Novel Ensemble of Multivariate Adaptive Regression Spline with Spatial Logistic Regression and Boosted Regression Tree for Gully Erosion Susceptibility
"> Figure 1
<p>Of the study area.</p> "> Figure 2
<p>(<b>a</b>) Major erosion prone areas: formation of large gullies, (<b>b</b>) large scale erosion in deciduous forest, (<b>c</b>) development of gullies in plantation area and (<b>d</b>) development of permanent gullies in upper part of the basin.</p> "> Figure 3
<p>Topographical factors: elevation (<b>a</b>), aspect (<b>b</b>), slope (<b>c</b>), slope length and steepness (<span class="html-italic">LS</span>) factor (<b>d</b>), plan curvature (<b>e</b>) and profile curvature (<b>f</b>).</p> "> Figure 4
<p>Hydrological factors: drainage density (<b>a</b>), drainage proximity (<b>b</b>), rainfall (<b>c</b>), R factor (<b>d</b>), topographical wetness index (<b>e</b>) and stream power index (<b>f</b>).</p> "> Figure 5
<p>Soil characteristics: soil texture (<b>a</b>), soil moisture (<b>b</b>) and K factor (<b>c</b>).</p> "> Figure 6
<p>Geological factors: geomorphology (<b>a</b>), geology (<b>b</b>) and distance from lineament (<b>c</b>).</p> "> Figure 7
<p>Environmental factors: LULC (<b>a</b>) and <span class="html-italic">NDVI</span> (<b>b</b>).</p> "> Figure 8
<p>Chart.</p> "> Figure 9
<p>ROC curve of the predicted models: BRT (<b>a</b>), MARS (<b>b</b>) and SLR (<b>c</b>).</p> "> Figure 9 Cont.
<p>ROC curve of the predicted models: BRT (<b>a</b>), MARS (<b>b</b>) and SLR (<b>c</b>).</p> "> Figure 10
<p>Gully erosion susceptibility map using BRT optimism bootstrap (<b>a</b>), MARS optimism bootstrap (<b>b</b>) and SLR optimism bootstrap(<b>c</b>).</p> "> Figure 11
<p>Taylor diagram for BRT (<b>a</b>), MARS (<b>b</b>) and SLR models (<b>c</b>).</p> "> Figure 11 Cont.
<p>Taylor diagram for BRT (<b>a</b>), MARS (<b>b</b>) and SLR models (<b>c</b>).</p> "> Figure 12
<p>Partial plot for importance variable elevation, drainage proximity, R factor and <span class="html-italic">LS</span> factor.</p> "> Figure 12 Cont.
<p>Partial plot for importance variable elevation, drainage proximity, R factor and <span class="html-italic">LS</span> factor.</p> ">
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Database
3.2. Data Source and Framework of Methodology
3.3. Gully Inventory Map (GIM)
3.4. Conditioning Factors
3.4.1. Topographical
3.4.2. Hydrological Factors
3.4.3. Soil Characteristics
3.4.4. Geological Factors
3.4.5. Environmental Factors
3.5. Methodology Flow Chart for Gully Erosion Susceptibility
3.6. Multi-Collinearity Test
3.7. Model Used
3.7.1. Boosted Regression Tree
3.7.2. Multivariate Adaptive Regression Spline
3.7.3. Spatial Logistic Regression
3.8. Resampling Methods
3.8.1. K-Fold Cross Validation
3.8.2. Bootstrap
3.9. Validation and Accuracy Assessment
4. Results
4.1. Multi-Collinearity Analysis
4.2. Validation of the Models
4.3. Gully Erosion Susceptibility Modeling
4.4. Importance Value
5. Discussion
6. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Poesen, J.; Torri, D.; Vanwalleghem, T. Gully Erosion: Procedures to Adopt When Modelling Soil Erosion in Landscapes Affected by Gullying. Handbook of Erosion Modelling; Blackwell Publishing: Hoboken, NJ, USA, 2011; pp. 360–386. [Google Scholar]
- Pal, S.C.; Chakrabortty, R. Simulating the impact of climate change on soil erosion in sub-tropical monsoon dominated watershed based on RUSLE, SCS runoff and MIROC5 climatic model. Adv. Space Res. 2019, 64, 352–377. [Google Scholar] [CrossRef]
- Pal, S.C.; Chakrabortty, R. Modeling of water induced surface soil erosion and the potential risk zone prediction in a sub-tropical watershed of Eastern India. Model. Earth Syst. Environ. 2019, 5, 369–393. [Google Scholar] [CrossRef]
- Kirkby, M.; Bracken, L. Gully processes and gully dynamics. Earth Surf. Process. Landforms 2009, 34, 1841–1851. [Google Scholar] [CrossRef]
- Kou, M.; Garcia-Fayos, P.; Hu, S.; Jiao, J. The effect of Robiniapseudoacacia afforestation on soil and vegetation properties in the Loess Plateau (China): A chronosequence approach. For. Ecol. Manag. 2016, 375, 146–158. [Google Scholar] [CrossRef]
- Ayele, G. Physical and Economic Evaluation of Participatory Gully Rehabilation and Soil Erosion Control in the (Sub) Humid Ethiopian Highlands: Birr River Headwaters. 2016. Available online: https://www.researchgate.net/publication/339967141_Impact_of_Land_Use_and_Landscape_on_Runoff_and_Sediment_in_the_Sub-humid_Ethiopian_Highlands_The_Ene-Chilala_Watershed (accessed on 10 August 2020).
