Assessment of Global Ionospheric Maps Performance by Means of Ionosonde Data
"> Figure 1
<p>Location of the four ionosondes used for the GIMs assessment.</p> "> Figure 2
<p>Comparison of the <span class="html-italic">fo</span>F<sub>2</sub> measured with ionosondes and VTEC values estimated for the respective ionosondes using CODG (<b>a</b>,<b>c</b>) and UQRG (<b>b</b>,<b>d</b>).</p> "> Figure 3
<p>Dst and F<sub>10.7</sub> indices for the period of 020 to 026 of 2015.</p> "> Figure 4
<p>One-week RMS values of the differences between <span class="html-italic">fo</span>F<sub>2</sub> values estimated with the help of the different GIMs to describe the <span class="html-italic">fo</span>F<sub>2</sub> variation between the values measured at the pair of ionosondes, considering the four approaches described for two pairs of ionosondes: (<b>a</b>) FZA0M and SAA0K, the smallest distance; and (<b>b</b>) CAJ2M and BVJ03, the longest distance.</p> "> Figure 5
<p>Comparison of <span class="html-italic">fo</span>F<sub>2</sub> measured with ionosondes and the values estimated with GIMs versus VTEC values for the respective ionosondes using CODG (<b>a</b>,<b>c</b>) and UQRG (<b>b</b>,<b>d</b>).</p> "> Figure 6
<p>Differences between <span class="html-italic">fo</span>F<sub>2</sub> values measured at the ionosondes and estimated using GIMs, for two pairs of ionosondes: (<b>a</b>) FZA0M and SAA0K, the closest one; (<b>b</b>) CAJ2M and BVJ03, the most distant one.</p> "> Figure 7
<p>Differences between slab thickness are estimated for the ionosonde positions of two pairs of ionosondes: (<b>a</b>) FZA0M and SAA0K, the closest one; and (<b>b</b>) CAJ2M and BVJ03, the most distant one.</p> "> Figure 8
<p>Differences between shape function peak estimated for the ionosonde positions of two pairs of ionosondes: (<b>a</b>) FZA0M and SAA0K, the closest one; (<b>b</b>) CAJ2M and BVJ03, the most distant one.</p> "> Figure 9
<p>Mean RMS of the differences between <span class="html-italic">fo</span>F<sub>2</sub> values measured at the ionosondes and estimated using GIMs versus the distance of the ionosondes pairs considering one-week data: (<b>a</b>) test week (020-026/2015); (<b>b</b>) low (166-172/2015); (<b>c</b>) high (288-294/2015) ionospheric electron content.</p> "> Figure 10
<p>Mean RMS of the differences between <span class="html-italic">fo</span>F<sub>2</sub> values measured at the ionosondes and estimated using GIMs versus the distance of the ionosondes pairs considering one-week data divided into pairs formed with ionosondes at different (right) and similar (left) latitudes: (<b>a</b>) test week (020-026/2015); (<b>b</b>) low (166-172/2015); (<b>c</b>) high (288-294/2015) ionospheric electron content.</p> "> Figure 11
<p>Dst and F<sub>10.7</sub> indices for the period of 1 to 365 of 2014 (<b>a</b>), 2015 (<b>b</b>), 2016 (<b>c</b>) and 2017 (<b>d</b>).</p> "> Figure 11 Cont.
