Deriving Annual Double-Season Cropland Phenology Using Landsat Imagery
"> Figure 1
<p>Our study sites are located in four districts of Shanghai, including Jinshan, Fengxian, Qingpu, and Songjiang. The background is an original raw image of Landsat TM 5 obtained on day of year (DOY) 224 in year 1995, with a band combination 5-4-3. Green colors in the map indicate forest land cover and croplands. Purple colors in the map represent urban and build-up regions.</p> "> Figure 2
<p>Schematic demonstration of extracting annual phenological metrics based on multi-year Landsat images. (<b>a</b>) Solid line indicates the multi-year mean fitted line using cubic spline smoothing method. POS1 represents the peak of season of the first cropping cycle, SOS2 indicates the start of season of the second cropping cycles, and POS2 is the peak of season of the second cropping cycle. Colored points stand for normalized enhanced vegetation index (NEVI) in different years. POS1 and POS2 are defined as the first and second peak of the two cropping cycles, respectively. SOS2 is defined as the trough between the two neighboring peaks. Dashed box in panel (a) shows the boundary of the zoom-in plot of panel (b); (<b>b</b>) Solid line is a zoom-in version of the dashed box in panel (a). Dashed line is the fitted phenological curve in year 1996 by shifting multi-year fitted line to the left by 11 days. Eleven days were calculated as the deviation between the acquisition DOY in year 1996 and the DOY of fitted NEVI time series which corresponds to the same NEVI value in year 1996. We did not calculate the mean value of deviation, because there is only one qualified DOY in the year 1996. The POS1 in year 1996 is then calculated by deducting 11 days from the long-term mean POS1.</p> "> Figure 3
<p>Validation of LDCP-derived phenological metrics (POS1 for (<b>a</b>), SOS2 for (<b>b</b>), POS2 for (<b>c</b>)) in relation to the in situ phenological stages. Dashed black line is the 1:1 line. Colored points represent results at 7 ground cropland phenology stations. RMSE stands for root mean square error. R represents the correlation between crop stages on the ground and predicted phenological metrics from remote sensing.</p> "> Figure 4
<p>Maps of long-term mean phenological metrics in the four counties of Shanghai. Each column in the figure indicates one of the four counties. (<b>a</b>) maps of peak of first cropping cycle (POS1). (<b>b</b>) maps of start of second cropping cycle (SOS2). (<b>c</b>) maps of peak of second cropping cycle (POS2). Gray regions represent missing data and non-crop areas.</p> "> Figure 5
<p>Maps of interannual trends of phenological metrics from 1993 to 2009 in the four counties of Shanghai. Each column in the figure indicates one of the four counties. (<b>a</b>) linear trends of peak of first cropping cycle (POS1). (<b>b</b>) linear trends of start of second cropping cycle (SOS2). (<b>c</b>) linear trends of peak of second cropping cycle (POS2). Gray regions represent missing data, non-crop areas, and non-significant regions (<span class="html-italic">p</span>-value > 0.05).</p> "> Figure 6
<p>Proportion of significant (<span class="html-italic">p</span>-value < 0.05) positive (slope > 0) and negative (slope < 0) trends of the phenological metrics from 1993 to 2009 in four counties of Shanghai.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Period
2.2. Dataset
2.3. Pre-Process of Landsat Time Series
2.4. Detection of Annual Phenological Metrics
2.5. Evaluation of the LDCP
2.6. Validation of the LDCP
2.7. Interannual Trends of Phenological Metrics
3. Results and Discussions
3.1. Performance of the LDCP
3.2. Maps of Long-Term Mean Double-Season Cropland Phenology
3.3. Interannual Variation of Double-Season Cropland Phenology