- Walling, D. Erosion and sediment yield research—Some recent perspectives. J. Hydrol. 1988, 100, 113–141. [Google Scholar] [CrossRef]
- May, L.; Place, C.; O’Hea, B.; Lee, M.; Dillane, M.; Philip, M. Modelling soil erosion and transport in the Burrishoole catchment, Newport, Co. Mayo, Ireland. Freshw. Forum 2005, 23, 139–154. [Google Scholar]
- Jones, A.J. World soil erosion and conservation. Soil Sci. 1994, 157, 198–199. [Google Scholar] [CrossRef]
- Pimentel, D.; Sharpley, A. World soil erosion and conservation. J. Environ. Qual. 1994, 23, 391. [Google Scholar]
- Sharda, V.; Dogra, P.; Prakash, C. Assessment of production losses due to water erosion in rainfed areas of India. J. Soil Water Conserv. 2010, 65, 79–91. [Google Scholar] [CrossRef]
- Kerr, J. The Economics of Soil Degradation: From National Policy to Farmers’ Fields. In Soil Erosion at Multiple Scales: Principles and Methods for Assessing Causes and Impacts; Agus, F., Kerr, J., Penning de Vries, F.W.T., Eds.; CABI Publishing: Wallingford, UK, 1998. [Google Scholar]
- Li, Z.; Zhang, G.; Geng, R.; Wang, H. Spatial heterogeneity of soil detachment capacity by overland flow at a hillslope with ephemeral gullies on the Loess Plateau. Geomorphology 2015, 248, 264–272. [Google Scholar] [CrossRef]
- Wijdenes, D.J.O.; Poesen, J.; Vandekerckhove, L.; Nachtergaele, J.; De Baerdemaeker, J. Gully-head morphology and implications for gully development on abandoned fields in a semi-arid environment, Sierra de Gata, southeast Spain. Earth Surf. Process. Landforms 1999, 24, 585–603. [Google Scholar] [CrossRef]
- Avni, Y. Gully incision as a key factor in desertification in an arid environment, the Negev highlands, Israel. Catena 2005, 63, 185–220. [Google Scholar] [CrossRef]
- Dong, Y.; Xiong, D.; Su, Z.; Yang, D.; Zheng, X.; Shi, L.; Poesen, J. Effects of vegetation buffer strips on concentrated flow hydraulics and gully bed erosion based on in situ scouring experiments. Land Degrad. Dev. 2018, 29, 1672–1682. [Google Scholar] [CrossRef]
- Hayas, A.; Poesen, J.; Vanwalleghem, T. Rainfall and Vegetation Effects on Temporal Variation of Topographic Thresholds for Gully Initiation in Mediterranean Cropland and Olive Groves: Rainfall and Vegetation Effects on Topographic Thresholds for Gully Initiation. Land Degrad. Dev. 2017, 28, 2540–2552. [Google Scholar] [CrossRef]
- Torri, D.; Poesen, J.; Rossi, M.; Amici, V.; Spennacchi, D.; Cremer, C. Gully head modelling: A Mediterranean badland case study: Gully head topographic threshold for badlands. Earth Surf. Process. Landforms 2018, 43, 2547–2561. [Google Scholar] [CrossRef] [Green Version]
- Pollen-Bankhead, N.; Simon, A. Hydrologic and hydraulic effects of riparian root networks on streambank stability: Is mechanical root-reinforcement the whole story? Geomorphology 2010, 116, 353–362. [Google Scholar] [CrossRef]
- Pollen-Bankhead, N.; Simon, A. Enhanced application of root-reinforcement algorithms for bank-stability modeling. Earth Surf. Process. Landforms 2009, 34, 471–480. [Google Scholar] [CrossRef]
- Allen, P.M.; Arnold, J.G.; Auguste, L.; White, J.; Dunbar, J. Application of a simple headcut advance model for gullies: GULLY HEADCUT MODEL. Earth Surf. Process. Landforms 2018, 43, 202–217. [Google Scholar] [CrossRef]
- Arabameri, A.; Pradhan, B.; Rezaei, K.; Yamani, M.; Pourghasemi, H.R.; Lombardo, L. Spatial modelling of gully erosion using evidential belief function, logistic regression, and a new ensemble of evidential belief function–logistic regression algorithm. Land Degrad. Dev. 2018, 29, 4035–4049. [Google Scholar] [CrossRef]
- Garosi, Y.; Sheklabadi, M.; Conoscenti, C.; Pourghasemi, H.R.; Van Oost, K. Assessing the performance of GIS-based machine learning models with different accuracy measures for determining susceptibility to gully erosion. Sci. Total. Environ. 2019, 664, 1117–1132. [Google Scholar] [CrossRef] [PubMed]
- Arabameri, A.; Yamani, M.; Pradhan, B.; Melesse, A.; Shirani, K.; Bui, D.T. Novel ensembles of COPRAS multi-criteria decision-making with logistic regression, boosted regression tree, and random forest for spatial prediction of gully erosion susceptibility. Sci. Total. Environ. 2019, 688, 903–916. [Google Scholar] [CrossRef] [PubMed]