<p>Dst and F<sub>10.7</sub> indices for the period of 1 to 365 of 2014 (<b>a</b>), 2015 (<b>b</b>), 2016 (<b>c</b>) and 2017 (<b>d</b>).</p> "> Figure 12
<p>RMS values of the differences between <span class="html-italic">fo</span>F<sub>2</sub> values estimated with GIMs and measured at the ionosondes for the six pairs of ionosondes for one-year data (2015).</p> "> Figure 13
<p>Mean RMS of the differences between <span class="html-italic">fo</span>F<sub>2</sub> values measured at the ionosondes and estimated using GIMs versus the distance of the ionosondes pairs considering one-year data (2015).</p> "> Figure 14
<p>RMS values of the differences between <span class="html-italic">fo</span>F<sub>2</sub> values estimated with two GIMs products (CODG and UQRG) and measured at the ionosondes for the six pairs of ionosondes for one-year data: (<b>a</b>) 2014; (<b>b</b>) 2015; (<b>c</b>) 2016; (<b>d</b>) 2017.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Strategy Selection
3.2. Daily and Weekly Analysis
3.3. Time Series Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hernández-Pajares, M.; Juan, J.; Sanz, J.; Orus, R.; Garcia-Rigo, A.; Feltens, J.; Komjathy, A.; Schaer, S.; Krankowski, A. The IGS VTEC maps: A reliable source of ionospheric information since 1998. J. Geod. 2009, 83, 263–275. [Google Scholar] [CrossRef]
- Roma-Dollase, D.; Hernández-Pajares, M.; Krankowski, A.; Kotulak, K.; Ghoddousi-Fard, R.; Yuan, Y.; Li, Z.; Zhang, H.; Shi, C.; Wang, C.; et al. Consistency of seven different GNSS global ionospheric mapping techniques during one solar cycle. J. Geod. 2017, 92, 691–706. [Google Scholar] [CrossRef] [Green Version]
- Bilitza, D.; Altadill, D.; Truhlik, V.; Shubin, V.; Galkin, I.; Reinisch, B.; Huang, X. International Reference Ionosphere 2016: From ionospheric climate to real-time weather predictions. Space Weather 2017, 15, 418–429. [Google Scholar] [CrossRef]
- Kilifarska, N.A.; Ouzounov, D.P. Theoretical modeling of foF2 and hmF2 ionospheric parameters during a strong magnetic disturbance. J. Geophys. Res. Space Phys. 2001, 106, 30415–30428. [Google Scholar] [CrossRef]
- Odeyemi, O.O.; Adeniyi, J.O.; Oladipo, O.A.; Olawepo, A.O.; Adimula, I.A.; Oyeyemi, E.O. Investigation on slab-thickness and B0 over an equatorial station in Africa and comparison with IRI model. J. Atmos. Sol. Terr. Phys. 2018, 179, 293–306. [Google Scholar] [CrossRef]
- Hu, A.; Carter, B.; Currie, J.; Norman, R.; Wu, S.; Wang, X.; Zhang, K. Modeling of topside ionospheric vertical scale height based on ionospheric radio occultation measurements. J. Geophys. Res. Space Phys. 2019, 124, 4926–4942. [Google Scholar] [CrossRef]
- Liu, A.; Wang, N.; Li, Z.; Wang, Z.; Yuan, H. Assessment of NeQuick and IRI-2016 models during different geomagnetic activities in global scale: Comparison with GPS-TEC, dSTEC, Jason-TEC and GIM. Adv. Space Res. 2019, 63, 3978–3992. [Google Scholar] [CrossRef]
- Wang, N.; Li, Z.; Yuan, Y.; Li, M.; Huo, X.; Yuan, C. Ionospheric correction using GPS Klobuchar coefficients with an empirical night-time delay model. Adv. Space Res. 2019, 63, 886–896. [Google Scholar] [CrossRef]
- Goss, A.; Schmidt, M.; Erdogan, E.; Seitz, F. Global and Regional High-Resolution VTEC Modelling Using a Two-Step B-Spline Approach. Remote Sens. 2020, 12, 1198. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Fernandez, M.; Hernandez-Pajares, M.; Juan, J.M.; Sanz, J. Performance of the improved Abel transform to estimate electron density profiles from GPS occultation data. GPS Solut. 2005, 9, 105–110. [Google Scholar] [CrossRef]
- Habarulema, J.B.; Ssessanga, N. Adapting a climatology model to improve estimation of ionosphere parameters and subsequent validation with radio occultation and ionosonde data. Space Weather 2016, 15, 84–98. [Google Scholar] [CrossRef]
- Prol, F.; Camargo, P.; Hernández-Pajares, M.; Muella, M. A new method for ionospheric tomography and its assessment by ionosonde electron density, GPS TEC, and single-frequency PPP. IEEE Trans. Geosci. Remote Sens. 2018, 57, 2571–2582. [Google Scholar] [CrossRef]