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- DeFries, R.S.; Foley, J.A.; Asner, G.P. Land-use choices: Balancing human needs and ecosystem function. Front. Ecol. Environ. 2004, 2, 249–257. [Google Scholar] [CrossRef]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, T.; Wardlow, B.D.; Gitelson, A.A.; Verma, S.B.; Suyker, A.E.; Arkebauer, T.J. A Two-Step Filtering approach for detecting maize and soybean phenology with time-series MODIS data. Remote Sens. Environ. 2010, 114, 2146–2159. [Google Scholar] [CrossRef]
- Bolton, D.K.; Friedl, M.A. Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agric. For. Meteorol. 2013, 173, 74–84. [Google Scholar] [CrossRef]
- Sakamoto, T.; Gitelson, A.A.; Arkebauer, T.J. MODIS-based corn grain yield estimation model incorporating crop phenology information. Remote Sens. Environ. 2013, 131, 215–231. [Google Scholar] [CrossRef]
- de Beurs, K.M.; Henebry, G.M. Land surface phenology, climatic variation, and institutional change: Analyzing agricultural land cover change in Kazakhstan. Remote Sens. Environ. 2004, 89, 497–509. [Google Scholar] [CrossRef]
- Brown, M.E.; de Beurs, K.M.; Marshall, M. Global phenological response to climate change in crop areas using satellite remote sensing of vegetation, humidity and temperature over 26years. Remote Sens. Environ. 2012, 126, 174–183. [Google Scholar] [CrossRef]
- Sakamoto, T.; Yokozawa, M.; Toritani, H.; Shibayama, M.; Ishitsuka, N.; Ohno, H. A crop phenology detection method using time-series MODIS data. Remote Sens. Environ. 2005, 96, 366–374. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Hodges, J.C.F.; Gao, F.; Reed, B.C.; Huete, A. Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 2003, 84, 471–475. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Friedl, M.A.; Schaaf, C.B. Global vegetation phenology from Moderate Resolution Imaging Spectroradiometer (MODIS): Evaluation of global patterns and comparison with in situ measurements. J. Geophys. Res. Biogeosci. 2006, 111. [Google Scholar] [CrossRef]
- Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218. [Google Scholar] [CrossRef]
- Gao, F.; Anderson, M.C.; Zhang, X.; Yang, Z.; Alfieri, J.G.; Kustas, W.P.; Mueller, R.; Johnson, D.M.; Prueger, J.H. Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery. Remote Sens. Environ. 2017, 188, 9–25. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Chen, J.; Gao, F.; Chen, X.; Masek, J.G. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sens. Environ. 2010, 114, 2610–2623. [Google Scholar] [CrossRef]
- Pan, Z.; Huang, J.; Zhou, Q.; Wang, L.; Cheng, Y.; Zhang, H.; Blackburn, G.A.; Yan, J.; Liu, J. Mapping crop phenology using NDVI time-series derived from HJ-1 A/B data. Int. J. Appl. Earth Obs. 2015, 34, 188–197. [Google Scholar] [CrossRef] [Green Version]
- Roy, D.P.; Yan, L. Robust Landsat-based crop time series modelling. Remote Sens. Environ. 2018. [Google Scholar] [CrossRef]
- Fisher, J.I.; Mustard, J.F.; Vadeboncoeur, M.A. Green leaf phenology at Landsat resolution: Scaling from the field to the satellite. Remote Sens. Environ. 2006, 100, 265–279. [Google Scholar] [CrossRef]
- Melaas, E.K.; Friedl, M.A.; Zhu, Z. Detecting interannual variation in deciduous broadleaf forest phenology using Landsat TM/ETM plus data. Remote Sens. Environ. 2013, 132, 176–185. [Google Scholar] [CrossRef]
- Melaas, E.K.; Sulla-Menashe, D.; Gray, J.M.; Black, T.A.; Morin, T.H.; Richardson, A.D.; Friedl, M.A. Multisite analysis of land surface phenology in North American temperate and boreal deciduous forests from Landsat. Remote Sens. Environ. 2016, 186, 452–464. [Google Scholar] [CrossRef]
- Melaas, E.K.; Sulla-Menashe, D.; Friedl, M.A. Multidecadal Changes and Interannual Variation in Springtime Phenology of North American Temperate and Boreal Deciduous Forests. Geophys. Res. Lett. 2018, 45, 2679–2687. [Google Scholar] [CrossRef]