- Rahmati, O.; Tahmasebipour, N.; Haghizadeh, A.; Pourghasemi, H.R.; Feizizadeh, B. Evaluation of different machine learning models for predicting and mapping the susceptibility of gully erosion. Geomorphology 2017, 298, 118–137. [Google Scholar] [CrossRef]
- Arabameri, A.; Nalivan, O.A.; Pal, S.C.; Chakrabortty, R.; Saha, A.; Lee, S.; Pradhan, B.; Bui, D.T. Novel Machine Learning Approaches for Modelling the Gully Erosion Susceptibility. Remote Sens. 2020, 12, 2833. [Google Scholar] [CrossRef]
- Sarkar, D.; Dutta, D.; Nayak, D.; Gajbhiye, K. Soil Erosion of West Bengal; National Bureau of Soil Survey and Land Use Planning: Nagpur, India, 2005. [Google Scholar]
- Chakrabortty, R.; Pal, S.C.; Chowdhuri, I.; Malik, S.; Das, B. Assessing the Importance of Static and Dynamic Causative Factors on Erosion Potentiality Using SWAT, EBF with Uncertainty and Plausibility, Logistic Regression and Novel Ensemble Model in a Sub-tropical Environment. J. Indian. Soc. Remote Sens. 2020, 48, 765–789. [Google Scholar] [CrossRef]
- Conoscenti, C.; Angileri, S.; Cappadonia, C.; Rotigliano, E.; Agnesi, V.; Märker, M. Gully erosion susceptibility assessment by means of GIS-based logistic regression: A case of Sicily (Italy). Geomorphology 2014, 204, 399–411. [Google Scholar] [CrossRef] [Green Version]
- Lucà, F.; Conforti, M.; Robustelli, G. Comparison of GIS-based gullying susceptibility mapping using bivariate and multivariate statistics: Northern Calabria, South Italy. Geomorphology 2011, 134, 297–308. [Google Scholar] [CrossRef]
- Conoscenti, C.; Agnesi, V.; Cama, M.; Caraballo-Arias, N.A.; Rotigliano, E. Assessment of Gully Erosion Susceptibility Using Multivariate Adaptive Regression Splines and Accounting for Terrain Connectivity: Accounting for Connectivity in Gully Erosion Susceptibility Assessment. Land Degrad. Dev. 2018, 29, 724–736. [Google Scholar] [CrossRef]
- Rahmati, O.; Haghizadeh, A.; Pourghasemi, H.R.; Noormohamadi, F. Gully erosion susceptibility mapping: The role of GIS-based bivariate statistical models and their comparison. Nat. Hazards 2016, 82, 1231–1258. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Yousefi, S.; Kornejady, A.; Cerdà, A. Performance assessment of individual and ensemble data-mining techniques for gully erosion modeling. Sci. Total. Environ. 2017, 609, 764–775. [Google Scholar] [CrossRef] [Green Version]
- Arabameri, A.; Nalivan, O.A.; Saha, S.; Roy, J.; Pradhan, B.; Tiefenbacher, J.P.; Ngo, P.T.T. Novel Ensemble Approaches of Machine Learning Techniques in Modeling the Gully Erosion Susceptibility. Remote Sens. 2020, 12, 1890. [Google Scholar] [CrossRef]
- Geographical Survey of India. Geological Quadrangle Map, Barddhaman Quadrangle (73M), West Bengal Bihar. 1985. Available online: https://www.gsi.gov.in/ (accessed on 25 March 2019).
- Mukherjee, A.; Fryar, A.E.; Howell, P.D. Regional hydrostratigraphy and groundwater flow modeling in the arsenic-affected areas of the western Bengal basin, West Bengal, India. Hydrogeol. J. 2007, 15, 1397. [Google Scholar] [CrossRef]
- Das, S.K.; Maity, R. Potential of Probabilistic Hydrometeorological Approach for Precipitation-Based Soil Moisture Estimation. J. Hydrol. Eng. 2015, 20, 04014056. [Google Scholar] [CrossRef]
- Del Barrio, P.O.; Campo-Bescós, M.A.; Giménez, R.; Casalí, J. Assessment of soil factors controlling ephemeral gully erosion on agricultural fields. Earth Surf. Process. Landforms 2018, 43, 1993–2008. [Google Scholar] [CrossRef] [Green Version]
- Rahmati, O.; Tahmasebipour, N.; Haghizadeh, A.; Pourghasemi, H.R.; Feizizadeh, B. Evaluating the influence of geo-environmental factors on gully erosion in a semi-arid region of Iran: An integrated framework. Sci. Total. Environ. 2017, 579, 913–927. [Google Scholar] [CrossRef]
- Gómez-Gutiérrez, Á.; Conoscenti, C.; Angileri, S.E.; Rotigliano, E.; Schnabel, S. Using topographical attributes to evaluate gully erosion proneness (susceptibility) in two mediterranean basins: Advantages and limitations. Nat. Hazards 2015, 79, 291–314. [Google Scholar] [CrossRef]
- Chakrabortty, R.; Pal, S.C.; Malik, S.; Das, B. Modeling and mapping of groundwater potentiality zones using AHP and GIS technique: A case study of Raniganj Block, Paschim Bardhaman, West Bengal. Model. Earth Syst. Environ. 2018, 4, 1085–1110. [Google Scholar] [CrossRef]
- Roy, P.; Pal, S.C.; Chakrabortty, R.; Chowdhuri, I.; Malik, S.; Das, B. Threats of climate and land use change on future flood susceptibility. J. Clean. Prod. 2020. [Google Scholar] [CrossRef]
