Recent Shrinkage and Fragmentation of Bluegrass Landscape in Kentucky
"> Figure 1
<p>Map of the Kentucky Bluegrass Region.</p> "> Figure 2
<p>Illustration for the calculations of <span class="html-italic">P<sub>f</sub></span> and <span class="html-italic">P<sub>ff</sub></span> for various fragmentation categories in a moving window of 5 × 5 pixels. Grassland: grey pixels; no-grassland: white pixels; dashed line: the classification bounds for the various categories of grasslands (adapted from Riitter et al., 2000 [<a href="#B45-remotesensing-12-01815" class="html-bibr">45</a>] and Frate et al., 2015 [<a href="#B49-remotesensing-12-01815" class="html-bibr">49</a>]).</p> "> Figure 3
<p>Spatial patterns in land use (<b>a</b>) and grassland conversions (<b>b</b>) and contributions of different land use types to the grassland shrinkage across the Bluegrass Region (<b>c</b>) (the CDL map was reclassified into major land use types).</p> "> Figure 4
<p>Changes in areas of various fragmentation categories during 2008–2018.</p> "> Figure 5
<p>Changes between fragmentation categories during 2008–2018: (<b>a</b>) from interior to others, (<b>b</b>) from perforated to others, (<b>c</b>) from edge to others, (<b>d</b>) from transitional to others, (<b>e</b>) from patch to others, and (<b>f</b>) from exterior to others.</p> "> Figure 6
<p>Spatial patterns in conversions between interior grassland and other fragmentation categories during 2008–2018: (<b>a</b>) changes in interior, (<b>b</b>) perforated vs. interior, (<b>c</b>) edge vs. interior, (<b>d</b>) transitional vs. interior, (<b>e</b>) patch vs. interior, and (<b>f</b>) exterior vs. interior.</p> ">
Abstract
:1. Introduction
2. Datasets and Methods
2.1. Description of the Study Area
2.2. USDA Crop Data Layer
2.3. Grassland Fragmentation Analysis
3. Results
3.1. Recent Changes in Grassland Across the Bluegrass Region
3.2. Analysis of Grassland Fragmentation
4. Discussion
4.1. Grassland Shrinkage and Fragmentation and Driving Factors
4.2. Potential Effects on the Biogeochemical and Hydrological Cycles
4.3. Landscape Fragmentation and Local Culture
4.4. Uncertainties and Future Needs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, X.-P.; Hansen, M.C.; Stehman, S.V.; Potapov, P.V.; Tyukavina, A.; Vermote, E.F.; Townshend, J.R. Global land change from 1982 to 2016. Nature 2018, 560, 639–642. [Google Scholar] [CrossRef] [PubMed]
- Ramankutty, N.; Foley, J.A. Estimating historical changes in land cover:North American croplands from 1850 to 1992. Glob. Ecol. Biogeogr. 2001, 8, 381–396. [Google Scholar] [CrossRef]
- Waisanen, P.J.; Bliss, N.B. Changes in population and agricultural land in conterminous United States counties, 1790 to 1997. Glob. Biogeochem. Cycles 2002, 16, 1137. [Google Scholar] [CrossRef]
- Sleeter, B.M.; Sohl, T.L.; Loveland, T.R.; Auch, R.F.; Acevedo, W.; Drummond, M.A.; Sayler, K.L.; Stehman, S.V. Land-cover change in the conterminous United States from 1973 to 2000. Glob. Environ. Chang. 2013, 23, 733–748. [Google Scholar] [CrossRef] [Green Version]
- Kouki, J.; Löfman, S. Forest fragmentation: Processes, concepts and implication for species. In Key Concepts in Landscape Ecology, Proceedings of the 1998 European Congress of IALE, Preston, UK, 3–5 September 1998.