- Nijland, W.; Bolton, D.K.; Coops, N.C.; Stenhouse, G. Imaging phenology; scaling from camera plots to landscapes. Remote Sens. Environ. 2016, 177, 13–20. [Google Scholar] [CrossRef]
- Qiu, T.; Song, C.; Li, J. Impacts of Urbanization on Vegetation Phenology over the Past Three Decades in Shanghai, China. Remote Sens. 2017, 9, 970. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhou, Y.; Asrar, G.R.; Meng, L. Characterizing spatiotemporal dynamics in phenology of urban ecosystems based on Landsat data. Sci. Total Environ. 2017, 605, 721–734. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Friedl, M.; Xin, Q.; Gray, J.; Pan, Y.; Frolking, S. Mapping Crop Cycles in China Using MODIS-EVI Time Series. Remote Sens. 2014, 6, 2473–2493. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Sha, Z.; Liu, Y.; Wu, S.; Zhang, H.; Li, C.; Zhao, Q.; Cao, L. Modeling the impacts of alternative fertilization methods on nitrogen loading in rice production in Shanghai. Sci. Total Environ. 2016, 566, 1595–1603. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Verma, M.; Friedl, M.A.; Finzi, A.; Phillips, N. Multi-criteria evaluation of the suitability of growth functions for modeling remotely sensed phenology. Ecol. Model. 2016, 323, 123–132. [Google Scholar] [CrossRef]
- Anderson, J.; Ardill, R.W.B.; Moriarty, K.J.M.; Beckwith, R.C. A cubic spline interpolation of unequally spaced data points. Comput. Phys. Commun. 1979, 16, 199–206. [Google Scholar] [CrossRef]
- Chen, J.; Jonsson, P.; Tamura, M.; Gu, Z.H.; Matsushita, B.; Eklundh, L. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter. Remote Sens. Environ. 2004, 91, 332–344. [Google Scholar] [CrossRef]
- Gray, J.; Friedl, M.; Frolking, S.; Ramankutty, N.; Nelson, A.; Gumma, M.K. Mapping Asian Cropping Intensity With MODIS. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3373–3379. [Google Scholar] [CrossRef]
- Ganguly, S.; Friedl, M.A.; Tan, B.; Zhang, X.; Verma, M. Land surface phenology from MODIS: Characterization of the Collection 5 global land cover dynamics product. Remote Sens. Environ. 2010, 114, 1805–1816. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.Y. Reconstruction of a complete global time series of daily vegetation index trajectory from long-term AVHRR data. Remote Sens. Environ. 2015, 156, 457–472. [Google Scholar] [CrossRef]
- An, S.; Zhang, X.; Chen, X.; Yan, D.; Henebry, G.M. An Exploration of Terrain Effects on Land Surface Phenology across the Qinghai–Tibet Plateau Using Landsat ETM+ and OLI Data. Remote Sens. 2018, 10, 1069. [Google Scholar] [CrossRef] [Green Version]
- Xin, J.; Yu, Z.; van Leeuwen, L.; Driessen, P.M. Mapping crop key phenological stages in the North China Plain using NOAA time series images. Int. J. Appl. Earth Obs. 2002, 4, 109–117. [Google Scholar] [CrossRef]
- Wang, J.; Huang, J.-F.; Wang, X.-Z.; Jin, M.-T.; Zhou, Z.; Guo, Q.-Y.; Zhao, Z.-W.; Huang, W.-J.; Zhang, Y.; Song, X.-D. Estimation of rice phenology date using integrated HJ-1 CCD and Landsat-8 OLI vegetation indices time-series images. J. Zhejiang Univ. Sci. B 2015, 16, 832–844. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Friedl, M.; Schaaf, C. Sensitivity of vegetation phenology detection to the temporal resolution of satellite data. Int. J. Remote Sens. 2009, 30, 2061–2074. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, Z.; Xiao, D.; Zhang, S.; Rötter, R.P.; Shi, W.; Liu, Y.; Wang, M.; Liu, F.; Zhang, H. Responses of wheat growth and yield to climate change in different climate zones of China, 1981–2009. Agric. For. Meteorol. 2014, 189, 91–104. [Google Scholar] [CrossRef]
- Tao, F.; Yokozawa, M.; Xu, Y.; Hayashi, Y.; Zhang, Z. Climate changes and trends in phenology and yields of field crops in China, 1981–2000. Agric. For. Meteorol. 2006, 138, 82–92. [Google Scholar] [CrossRef]