- Chakrabortty, R.; Pal, S.C.; Sahana, M.; Mondal, A.; Dou, J.; Pham, B.T.; Yunus, A.P. Soil erosion potential hotspot zone identification using machine learning and statistical approaches in eastern India. Nat. Hazards 2020. [Google Scholar] [CrossRef]
- Gelagay, H.S.; Minale, A.S. Soil loss estimation using GIS and Remote sensing techniques: A case of Koga watershed, Northwestern Ethiopia. Int. Soil Water Conserv. Res. 2016, 4, 126–136. [Google Scholar] [CrossRef] [Green Version]
- Hurni, H. Erosion-productivity-conservation systems in Ethiopia. In Proceedings of the IV International Conference on Soil Conservation, Maracay, Venezuela, 3–9 November 1985. [Google Scholar]
- Roy, P.; Chakrabortty, R.; Chowdhuri, I.; Malik, S.; Das, B.; Pal, S.C. Development of Different Machine Learning Ensemble Classifier for Gully Erosion Susceptibility in Gandheswari Watershed of West Bengal, India. In Machine Learning for Intelligent Decision Science; Rout, J.K., Rout, M., Das, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–26. ISBN 9789811536885. [Google Scholar]
- Malik, S.; Pal, S.C.; Das, B.; Chakrabortty, R. Intra-annual variations of vegetation status in a sub-tropical deciduous forest-dominated area using geospatial approach: A case study of Sali watershed, Bankura, West Bengal, India. Geol. Ecol. Landscapes 2019. [Google Scholar] [CrossRef] [Green Version]
- Camilo, D.C.; Lombardo, L.; Mai, P.M.; Dou, J.; Huser, R. Handling high predictor dimensionality in slope-unit-based landslide susceptibility models through LASSO-penalized Generalized Linear Model. Environ. Model. Softw. 2017, 97, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Cama, M.; Lombardo, L.; Conoscenti, C.; Rotigliano, E. Improving transferability strategies for debris flow susceptibility assessment: Application to the Saponara and Itala catchments (Messina, Italy). Geomorphology 2017, 288, 52–65. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 1189–1232. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, J.R.; Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 2008, 77, 802–813. [Google Scholar] [CrossRef]
- Schonlau, M. Boosted regression (boosting): An introductory tutorial and a Stata plugin. Stata J. 2005, 5, 330–354. [Google Scholar] [CrossRef]
- Friedman, J.H. Multivariate adaptive regression splines. Ann. Stat. 1991, 19, 1–67. [Google Scholar] [CrossRef]
- Quirós, E.; Felicísimo, Á.M.; Cuartero, A. Testing multivariate adaptive regression splines (MARS) as a method of land cover classification of TERRA-ASTER satellite images. Sensors 2009, 9, 9011–9028. [Google Scholar] [CrossRef]
- Craven, P.; Wahba, G. Smoothing noisy data with spline functions. Numer. Math. 1978, 31, 377–403. [Google Scholar] [CrossRef]
- Atkinson, P.M.; Massari, R. Generalised linear modelling of susceptibility to landsliding in the central Apennines, Italy. Comput. Geosci. 1998, 24, 373–385. [Google Scholar] [CrossRef]
- Lee, S. Application and cross-validation of spatial logistic multiple regression for landslide susceptibility analysis. Geosci. J. 2005, 9, 63. [Google Scholar] [CrossRef]
- Gorsevski, P.V.; Gessler, P.E.; Foltz, R.B.; Elliot, W.J. Spatial prediction of landslide hazard using logistic regression and ROC analysis. Trans. GIS 2006, 10, 395–415. [Google Scholar] [CrossRef]
- Yilmaz, I. Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: A case study from Kat landslides (Tokat—Turkey). Comput. Geosci. 2009, 35, 1125–1138. [Google Scholar] [CrossRef]
- Bai, S.-B.; Wang, J.; Lü, G.-N.; Zhou, P.-G.; Hou, S.-S.; Xu, S.-N. GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area, China. Geomorphology 2010, 115, 23–31. [Google Scholar] [CrossRef]
- Lee, S.; Sambath, T. Landslide susceptibility mapping in the DamreiRomel area, Cambodia using frequency ratio and logistic regression models. Environ. Geol. 2006, 50, 847–855. [Google Scholar] [CrossRef]
- Pradhan, B. Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches. J. Indian Soc. Remote Sens. 2010, 38, 301–320. [Google Scholar] [CrossRef]
- Tayyebi, A.; Perry, P.C.; Tayyebi, A.H. Predicting the expansion of an urban boundary using spatial logistic regression and hybrid raster–vector routines with remote sensing and GIS. Int. J. Geogr. Inf. Sci. 2014, 28, 639–659. [Google Scholar] [CrossRef]