- Ho, C.M.; Wilson, B.D.; Mannucci, A.J.; Lindqwister, U.J.; Yuan, D.N. A comparative study of ionospheric total electron content measurements using global ionospheric maps of GPS, TOPEX radar, and the Bent model. Radio Sci. 1997, 32, 1499–1512. [Google Scholar] [CrossRef]
- Hernández-Pajares, M.; Roma-Dollase, D.; Krankowski, A.; García-Rigo, A.; Orús-Pérez, R. Methodology and consistency of slant and vertical assessments for ionospheric electron content models. J. Geod. 2017, 91, 1405–1414. [Google Scholar] [CrossRef]
- Erdogan, E.; Schmidt, M.; Goss, A.; Görres, B.; Seitz, F. Adaptive Modeling of the Global Ionosphere Vertical Total Electron Content. Remote Sens. 2020, 12, 1822. [Google Scholar] [CrossRef]
- Araujo-Pradere, E.; Weatherhead, E.; Dandenault, P.; Bilitza, D.; Wilkinson, P.; Coker, C.; Akmaev, R.; Beig, G.; Buresová, D.; Paxton, L.; et al. Critical issues in ionospheric data quality and implications for scientific studies. Radio Sci. 2019, 54, 440–454. [Google Scholar] [CrossRef] [Green Version]
- Altinay, O.; Tulunay, E.; Tulunay, Y. Forecasting of ionospheric critical frequency using neural networks. Geophys. Res. Lett. 1997, 24, 1467–1470. [Google Scholar] [CrossRef]
- Pietrella, M.; Perrone, L. A local ionospheric model for forecasting the critical frequency of the F2 layer during disturbed geomagnetic and ionospheric conditions. Ann. Geophys. 2008, 26, 323–334. [Google Scholar] [CrossRef] [Green Version]
- Spalla, P.; Ciraolo, L. TEC and foF2 comparison. Ann. Geophys. 1994, 37, 929–938. [Google Scholar] [CrossRef]
- Leitinger, R.; Ciraolo, L.; Kersley, L.; Kouris, S.S.; Spalla, P. Relations between electron content and peak density: Regular and extreme behaviour. Ann. Geophys. 2004, 47, 1093–1107. [Google Scholar] [CrossRef]
- Kouris, S.S.; Xenos, T.D.; Polimeris, K.V.; Stergiou, D. TEC and foF2 variations: Preliminary results. Ann. Geophys. 2004, 47. [Google Scholar] [CrossRef]
- Cander, L.R. Spatial correlation of foF2 and vTEC under quiet and disturbed ionospheric conditions: A case study. Acta Geophys. 2007, 55, 410–423. [Google Scholar] [CrossRef]
- Gerzen, T.; Jakowski, N.; Wilken, V.; Hoque, M. Reconstruction of F2 layer peak electron density based on operational vertical total electron content maps. Ann. Geophys. 2013, 31, 1241–1249. [Google Scholar] [CrossRef] [Green Version]
- Krankowski, A.; Shagimuratov, I.I.; Baran, L.W. Mapping of foF2 over Europe based on GPS-derived TEC data. Adv. Space Res. 2007, 39, 651–660. [Google Scholar] [CrossRef]
- Ssessanga, N.; Mckinnell, L.A.; Habarulema, J.B. Estimation of foF2 from GPS TEC over the South African region. J. Atmos. Sol. Terr. Phys. 2014, 112, 20–30. [Google Scholar] [CrossRef]
- Pignalberi, A.; Habarulema, J.B.; Pezzopane, M.; Rizzi, R. On the development of a method for updating an empirical climatological ionospheric model by means of assimilated vTEC measurements from a GNSS receiver network. Space Weather 2019, 17, 1131–1164. [Google Scholar] [CrossRef] [Green Version]
- CDDIS. Available online: https://cddis.nasa.gov/Data_and_Derived_Products/GNSS/atmospheric_products.html (accessed on 16 May 2020).
- EMBRACE. Available online: http://www2.inpe.br/climaespacial/SpaceWeatherDataShare/search/ (accessed on 21 May 2020).
- Kelley, M.C. The Earth’s Ionosphere: Plasma Physics and Electrodynamics; Academic Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Titheridge, J. The slab thickness of the mid-latitude ionosphere. Planet. Space Sci. 1973, 21, 1775–1793. [Google Scholar] [CrossRef]
- Hernández-Pajares, M.; Juan, J.; Sanz, J. Improving the Abel inversion by adding ground GPS data to LEO radio occultations in ionospheric sounding. Geophys. Res. Lett. 2000, 27, 2473–2476. [Google Scholar] [CrossRef] [Green Version]
- OMNIWEB. Available online: https://omniweb.gsfc.nasa.gov/form/dx1.html (accessed on 14 October 2020).