- Mitchell, M.G.; Suarez-Castro, A.F.; Martinez-Harms, M.; Maron, M.; McAlpine, C.; Gaston, K.J.; Johansen, K.; Rhodes, J.R. Reframing landscape fragmentation’s effects on ecosystem services. Trends Ecol. Evol. 2015, 30, 190–198. [Google Scholar] [CrossRef] [Green Version]
- Davies, K.; Gascon, C.; Margules, C.R. Habitat Fragmentation: Consequences, Management and Future Research Priorities; Island Press: Washington, DC, USA, 2001. [Google Scholar]
- Bennett, A.F.; Saunders, D.A. Habitat fragmentation and landscape change. Conserv. Biol. 2010, 93, 1544–1550. [Google Scholar]
- Harper, K.A.; Macdonald, S.E.; Burton, P.J.; Chen, J.; Brosofske, K.D.; Saunders, S.C.; Euskirchen, E.S.; Roberts, D.; Jaiteh, M.S.; Esseen, P.A. Edge influence on forest structure and composition in fragmented landscapes. Conserv. Biol. 2005, 19, 768–782. [Google Scholar] [CrossRef]
- Collinge, S.K. Effects of grassland fragmentation on insect species loss, colonization, and movement patterns. Ecology 2000, 81, 2211–2226. [Google Scholar] [CrossRef]
- Xiao, R.; Wang, G.; Zhang, Q.; Zhang, Z. Multi-scale analysis of relationship between landscape pattern and urban river water quality in different seasons. Sci. Rep. UK 2016, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Carbutt, C.; Henwood, W.D.; Gilfedder, L.A. Global plight of native temperate grasslands: Going, going, gone? Biodivers. Conserv. 2017, 26, 2911–2932. [Google Scholar] [CrossRef]
- Hoekstra, J.M.; Boucher, T.M.; Ricketts, T.H.; Roberts, C. Confronting a biome crisis: Global disparities of habitat loss and protection. Ecol. Lett. 2005, 8, 23–29. [Google Scholar] [CrossRef]
- Ricketts, T.; Dinerstein, E.; Olson, D.; Loucks, C.; Eichbaum, W.; Kavanagh, K.; Hedao, P.; Hurley, P.; Carney, K.; Abell, R.; et al. A Conservation Assessment of the Terrestrial Ecoregions of North America Volume I: The United States and Canada; Island Press: Washington, DC, USA, 1997. [Google Scholar]
- Baldi, G.; Guerschman, J.P.; Paruelo, J.M. Characterizing fragmentation in temperate South America grasslands. Agric. Ecosyst. Environ. 2006, 116, 197–208. [Google Scholar] [CrossRef]
- Ban, Y.; Gong, P.; Gini, C. Global land cover mapping using Earth observation satellite data: Recent progresses and challenges. ISPRS J. Photogramm. (Print) 2015, 103, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Vogelmann, J.E.; Howard, S.M.; Yang, L.; Larson, C.R.; Wylie, B.K.; Van Driel, N. Completion of the 1990s National Land Cover Data Set for the conterminous United States from Landsat Thematic Mapper data and ancillary data sources. Photogramm. Eng. Remote Sens. 2001, 67, 650–662. [Google Scholar]
- Yang, L.; Jin, S.; Danielson, P.; Homer, C.; Gass, L.; Bender, S.M.; Case, A.; Costello, C.; Dewitz, J.; Fry, J. A new generation of the United States National Land Cover Database: Requirements, research priorities, design, and implementation strategies. ISPRS J. Photogramm. 2018, 146, 108–123. [Google Scholar] [CrossRef]
- Boryan, C.; Yang, Z.; Mueller, R.; Craig, M. Monitoring US agriculture: The US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program. Geocarto Int. 2011, 26, 341–358. [Google Scholar] [CrossRef]
- Wang, Z.; Song, K.; Zhang, B.; Liu, D.; Ren, C.; Luo, L.; Yang, T.; Huang, N.; Hu, L.; Yang, H. Shrinkage and fragmentation of grasslands in the West Songnen Plain, China. Agric. Ecosyst. Environ. 2009, 129, 315–324. [Google Scholar] [CrossRef]
- Roch, L.; Jaeger, J.A.G. Monitoring an ecosystem at risk: What is the degree of grassland fragmentation in the Canadian Prairies? Environ. Monit. Assess. 2014, 186, 2505–2534. [Google Scholar] [CrossRef]
- Wright, C.K.; Wimberly, M.C. Recent land use change in the Western Corn Belt threatens grasslands and wetlands. Proc. Natl. Acad. Sci. USA 2013, 110, 4134–4139. [Google Scholar] [CrossRef] [Green Version]
- Ulack, R.; Raitz, K.B.; Hopper, H.L. Lexington and Kentucky’s Inner Bluegrass Region. Pathways in Geography Series, Site Guide Title No. 10; ERIC: 1994. Available online: https://eric.ed.gov/?id=ED383629 (accessed on 25 April 2020).