- Yang, J.; Song, C.; Yang, Y.; Xu, C.; Guo, F.; Xie, L. New method for landslide susceptibility mapping supported by spatial logistic regression and GeoDetector: A case study of Duwen Highway Basin, Sichuan Province, China. Geomorphology 2019, 324, 62–71. [Google Scholar] [CrossRef]
- Blangiardo, M.; Cameletti, M. Spatial and Spatio-Temporal Bayesian Models with R-INLA; John Wiley & Sons: Hoboken, NJ, USA, 2015; ISBN 1-118-32655-5. [Google Scholar]
- Sauerbrei, W.; Schumacher, M. A bootstrap resampling procedure for model building: Application to the Cox regression model. Stat. Med. 1992, 11, 2093–2109. [Google Scholar] [CrossRef]
- Arabameri, A.; Chen, W.; Lombardo, L.; Blaschke, T.; Tien Bui, D. Hybrid Computational Intelligence Models for Improvement Gully Erosion Assessment. Remote Sens. 2020, 12, 140. [Google Scholar] [CrossRef] [Green Version]
- Arabameri, A.; Chen, W.; Loche, M.; Zhao, X.; Li, Y.; Lombardo, L.; Cerda, A.; Pradhan, B.; Bui, D.T. Comparison of machine learning models for gully erosion susceptibility mapping. Geosci. Front. 2020, 11, 1609–1620. [Google Scholar] [CrossRef]
- Arabameri, A.; Cerda, A.; Rodrigo-Comino, J.; Pradhan, B.; Sohrabi, M.; Blaschke, T.; Bui, D.T. Proposing a Novel Predictive Technique for Gully Erosion Susceptibility Mapping in Arid and Semi-arid Regions (Iran). Remote Sens. 2019, 11, 2577. [Google Scholar] [CrossRef] [Green Version]
- Arabameri, A.; Saha, S.; Roy, J.; Chen, W.; Blaschke, T.; Tien Bui, D. Landslide Susceptibility Evaluation and Management Using Different Machine Learning Methods in The Gallicash River Watershed, Iran. Remote Sens. 2020, 12, 475. [Google Scholar] [CrossRef] [Green Version]
- Arabameri, A.; Pradhan, B.; Lombardo, L. Comparative assessment using boosted regression trees, binary logistic regression, frequency ratio and numerical risk factor for gully erosion susceptibility modelling. Catena 2019, 183, 104223. [Google Scholar] [CrossRef]
- Arabameri, A.; Chen, W.; Blaschke, T.; Tiefenbacher, J.P.; Pradhan, B.; Bui, D.T. Gully Head-Cut Distribution Modeling Using Machine Learning Methods—A Case Study of N.W. Iran. Water 2020, 12, 16. [Google Scholar] [CrossRef] [Green Version]
- Arabameri, A.; Cerda, A.; Pradhan, B.; Tiefenbacher, J.P.; Lombardo, L.; Bui, D.T. A methodological comparison of head-cut based gully erosion susceptibility models: Combined use of statistical and artificial intelligence. Geomorphology 2020, 107136. [Google Scholar] [CrossRef]
- Arabameri, A.; Roy, J.; Saha, S.; Blaschke, T.; Ghorbanzadeh, O.; Bui, D.T. Application of Probabilistic and Machine Learning Models for Groundwater Potentiality Mapping in Damghan Sedimentary Plain, Iran. Remote Sens. 2019, 11, 3015. [Google Scholar] [CrossRef] [Green Version]
- Arabameri, A.; Lee, S.; Tiefenbacher, J.P.; Ngo, P.T.T. Novel Ensemble of MCDM-Artificial Intelligence Techniques for Groundwater-Potential Mapping in Arid and Semi-Arid Regions (Iran). Remote Sens. 2020, 12, 490. [Google Scholar] [CrossRef] [Green Version]
- Arabameri, A.; Blaschke, T.; Pradhan, B.; Pourghasemi, H.R.; Tiefenbacher, J.P.; Bui, D.T. Evaluation of Recent Advanced Soft Computing Techniques for Gully Erosion Susceptibility Mapping: A Comparative Study. Sensors 2020, 20, 335. [Google Scholar] [CrossRef] [Green Version]
- Arabameri, A.; Pradhan, B.; Bui, D.T. Spatial modelling of gully erosion in the Ardib River Watershed using three statistical-based techniques. Catena 2020, 190, 104545. [Google Scholar] [CrossRef]
- Arabameri, A.; Saha, S.; Chen, W.; Roy, J.; Pradhan, B.; Bui, D.T. Flash flood susceptibility modelling using functional tree and hybrid ensemble techniques. J. Hydrol. 2020, 125007. [Google Scholar] [CrossRef]
- Lobo, J.M.; Jiménez-Valverde, A.; Real, R. AUC: A misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 2008, 17, 145–151. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Rossi, M. Landslide susceptibility modeling in a landslide prone area in Mazandarn Province, north of Iran: A comparison between GLM, GAM, MARS, and M-AHP methods. Theor. Appl. Climatol. 2017, 130, 609–633. [Google Scholar] [CrossRef]