- Loewe, C.A.; Prölss, G.W. Classification and mean behavior of magnetic storms. J. Geophys. Res. Space Phys. 1997, 102, 14209–14213. [Google Scholar] [CrossRef]
Product | Description |
---|---|
corg | Rapid solution (CODE) |
codg | Final solution (CODE) |
ehrg | Rapid high-rate solution, one map per hour, (ESA) |
esrg | Rapid solution (ESA) |
esag | Final solution (ESA) |
igrg | Rapid solution (IGS combined) |
igsg | Final combined solution (IGS combined) |
jplg | Final solution (JPL) |
uprg | Rapid solution (UPC) |
upcg | Final solution (UPC) |
uqrg | Rapid high-rate solution, one map every 15 min, (UPC) |
whrg | Rapid solution (WHU) |
whug | Final solution (WHU) |
Ionosonde Pair | Distance (km) |
---|---|
FZA0M_SAA0K | 659.97 |
SAA0K_BVJ03 | 1915.83 |
CAJ2M_FZA0M | 2215.02 |
CAJ2M_SAA0K | 2247.41 |
FZA0M_BVJ03 | 2573.91 |
CAJ2M_BVJ03 | 3307.93 |
Config | corg | codg | ehrg | esrg | esag | igrg | igsg | jplg | upcg | uprg | uqrg | whrg | whug | off | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FZA0M_SAA0K | f1 | UT | 1.17 | 1.00 | 1.26 | 1.36 | 1.40 | 1.34 | 1.12 | 1.34 | 1.27 | 1.27 | 1.04 | 1.05 | 1.07 | 1.05 |
LT | 0.87 | 0.84 | 0.97 | 1.09 | 1.18 | 1.09 | 0.94 | 1.13 | 1.12 | 1.12 | 0.84 | 0.89 | 0.92 | 1.09 | ||
f2 | UT | 1.03 | 0.93 | 1.09 | 1.17 | 1.19 | 1.17 | 1.05 | 1.17 | 1.14 | 1.14 | 0.97 | 1.00 | 1.00 | 1.05 | |
LT | 0.95 | 0.88 | 1.00 | 1.07 | 1.11 | 1.08 | 0.99 | 1.09 | 1.10 | 1.10 | 0.91 | 0.95 | 0.95 | 1.09 | ||
SAA0K_BVJ03 | f1 | UT | 3.49 | 2.61 | 3.61 | 4.03 | 3.64 | 3.11 | 2.59 | 2.69 | 3.17 | 3.17 | 2.36 | 3.05 | 2.87 | 3.59 |
LT | 2.84 | 2.15 | 3.23 | 3.68 | 3.61 | 2.77 | 2.18 | 2.35 | 3.14 | 3.14 | 2.08 | 2.51 | 2.34 | 3.23 | ||
f2 | UT | 2.98 | 2.55 | 3.22 | 3.41 | 3.31 | 3.02 | 2.67 | 2.82 | 3.16 | 3.16 | 2.54 | 2.72 | 2.62 | 3.59 | |
LT | 2.90 | 2.47 | 3.14 | 3.33 | 3.32 | 2.92 | 2.56 | 2.69 | 3.09 | 3.09 | 2.47 | 2.59 | 2.50 | 3.23 | ||
CAJ2M_FZA0M | f1 | UT | 1.61 | 1.32 | 2.38 | 2.82 | 2.45 | 2.17 | 1.46 | 1.98 | 1.76 | 1.76 | 1.77 | 1.72 | 1.72 | 1.78 |
LT | 1.61 | 1.27 | 2.30 | 2.66 | 2.26 | 2.06 | 1.38 | 1.86 | 1.74 | 1.74 | 1.69 | 1.51 | 1.51 | 1.80 | ||
f2 | UT | 1.49 | 1.27 | 1.77 | 1.97 | 1.81 | 1.75 | 1.42 | 1.63 | 1.64 | 1.64 | 1.46 | 1.41 | 1.40 | 1.78 | |
LT | 1.51 | 1.30 | 1.78 | 1.96 | 1.80 | 1.76 | 1.43 | 1.63 | 1.65 | 1.65 | 1.45 | 1.38 | 1.37 | 1.80 | ||
CAJ2M_SAA0K | f1 | UT | 1.79 | 1.60 | 2.26 | 2.55 | 2.13 | 1.89 | 1.51 | 1.64 | 2.03 | 2.03 | 1.56 | 1.63 | 1.67 | 2.02 |
