Bernd, S.; Romain, M. Comprehensive annual ice sheet velocity mapping using Landsat-8, Sentinel-1, and RADARSAT-2 data. Remote Sens. 2017, 9, 364. [Google Scholar]
- Luckman, A.; Quincey, D.; Bevan, S. The potential of satellite radar interferometry and feature tracking for monitoring flow rates of Himalayan glaciers. Remote Sens. Environ. 2007, 111, 172–181. [Google Scholar] [CrossRef]
- Erten, E.; Reigber, A.; Hellwich, O.; Prats, P. Glacier velocity monitoring by maximum likelihood texture tracking. IEEE Trans. Geosci. Remote Sens. 2009, 47, 394–405. [Google Scholar] [CrossRef] [Green Version]
- Strozzi, T.; Luckman, A.; Murray, T. Glacier motion estimation using SAR offset-tracking procedures. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2384–2391. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, R.M.; Engelhardt, H. Satellite radar interferometry for monitoring ice sheet motion: Application to an Antarctic ice stream. Science 1993, 262, 1525–1530. [Google Scholar] [PubMed]
- Bechor, N.B.D.; Zebker, H.A. Measuring two-dimensional movements using a single InSAR pair. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Li, Z.; Wu, L.; Xu, B.; Hu, J.; Zhou, Y.; Miao, Z. Deriving a time series of 3D glacier motion to investigate interactions of a large mountain glacial system with its glacial lake: Use of Synthetic Aperture Radar Pixel Offset-Small Baseline Subset technique. J. Hydrol. 2018, 559, 596–608. [Google Scholar]
- Neelmeijer., J.; Motagh, M.; Wetzel, H.U. Estimating spatial and temporal variability in surface kinematics of the Inylchek glacier, central Asia, using TerraSAR–X data. Remote Sens. 2014, 6, 9239–9259. [Google Scholar]
- Dehecq, A.; Gourmelen, N.; Gardner, A.S.; Brun, F.; Goldberg, D.; Nienow, P.W.; Berthier, E.; Vincent, C.; Wagnon, P.; Trouve, E. Twenty-First century glacier slowdown driven by mass loss in High Mountain Asia. Nat. Geosci. 2019, 12, 22–27. [Google Scholar]
- Mohr, J.J.; Reeh, N.; Madsen, S. Three-Dimensional glacial flow and surface elevation measured with radar interferometry. Nature 1998, 391, 273–276. [Google Scholar]
- Lutz, A.F.; Immerzeel, W.W.; Shrestha, A.B.; Bierkens, M.F.P. Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nat. Clim. Chang. 2014, 4, 587–592. [Google Scholar]
- Yao, T.; Yang, W. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang. 2012, 1580, 1–5. [Google Scholar]
- Xie, Z.C.; Liu, C.H. Introduction to Glaciology; Shanghai Popular Science Press: Shanghai, China, 2010. (In Chinese) [Google Scholar]
- Michel, R.; Avouac, J.P.; Taboury, J. Measuring ground displacements from SAR amplitude images: Application to the Landers earthquake. Geophys. Res. Lett. 1999, 26, 875–878. [Google Scholar]
- Yasuda, T.; Furuya, M. Short-Term glacier velocity changes at West Kunlun Shan, Northwest Tibet, detected by synthetic aperture radar data. Remote Sens. Environ. 2013, 128, 87–106. [Google Scholar]
- Bindschadler, R.; Vornberger, P.; Blankenship, D.; Scambos, T.; Jacobel, R. Surface velocity and mass balance of Ice Streams D and E, West Antarctica. J. Glaciol. 1996, 42, 461–475. [Google Scholar] [CrossRef] [Green Version]
- Bamler, R.; Eineder, M. Accuracy of differential shift estimation by correlation and split-bandwidth interferometry for wideband and delta-k SAR systems. IEEE Geosci. Remote Sens. Lett. 2005, 2, 151–155. [Google Scholar] [CrossRef]
- Lai, P.; Vaka, D.; Rao, Y.S. Mapping surface flow velocities of Siachen and Gangotri glaciers using TerraSAR-X and Sentinel-1A data by intensity tracking. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 325–329. [Google Scholar] [CrossRef] [Green Version]
- Varugu, B.K.; Rao, Y.S. Glacier retreat monitoring from SAR coherence images: Application to Gangotri glacier. SPIE Asia Pac. Remote Sens. 2016, 987715. [Google Scholar] [CrossRef]
- Muhuri, A.; Bhattacharya, A.; Natsuaki, R.; Hirose, A. Glacier surface velocity estimation using stokes vector correlation. In Proceedings of the IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Singapore, 1–4 September 2015. [Google Scholar]
- Liu, X.J.; Zhao, C.Y.; Zhang, Q.; Li, Z.H. Deformation of the Baige landslide, Tibet, China, revealed through the integration of cross-platform ALOS/PALSAR-1 and ALOS/PALSAR-2 SAR observations. Geophys. Res. Lett. 2020, 47. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Li, Z.; Ding, X.; Wang, Q.; Zhu, J.; Wang, C. Investigating mountain glacier motion with the method of SAR intensity-tracking: Removal of topographic effects and analysis of the dynamic patterns. Earth Sci. Rev. 2014, 138, 179–195. [Google Scholar] [CrossRef]
- Sansosti, E.; Berardino, P.; Manunta, M.; Serafino, F.; Fornaro, G. Geometrical SAR image registration. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2861–2870. [Google Scholar] [CrossRef]