- Chen, W.; Xie, X.; Peng, J.; Shahabi, H.; Hong, H.; Bui, D.T.; Duan, Z.; Li, S.; Zhu, A.-X. GIS-based landslide susceptibility evaluation using a novel hybrid integration approach of bivariate statistical based random forest method. Catena 2018, 164, 135–149. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Gayen, A.; Park, S.; Lee, C.-W.; Lee, S. Assessment of landslide-prone areas and their zonation using logistic regression, logitboost, and naïvebayes machine-learning algorithms. Sustainability 2018, 10, 3697. [Google Scholar] [CrossRef] [Green Version]
- Dou, J.; Bui, D.T.; Yunus, A.P.; Jia, K.; Song, X.; Revhaug, I.; Xia, H.; Zhu, Z. Optimization of causative factors for landslide susceptibility evaluation using remote sensing and GIS data in parts of Niigata, Japan. PLoS ONE 2015, 10, e0133262. [Google Scholar] [CrossRef] [Green Version]
- Montgomery, R. The Taylor diagram (temperature against vapor pressure) for air mixtures. Theor. Appl. Clim. 1950, 2, 163–183. [Google Scholar] [CrossRef]
- Hines, R.O.; Carter, E. Improved added variable and partial residual plots for the detection of influential observations in generalized linear models. J. R. Stat. Soc. Ser. C Appl. Stat. 1993, 42, 3–16. [Google Scholar] [CrossRef]
- Yu, C.H. Resampling methods: Concepts, applications, and justification. Pract. Assess. Res. Eval. 2002, 8, 19. [Google Scholar]
- Al-Abadi, A.M.; Al-Ali, A.K. Susceptibility mapping of gully erosion using GIS-based statistical bivariate models: A case study from Ali Al-Gharbi District, Maysan Governorate, southern Iraq. Environ. Earth Sci. 2018, 77, 249. [Google Scholar] [CrossRef]
- Amiri, M.; Pourghasemi, H.R.; Ghanbarian, G.A.; Afzali, S.F. Assessment of the importance of gully erosion effective factors using Boruta algorithm and its spatial modeling and mapping using three machine learning algorithms. Geoderma 2019, 340, 55–69. [Google Scholar] [CrossRef]
- Bernatek-Jakiel, A.; Poesen, J. Subsurface erosion by soil piping: Significance and research needs. Earth-Sci. Rev. 2018, 185, 1107–1128. [Google Scholar] [CrossRef]
- Hembram, T.K.; Paul, G.C.; Saha, S. Spatial prediction of susceptibility to gully erosion in Jainti River basin, Eastern India: A comparison of information value and logistic regression models. Model. Earth Syst. Environ. 2019, 5, 689–708. [Google Scholar] [CrossRef]
- Arabameri, A.; Pradhan, B.; Pourghasemi, H.R.; Rezaei, K.; Kerle, N. Spatial Modelling of Gully Erosion Using GIS and R Programing: A Comparison among Three Data Mining Algorithms. Appl. Sci. 2018, 8, 1369. [Google Scholar] [CrossRef] [Green Version]
- Conforti, M.; Aucelli, P.P.C.; Robustelli, G.; Scarciglia, F. Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy). Nat. Hazards 2011, 56, 881–898. [Google Scholar] [CrossRef]
- Sun, W.; Shao, Q.; Liu, J.; Zhai, J. Assessing the effects of land use and topography on soil erosion on the Loess Plateau in China. Catena 2014, 121, 151–163. [Google Scholar] [CrossRef]
- Wei, W.; Chen, L.; Fu, B.; Huang, Z.; Wu, D.; Gui, L. The effect of land uses and rainfall regimes on runoff and soil erosion in the semi-arid loess hilly area, China. J. Hydrol. 2007, 335, 247–258. [Google Scholar] [CrossRef]
- Roy, J.; Saha, D.S. GIS-based Gully Erosion Susceptibility Evaluation Using Frequency Ratio, Cosine Amplitude and Logistic Regression Ensembled with fuzzy logic in Hinglo River Basin, India. Remote Sens. Appl. Soc. Environ. 2019, 15, 100247. [Google Scholar] [CrossRef]
- Saha, S.; Roy, J.; Arabameri, A.; Blaschke, T.; Bui, D.T. Machine Learning-Based Gully Erosion Susceptibility Mapping: A Case Study of Eastern India. Sensors 2020, 20, 1313. [Google Scholar] [CrossRef] [Green Version]
Parameters | Data Type | Sources | Data Details | |
---|---|---|---|---|
1 | Elevation | Raster grid | ALOS PALSAR DEM, (Alaska Satellite Facility) | 12.5 m spatial resolution |
2 | Slope gradient (degree) | Raster grid | ALOS PALSAR DEM, (Alaska Satellite Facility) | 12.5 m spatial resolution |
3 | Slope aspect | Raster grid | ALOS PALSAR DEM, (Alaska Satellite Facility) | 12.5 m spatial resolution |
4 | Plan Curvature | Raster grid | ALOS PALSAR DEM, (Alaska Satellite Facility) | 12.5 m spatial resolution |
5 | Profile curvature | Raster grid | ALOS PALSAR DEM, (Alaska Satellite Facility) | 12.5 m spatial resolution |
6 | Geology (detailed lithology and deposits) | Line, point and polygon coverage | Geological Survey of India (http://bhukosh.gsi.gov.in/Bhukosh/Public) | Different unit of lithology |