LT | 1.79 | 1.60 | 2.26 | 2.55 | 2.13 | 1.89 | 1.51 | 1.64 | 2.03 | 2.03 | 1.56 | 1.63 | 1.67 | 2.02 | ||
f2 | UT | 1.73 | 1.57 | 1.90 | 2.04 | 1.93 | 1.86 | 1.65 | 1.74 | 1.96 | 1.96 | 1.58 | 1.59 | 1.58 | 2.02 | |
LT | 1.73 | 1.57 | 1.90 | 2.04 | 1.93 | 1.86 | 1.65 | 1.74 | 1.96 | 1.96 | 1.58 | 1.59 | 1.58 | 2.02 | ||
FZA0M_BVJ03 | f1 | UT | 4.48 | 2.93 | 4.47 | 4.84 | 3.90 | 3.44 | 2.91 | 3.01 | 3.17 | 3.17 | 2.65 | 3.44 | 3.21 | 3.21 |
LT | 2.90 | 1.95 | 3.20 | 3.59 | 3.15 | 2.48 | 1.97 | 2.11 | 2.70 | 2.70 | 2.02 | 2.41 | 2.21 | 2.80 | ||
f2 | UT | 2.88 | 2.33 | 3.05 | 3.22 | 2.97 | 2.74 | 2.42 | 2.53 | 2.81 | 2.81 | 2.37 | 2.53 | 2.41 | 3.21 | |
LT | 2.68 | 2.16 | 2.85 | 3.03 | 2.82 | 2.54 | 2.22 | 2.31 | 2.64 | 2.64 | 2.20 | 2.29 | 2.18 | 2.80 | ||
CAJ2M_BVJ03 | f1 | UT | 4.74 | 2.45 | 5.68 | 6.55 | 4.31 | 3.67 | 2.47 | 2.61 | 2.89 | 2.89 | 2.61 | 2.82 | 2.47 | 2.95 |
LT | 3.88 | 1.87 | 5.23 | 6.22 | 4.28 | 3.38 | 2.02 | 2.28 | 2.88 | 2.88 | 2.41 | 2.28 | 1.96 | 2.65 | ||
f2 | UT | 2.92 | 1.99 | 3.57 | 3.94 | 3.22 | 2.87 | 2.14 | 2.34 | 2.59 | 2.59 | 2.26 | 2.21 | 2.04 | 2.95 | |
LT | 2.89 | 1.95 | 3.52 | 3.90 | 3.21 | 2.82 | 2.10 | 2.28 | 2.63 | 2.63 | 2.28 | 2.19 | 2.02 | 2.65 |
Ionosondes Pair | corg | codg | ehrg | esrg | esag | igrg | igsg | jplg | upcg | uprg | uqrg | whrg | whug | off |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FZA0M_SAA0K | 1.35 | 1.30 | 1.39 | 1.40 | 1.38 | 1.38 | 1.32 | 1.35 | 1.38 | 1.37 | 1.30 | 1.31 | 1.31 | 1.42 |
SAA0K_BVJ03 | 2.23 | 2.04 | 2.26 | 2.39 | 2.44 | 2.16 | 2.04 | 2.06 | 2.33 | 2.28 | 1.93 | 2.09 | 2.05 | 2.48 |
CAJ2M_FZA0M | 1.73 | 1.52 | 1.95 | 2.03 | 1.84 | 1.89 | 1.58 | 1.69 | 1.74 | 1.73 | 1.58 | 1.58 | 1.55 | 2.48 |
CAJ2M_SAA0K | 1.76 | 1.63 | 1.91 | 1.99 | 1.85 | 1.86 | 1.67 | 1.71 | 1.83 | 1.80 | 1.63 | 1.69 | 1.68 | 2.50 |
FZA0M_BVJ03 | 2.21 | 1.97 | 2.20 | 2.32 | 2.33 | 2.09 | 1.96 | 1.98 | 2.21 | 2.17 | 1.92 | 1.98 | 1.95 | 2.33 |
CAJ2M_BVJ03 | 2.03 | 1.54 | 2.21 | 2.46 | 2.25 | 2.04 | 1.63 | 1.69 | 1.95 | 1.93 | 1.66 | 1.65 | 1.57 | 2.67 |
Ionosondes Pair | corg | codg | ehrg | esrg | esag | igrg | igsg | jplg | upcg | uprg | uqrg | whrg | whug |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FZA0M_SAA0K | 5% | 8% | 2% | 1% | 3% | 3% | 7% | 5% | 3% | 4% | 8% | 8% | 8% |
SAA0K_BVJ03 | 10% | 18% | 9% | 4% | 2% | 13% | 18% | 17% | 6% | 8% | 22% | 16% | 17% |
CAJ2M_FZA0M | 30% | 39% | 21% | 18% | 26% | 24% | 36% | 32% | 30% | 30% | 36% | 36% | 38% |
CAJ2M_SAA0K | 30% | 35% | 24% | 20% | 26% | 26% | 33% | 32% | 27% | 28% | 35% | 32% | 33% |