- Raucoules, D.; De Michele, M.; Malet, J.P.; Ulrich, P. Time-Variable 3D ground displacements from High-Resolution Synthetic Aperture Radar (SAR). Application to La Valette landslide (South French Alps). Remote Sens. Environ. 2013, 139, 198–204. [Google Scholar] [CrossRef] [Green Version]
- Nag1ler, T.; Rott, H.; Hetzenecker, M.; Wuite, J.; Potin, P. The Sentinel-1 Mission: New opportunities for ice sheet observations. Remote Sens. 2015, 7, 9371–9389. [Google Scholar] [CrossRef] [Green Version]
- Strozzi, T.; Paul, F.; Wiesmann, A.; Schellenberger, T.; Kaab, A. Circum-Arctic changes in the flow of glaciers and ice caps from satellite SAR data between the 1990s and 2017. Remote Sens. 2017, 9, 947. [Google Scholar] [CrossRef] [Green Version]
- Yan, S.Y.; Liu, G.; Wang, Y.J.; Ruan Z., X. Accurate Determination of Glacier Surface Velocity Fields with a DEM-Assisted Pixel-Tracking Technique from SAR imagery. Remote Sens. 2015, 7, 10898–10916. [Google Scholar] [CrossRef] [Green Version]
- Dehecq, A.; Gourmelen, N.; Troive, E. Deriving large-scale glacier velocities from a complete satellite archive: Application to the Pamir-Karakoram-Himalaya. Remote Sens. Environ. 2015, 162, 55–66. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.Y.; Yi, S.; Sun, W.K. Consistent interannual changes in glacier mass balance and their relationship with climate variation on the periphery of the Tibetan Plateau. Geophys. J. Int. 2018, 214, 573–582. [Google Scholar] [CrossRef]
- Fujita, K. Effect of precipitation seasonality on climatic sensitivity of glacier mass balance. Earth Planet. Sci. Lett. 2008, 276, 14–19. [Google Scholar] [CrossRef]
- Shi, Y. Characteristics of late Quaternary monsoonal glaciation on the Tibetan Plateau and in East Asia. Quat. Int. 2002, 97, 79–91. [Google Scholar] [CrossRef]
- Liu, X.; Chen, B. Climatic warming in the Tibetan Plateau during recent decades. Int. J. Climatol. 2000, 20, 1729–1742. [Google Scholar] [CrossRef]
- Maussion, F.; Scherer, D.; Mölg, T.; Collier, E.; Curio, J.; Finkelnburg, R. Precipitation seasonality and variability over the Tibetan Plateau as resolved by the high Asia reanalysis. J. Clim. 2013, 27, 1910–1927. [Google Scholar] [CrossRef] [Green Version]
- Chikita, K.; Jha, J.; Yamada, T. Sedimentary effects on the expansion of a Himalayan supraglacial lake. Glob. Planet. Chang. 2001, 28, 23–34. [Google Scholar] [CrossRef]
- Bolch, T.; Buchroithner, M.; Peters, J.; Baessler, M.; Bajracharya, S. Identification of glacier motion and potentially dangerous glacial lakes in the Everest region/Nepal using spaceborne imagery. Nat. Hazards Earth Syst. Sci. 2008, 1329–1340. [Google Scholar] [CrossRef] [Green Version]
- Scherler, D.; Bookhagen, B.; Strecker, M.R. Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nat. Geosci. 2011, 4, 156–159. [Google Scholar] [CrossRef]
- Anderson, L.S.; Anderson, R.S. Debris thickness patterns on debris-covered glaciers. Geomorphology 2017, 311, 1–12. [Google Scholar] [CrossRef]
- Fujita, K.; Sakai, A. Modelling runoff from a Himalayan debris-covered glacier. Hydrol. Earth Syst. Sci. 2014, 18, 2679–2694. [Google Scholar] [CrossRef] [Green Version]
SAR Sensor | Sentinel-1 | Sentinel-1 |
---|---|---|
Track No. | 85 | 121 |
Orbit direction | Ascending | Descending |
Incidence angle at scene center (°) | 39.327 | 39.275 |
Azimuth angle (°) | −12.570 | −169.822 |
Pixel spacing (azimuth ) | 13.972.330 | 13.972.330 |
Number of scenes | 30 | 30 |
Acquisition period(yyyymmdd) | 20180123–20181225 | 20180102–20181228 |
Points | Our Results (m/year) | Published Results(m/year) | Difference(m/year) |
---|---|---|---|
P1 | 1.50 | 2.03 | 0.53 |
P2 | 15.78 | 15.40 | 0.38 |
P3 | 8.83 | 9.78 | 0.95 |
P4 | 6.40 | 8.13 | 1.73 |
P5 | 6.32 | 6.34 | 0.02 |
P6 | 4.01 | 5.28 | 1.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Zhao, C.; Lu, Z.; Yang, C.; Zhang, Q. Three-Dimensional Time Series Movement of the Cuolangma Glaciers, Southern Tibet with Sentinel-1 Imagery. Remote Sens. 2020, 12, 3466. https://doi.org/10.3390/rs12203466
Yang L, Zhao C, Lu Z, Yang C, Zhang Q. Three-Dimensional Time Series Movement of the Cuolangma Glaciers, Southern Tibet with Sentinel-1 Imagery. Remote Sensing. 2020; 12(20):3466. https://doi.org/10.3390/rs12203466
Chicago/Turabian StyleYang, Liye, Chaoying Zhao, Zhong Lu, Chengsheng Yang, and Qin Zhang. 2020. "Three-Dimensional Time Series Movement of the Cuolangma Glaciers, Southern Tibet with Sentinel-1 Imagery" Remote Sensing 12, no. 20: 3466. https://doi.org/10.3390/rs12203466
APA StyleYang, L., Zhao, C., Lu, Z., Yang, C., & Zhang, Q. (2020). Three-Dimensional Time Series Movement of the Cuolangma Glaciers, Southern Tibet with Sentinel-1 Imagery. Remote Sensing, 12(20), 3466. https://doi.org/10.3390/rs12203466