7 | Geomorphology | Line, point and polygon coverage | Geological Survey of India (http://bhukosh.gsi.gov.in/Bhukosh/Public) | Different spatial geomorphological unit |
8 | Soil texture | polygon coverage | NBSS&LUP, SAMETI (Jharkhand) | Textural class |
9 | Drainage density | Polygon coverage buffer | ALOS PALSAR DEM, (Alaska Satellite Facility) | 12.5 m spatial resolution |
10 | Stream Power Index (SPI) | Raster grid | ALOS PALSAR DEM, (Alaska Satellite Facility) | 12.5 m spatial resolution |
11 | Drainage Proximity | Polygon coverage buffer | ALOS PALSAR DEM, (Alaska Satellite Facility) | 12.5 m spatial resolution |
12 | Topographical Wetness Index (TWI) | Raster grid | ALOS PALSAR DEM, (Alaska Satellite Facility) | 12.5 m spatial resolution |
13 | Land use and land cover (LULC) | Spatial/Raster grid | Sentinel 2A (European Space Agency) | 10 m spatial resolution |
14 | Normalized difference vegetation index (NDVI) | Spatial/Raster grid | Sentinel 2A (European Space Agency) | 10 m spatial resolution |
15 | Soil Moisture | netCDF file format | Simulation model by IIT Kharagpur, India [37] | Monthly soil moisture data |
16 | Distance from Road | Spatial/Raster grid, Polygon coverage buffer | Topographical map, Google earth, Sentinel 2A (European Space Agency) | 10 m spatial resolution |
17 | Distance from Lineament | Line, point and polygon coverage | Geological Survey of India | Different shape of lineament |
18 | Slope length and steepness factor | Raster grid | ALOS PALSAR DEM, (Alaska Satellite Facility) | 12.5 m spatial resolution |
19 | Rainfall and runoff erosivity factor | Point wise collected rainfall data in storm period | Primary observed data | Raster |
20 | Soil erodibility factor | Estimated from the collected samples | Primary observed data | Raster |
Sl No. | Variables | Variance Inflation Factor (VIF) | Tolerance |
---|---|---|---|
1 | Elevation | 1.944 | 0.514 |
2 | Aspect | 2.949 | 0.339 |
3 | Slope | 1.276 | 0.643 |
4 | LS Factor | 1.498 | 0.543 |
5 | Plan Curvature | 1.890 | 0.530 |
6 | Profile Curvature | 2.025 | 0.494 |
7 | Drainage Density | 1.655 | 0.604 |
8 | Drainage Proximity | 3.107 | 0.322 |
9 | Rainfall | 2.360 | 0.420 |
10 | R Factor | 1.109 | 0.902 |
11 | TWI | 1.919 | 0.584 |
12 | SPI | 3.060 | 0.330 |
13 | Soil Texture | 2.124 | 0.471 |
14 | Soil Moisture | 1.574 | 0.635 |
15 | K Factor | 2.880 | 0.350 |
16 | Geomorphology | 3.688 | 0.271 |
17 | Geology | 1.460 | 0.685 |
18 | Distance from Lineament | 1.099 | 0.909 |
19 | LULC | 2.290 | 0.437 |
20 | NDVI | 2.430 | 0.410 |
Models | Resampleing | Type | Sensitivity | Specificity | Precision | Negative Predictive Value | False Positive Rate | False Discovery Rate | False Negative Rate | Accuracy | F1 Score | Matthews Correlation Coefficient |
---|---|---|---|---|---|---|---|---|---|---|---|---|
BRT | Non | Training | 0.7143 | 0.5556 | 0.7895 | 0.4545 | 0.4444 | 0.2105 | 0.2857 | 0.6667 | 0.75 | 0.2566 |
Validation | 0.7262 | 0.5556 | 0.7922 | 0.4651 | 0.4444 | 0.2078 | 0.2738 | 0.675 | 0.7578 | 0.2693 | ||
5-fold CV | Training | 0.7275 | 0.5449 | 0.7912 | 0.4575 | 0.4551 | 0.2088 | 0.2725 | 0.6733 | 0.758 | 0.2603 | |
Validation | 0.7327 | 0.5389 | 0.7872 | 0.4641 | 0.4611 | 0.2128 | 0.2673 | 0.6745 | 0.759 | 0.2612 | ||
10-fold CV | Training | 0.7357 | 0.5363 | 0.7883 | 0.4638 | 0.4637 | 0.2117 | 0.2643 | 0.6761 | 0.7611 | 0.2618 | |
Validation | 0.7392 | 0.5304 | 0.7843 | 0.4683 | 0.4696 | 0.2157 | 0.2608 | 0.6761 | 0.7611 | 0.2609 | ||
Bootstrap | Training | 0.7416 | 0.5249 | 0.7828 | 0.468 | 0.4751 | 0.2172 | 0.2584 | 0.6761 | 0.7617 | 0.2585 | |
Validation | 0.7464 | 0.522 | 0.782 | 0.4726 | 0.478 | 0.218 | 0.2536 | 0.6783 | 0.7638 | 0.2614 | ||
Optimism Bootstrap | Training | 0.7608 | 0.5251 | 0.7891 | 0.4845 | 0.4749 | 0.2109 | 0.2392 | 0.6901 | 0.7747 | 0.2797 | |
Validation | 0.7692 | 0.5193 | 0.7862 | 0.4947 | 0.4807 | 0.2138 | 0.2308 | 0.6935 | 0.7776 | 0.2847 | ||
MARS | Non | Training | 0.7156 | 0.5618 | 0.7947 | 0.4545 | 0.4382 | 0.2053 | 0.2844 | 0.67 | 0.7531 | 0.263 |
Validation | 0.7303 | 0.5525 | 0.7907 | 0.4695 | 0.4475 | 0.2093 | 0.2697 | 0.6767 | 0.7593 | 0.2713 | ||
5-fold CV | Training | 0.7322 | 0.5525 | 0.7923 | 0.4695 | 0.4475 | 0.2077 | 0.2678 | 0.6783 | 0.7611 | 0.273 | |
Validation | 0.7329 | 0.548 | 0.7949 | 0.4619 | 0.452 | 0.2051 | 0.2671 | 0.6783 | 0.7626 | 0.2686 | ||