FZA0M_BVJ03 | 5% | 15% | 6% | 0% | 0% | 10% | 16% | 15% | 5% | 7% | 18% | 15% | 16% |
CAJ2M_BVJ03 | 24% | 42% | 17% | 8% | 16% | 24% | 39% | 37% | 27% | 28% | 38% | 38% | 41% |
Ionosondes Pair | 2014 | 2015 | 2016 | 2017 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
codg | uqrg | off | codg | uqrg | off | codg | uqrg | off | codg | uqrg | off | |
FZA0M_SAA0K | 1.31 | 1.31 | 1.53 | 1.30 | 1.30 | 1.42 | 1.14 | 1.14 | 1.23 | 1.03 | 1.04 | 1.09 |
SAA0K_BVJ03 | 2.21 | 2.16 | 2.97 | 2.04 | 1.93 | 2.48 | 1.93 | 1.82 | 2.12 | 1.59 | 1.55 | 1.76 |
CAJ2M_FZA0M | 1.69 | 1.71 | 1.94 | 1.52 | 1.58 | 2.48 | 1.37 | 1.61 | 2.42 | 1.17 | 1.45 | 2.21 |
CAJ2M_SAA0K | 1.81 | 1.79 | 2.30 | 1.63 | 1.63 | 2.50 | 1.53 | 1.70 | 2.37 | 1.38 | 1.58 | 2.26 |
FZA0M_BVJ03 | 1.87 | 1.83 | 2.38 | 1.97 | 1.92 | 2.33 | 1.74 | 1.72 | 1.91 | 1.46 | 1.49 | 1.65 |
CAJ2M_BVJ03 | 2.05 | 2.54 | 2.71 | 1.54 | 1.66 | 2.67 | 1.37 | 1.57 | 2.42 | 1.17 | 1.36 | 2.28 |
Ionosondes Pair | 2014 | 2015 | 2016 | 2017 | ||||
---|---|---|---|---|---|---|---|---|
codg | uqrg | codg | uqrg | codg | uqrg | codg | uqrg | |
FZA0M_SAA0K | 14% | 14% | 8% | 8% | 7% | 7% | 6% | 5% |
SAA0K_BVJ03 | 26% | 27% | 18% | 22% | 9% | 14% | 10% | 12% |
CAJ2M_FZA0M | 13% | 12% | 39% | 36% | 43% | 33% | 47% | 34% |
CAJ2M_SAA0K | 21% | 22% | 35% | 35% | 35% | 28% | 39% | 30% |
FZA0M_BVJ03 | 21% | 23% | 15% | 18% | 9% | 10% | 12% | 10% |
CAJ2M_BVJ03 | 24% | 6% | 42% | 38% | 43% | 35% | 49% | 40% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jerez, G.O.; Hernández-Pajares, M.; Prol, F.S.; Alves, D.B.M.; Monico, J.F.G. Assessment of Global Ionospheric Maps Performance by Means of Ionosonde Data. Remote Sens. 2020, 12, 3452. https://doi.org/10.3390/rs12203452
Jerez GO, Hernández-Pajares M, Prol FS, Alves DBM, Monico JFG. Assessment of Global Ionospheric Maps Performance by Means of Ionosonde Data. Remote Sensing. 2020; 12(20):3452. https://doi.org/10.3390/rs12203452
Chicago/Turabian StyleJerez, Gabriel O., Manuel Hernández-Pajares, Fabricio S. Prol, Daniele B. M. Alves, and João F. G. Monico. 2020. "Assessment of Global Ionospheric Maps Performance by Means of Ionosonde Data" Remote Sensing 12, no. 20: 3452. https://doi.org/10.3390/rs12203452
APA StyleJerez, G. O., Hernández-Pajares, M., Prol, F. S., Alves, D. B. M., & Monico, J. F. G. (2020). Assessment of Global Ionospheric Maps Performance by Means of Ionosonde Data. Remote Sensing, 12(20), 3452. https://doi.org/10.3390/rs12203452