- Tao, F.; Yokozawa, M.; Liu, J.; Zhang, Z. Climate–crop yield relationships at provincial scales in China and the impacts of recent climate trends. Clim. Res. 2008, 38, 83–94. [Google Scholar] [CrossRef]
- Wang, S.; Mo, X.; Liu, Z.; Baig, M.H.A.; Chi, W. Understanding long-term (1982–2013) patterns and trends in winter wheat spring green-up date over the North China Plain. Int. J. Appl. Earth Obs. 2017, 57, 235–244. [Google Scholar] [CrossRef]
- Long, Z.; Perrie, W.; Gyakum, J.; Caya, D.; Laprise, R. Northern Lake Impacts on Local Seasonal Climate. J. Hydrometeorol. 2007, 8, 881–896. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Li, J.; Wang, C.; Song, C.; Chen, Y.; Finka, M.; La Rosa, D. Understanding the relationship between urban blue infrastructure and land surface temperature. Sci. Total Environ. 2019, 694, 133742. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Asseng, S.; Zhao, G.; Wu, D.; Yang, X.; Zhuang, W.; Jin, N.; Yu, Q. Impacts of recent climate warming, cultivar changes, and crop management on winter wheat phenology across the Loess Plateau of China. Agric. For. Meteorol. 2015, 200, 135–143. [Google Scholar] [CrossRef]
- Xiao, D.; Tao, F. Contributions of cultivars, management and climate change to winter wheat yield in the North China Plain in the past three decades. Eur. J. Agron. 2014, 52, 112–122. [Google Scholar] [CrossRef]
- Wang, X.H.; Ciais, P.; Li, L.; Ruget, F.; Vuichard, N.; Viovy, N.; Zhou, F.; Chang, J.F.; Wu, X.C.; Zhao, H.F.; et al. Management outweighs climate change on affecting length of rice growing period for early rice and single rice in China during 1991–2012. Agric. For. Meteorol. 2017, 233, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Song, C.; Chen, X. Effects of China’s payment for ecosystem services programs on cropland abandonment: A case study in Tiantangzhai Township, Anhui, China. Land Use Policy 2018, 73, 239–248. [Google Scholar] [CrossRef]
- Vuolo, F.; Neuwirth, M.; Immitzer, M.; Atzberger, C.; Ng, W.-T. How much does multi-temporal Sentinel-2 data improve crop type classification? Int. J. Appl. Earth Obs. 2018, 72, 122–130. [Google Scholar] [CrossRef]
- Houborg, R.; McCabe, M.F. High-Resolution NDVI from Planet’s Constellation of Earth Observing Nano-Satellites: A New Data Source for Precision Agriculture. Remote Sens. 2016, 8, 768. [Google Scholar] [CrossRef] [Green Version]
Jinshan | Fengxian | Qingpu | Songjiang | |
---|---|---|---|---|
PGQ of POS1 | 0.52 ± 0.07 | 0.59 ± 0.10 | 0.50 ± 0.09 | 0.51 ± 0.09 |
PGQ of SOS2 | 0.50 ± 0.05 | 0.48 ± 0.06 | 0.47 ± 0.06 | 0.48 ± 0.06 |
PGQ of POS2 | 0.50 ± 0.05 | 0.47 ± 0.06 | 0.49 ± 0.06 | 0.49 ± 0.06 |
Jinshan | Fengxian | Qingpu | Songjiang | |
---|---|---|---|---|
No. years of POS1 | 7.52 ± 2.24 | 5.57 ± 2.59 | 5.68 ± 2.58 | 5.70 ± 2.56 |
No. years of SOS2 | 12.42 ± 1.48 | 11.59 ± 1.95 | 11.73 ± 1.93 | 11.60 ± 2.04 |
No. years of POS2 | 14.76 ± 0.96 | 13.97 ± 1.46 | 14.20 ± 1.49 | 13.85 ± 1.46 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, T.; Song, C.; Li, J. Deriving Annual Double-Season Cropland Phenology Using Landsat Imagery. Remote Sens. 2020, 12, 3275. https://doi.org/10.3390/rs12203275
Qiu T, Song C, Li J. Deriving Annual Double-Season Cropland Phenology Using Landsat Imagery. Remote Sensing. 2020; 12(20):3275. https://doi.org/10.3390/rs12203275
Chicago/Turabian StyleQiu, Tong, Conghe Song, and Junxiang Li. 2020. "Deriving Annual Double-Season Cropland Phenology Using Landsat Imagery" Remote Sensing 12, no. 20: 3275. https://doi.org/10.3390/rs12203275
APA StyleQiu, T., Song, C., & Li, J. (2020). Deriving Annual Double-Season Cropland Phenology Using Landsat Imagery. Remote Sensing, 12(20), 3275. https://doi.org/10.3390/rs12203275