10-fold CV | Training | 0.7387 | 0.5337 | 0.7893 | 0.4634 | 0.4663 | 0.2107 | 0.2613 | 0.6778 | 0.7632 | 0.2624 | |
Validation | 0.7422 | 0.5278 | 0.7854 | 0.468 | 0.4722 | 0.2146 | 0.2578 | 0.6778 | 0.7632 | 0.2615 | ||
Bootstrap | Training | 0.747 | 0.5225 | 0.7864 | 0.4673 | 0.4775 | 0.2136 | 0.253 | 0.6801 | 0.7662 | 0.2615 | |
Validation | 0.753 | 0.5196 | 0.785 | 0.4745 | 0.4804 | 0.215 | 0.247 | 0.6829 | 0.7687 | 0.2659 | ||
Optimism Bootstrap | Training | 0.7632 | 0.5196 | 0.7877 | 0.4844 | 0.4804 | 0.2123 | 0.2368 | 0.6901 | 0.7752 | 0.2773 | |
Validation | 0.7722 | 0.511 | 0.7835 | 0.4947 | 0.489 | 0.2165 | 0.2278 | 0.6928 | 0.7778 | 0.2806 | ||
SLR | Non | Training | 0.718 | 0.5618 | 0.7953 | 0.4566 | 0.4382 | 0.2047 | 0.282 | 0.6717 | 0.7547 | 0.2655 |
Validation | 0.731 | 0.55 | 0.7912 | 0.467 | 0.45 | 0.2088 | 0.269 | 0.6767 | 0.7599 | 0.2693 | ||
5-fold CV | Training | 0.7346 | 0.5393 | 0.7908 | 0.4615 | 0.4607 | 0.2092 | 0.2654 | 0.6767 | 0.7617 | 0.2629 | |
Validation | 0.7376 | 0.5367 | 0.7919 | 0.4612 | 0.4633 | 0.2081 | 0.2624 | 0.6783 | 0.7638 | 0.2635 | ||
10-fold CV | Training | 0.7411 | 0.5281 | 0.7879 | 0.4631 | 0.4719 | 0.2121 | 0.2589 | 0.6778 | 0.7638 | 0.2599 | |
Validation | 0.7435 | 0.5225 | 0.7864 | 0.4627 | 0.4775 | 0.2136 | 0.2565 | 0.6778 | 0.7643 | 0.2574 | ||
Bootstrap | Training | 0.7482 | 0.5169 | 0.7855 | 0.4646 | 0.4831 | 0.2145 | 0.2518 | 0.6795 | 0.7664 | 0.2575 | |
Validation | 0.7578 | 0.514 | 0.7841 | 0.4767 | 0.486 | 0.2159 | 0.2422 | 0.6846 | 0.7707 | 0.2662 | ||
Optimism Bootstrap | Training | 0.7722 | 0.5084 | 0.7854 | 0.4892 | 0.4916 | 0.2146 | 0.2278 | 0.693 | 0.7787 | 0.2776 | |
Validation | 0.7754 | 0.5028 | 0.7845 | 0.4891 | 0.4972 | 0.2149 | 0.2249 | 0.6935 | 0.7798 | 0.2758 |
Susceptibility Class | Models | |||||
---|---|---|---|---|---|---|
Optimism Bootstrap BRT | Optimism Bootstrap MARS | Optimism Bootstrap SLR | ||||
Area (Km2) | Area (%) | Area (Km2) | Area (%) | Area (Km2) | Area (%) | |
Very Low | 101.973 | 26.030 | 99.034 | 25.280 | 99.465 | 25.390 |
Low | 80.936 | 20.660 | 84.226 | 21.500 | 83.756 | 21.380 |
Moderate | 100.288 | 25.600 | 101.111 | 25.810 | 100.758 | 25.720 |
High | 76.587 | 19.550 | 73.610 | 18.790 | 73.845 | 18.850 |
Very High | 31.967 | 8.160 | 33.769 | 8.620 | 33.926 | 8.660 |
Total | 391.750 | 100 | 391.750 | 100 | 391.750 | 100 |
Sl No. | Variables | Importance |
---|---|---|
1 | Elevation | 18.48 |
2 | Aspect | 1.60 |
3 | Slope | 3.47 |
4 | LS Factor | 16.56 |
5 | Plan Curvature | 4.76 |
6 | Profile Curvature | 3.13 |
7 | Drainage Density | 6.68 |
8 | Drainage Proximity | 18.33 |
9 | Rainfall | 11.72 |
10 | R Factor | 16.06 |
11 | TWI | 1.19 |
12 | SPI | 4.92 |
13 | Soil Texture | 13.52 |
14 | Soil Moisture | 8.16 |
15 | K Factor | 6.41 |
16 | Geomorphology | 2.18 |
17 | Geology | 1.46 |
18 | Distance from Lineament | 2.33 |
19 | LULC | 3.63 |
20 | NDVI | 4.17 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roy, P.; Chandra Pal, S.; Arabameri, A.; Chakrabortty, R.; Pradhan, B.; Chowdhuri, I.; Lee, S.; Tien Bui, D. Novel Ensemble of Multivariate Adaptive Regression Spline with Spatial Logistic Regression and Boosted Regression Tree for Gully Erosion Susceptibility. Remote Sens. 2020, 12, 3284. https://doi.org/10.3390/rs12203284
Roy P, Chandra Pal S, Arabameri A, Chakrabortty R, Pradhan B, Chowdhuri I, Lee S, Tien Bui D. Novel Ensemble of Multivariate Adaptive Regression Spline with Spatial Logistic Regression and Boosted Regression Tree for Gully Erosion Susceptibility. Remote Sensing. 2020; 12(20):3284. https://doi.org/10.3390/rs12203284
Chicago/Turabian StyleRoy, Paramita, Subodh Chandra Pal, Alireza Arabameri, Rabin Chakrabortty, Biswajeet Pradhan, Indrajit Chowdhuri, Saro Lee, and Dieu Tien Bui. 2020. "Novel Ensemble of Multivariate Adaptive Regression Spline with Spatial Logistic Regression and Boosted Regression Tree for Gully Erosion Susceptibility" Remote Sensing 12, no. 20: 3284. https://doi.org/10.3390/rs12203284
APA StyleRoy, P., Chandra Pal, S., Arabameri, A., Chakrabortty, R., Pradhan, B., Chowdhuri, I., Lee, S., & Tien Bui, D. (2020). Novel Ensemble of Multivariate Adaptive Regression Spline with Spatial Logistic Regression and Boosted Regression Tree for Gully Erosion Susceptibility. Remote Sensing, 12(20), 3284. https://doi.org/10.3390/rs12203284