- Campbell, J.J. Historical Evidence of Forest Composition in the Bluegrass Region of Kentucky. In General Technical Report NC-132, Proceedings of the Seventh Central Hardwood Conference; Rink, G., Budelsky, C.A., Eds.; U.S. Department of Agriculture, Forest Service Central Forest Experiment Station (USA): North Central Experiment Station, St. Paul, MN, USA, 1989; pp. 231–246. [Google Scholar]
- Wharton, M.E.; Barbour, R.W. Bluegrass Land and Life: Land Character, Plants, and Animals of the Inner Bluegrass Region of Kentucky: Past, Present, and Future; The University Press of Kentucky: Lexington, KY, USA, 1991. [Google Scholar]
- Dreistadt, R. Lost Bluegrass: History of a Vanishing Landscape; The History Press: Charleston, SC, USA, 2011. [Google Scholar]
- Wilson, L.S. Land Use Patterns of the Inner Bluegrass. Econ. Geogr. 1941, 17, 287–296. [Google Scholar] [CrossRef]
- Johnson, R.W. Land use in the Bluegrass basins. Econ. Geogr. 1940, 16, 315–335. [Google Scholar] [CrossRef]
- McEwan, R.W.; McCarthy, B.C. Anthropogenic disturbance and the formation of oak savanna in central Kentucky, USA. J. Biogeogr. 2008, 35, 965–975. [Google Scholar] [CrossRef]
- U.S. Census Bureau. 2011 2010 Census Tract Relationship File Overview; Census Bureau: Washington, DC, USA, 2011. [Google Scholar]
- Wickham, J.D.; Riitters, K.H.; Wade, T.; Coan, M.; Homer, C. The effect of Appalachian mountaintop mining on interior forest. Landsc. Ecol. 2007, 22, 179–187. [Google Scholar] [CrossRef]
- Season, D. Kentucky Viticultural Regions and Suggested Cultivars; University of Kentucky: Lexington, KY, USA, 2008. [Google Scholar]
- Johnson, D.M.; Mueller, R. The 2009 Cropland Data Layer. Photogramm. Eng. Remote Sens. 2010, 76, 1201–1205. [Google Scholar]
- Reitsma, K.D.; Dunn, B.H.; Mishra, U.; Clay, S.A.; DeSutter, T.; Clay, D.E. Land-use change impact on soil sustainability in a climate and vegetation transition zone. J. Agron. 2015, 107, 2363–2372. [Google Scholar] [CrossRef] [Green Version]
- Miller, D.; McCarthy, J.; Zakzeski, A. A fresh approach to agricultural statistics: Data mining and remote sensing. In Proceedings of the Joint Statistical Meetings, Washington, DC, USA, 1–6 August 2009; pp. 3144–3155. [Google Scholar]
- Han, W.; Yang, Z.; Di, L.; Zhang, B.; Peng, C. Enhancing agricultural geospatial data dissemination and applications using geospatial Web services. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2014, 7, 4539–4547. [Google Scholar] [CrossRef]
- Hansen, M.C.; Loveland, T.R. A review of large area monitoring of land cover change using Landsat data. Remote Sens. Environ. 2012, 122, 66–74. [Google Scholar] [CrossRef]
- Stern, A.; Doraiswamy, P.C.; Hunt, E.R. Changes of crop rotation in Iowa determined from the United States Department of Agriculture, National Agricultural Statistics Service cropland data layer product. J. Appl. Remote Sens. 2012, 6, 063590. [Google Scholar] [CrossRef]
- West, T.O.; Brandt, C.C.; Baskaran, L.M.; Hellwinckel, C.M.; Mueller, R.; Bernacchi, C.J.; Bandaru, V.; Yang, B.; Wilson, B.S.; Marland, G. Cropland carbon fluxes in the United States: Increasing geospatial resolution of inventory-based carbon accounting. Ecol. Appl. 2010, 20, 1074–1086. [Google Scholar] [CrossRef]
- Lark, T.J.; Salmon, J.M.; Gibbs, H.K. Cropland expansion outpaces agricultural and biofuel policies in the United States. Environ. Res. Lett. 2015, 10, 044003. [Google Scholar] [CrossRef] [Green Version]
- Allen, V.G.; Batello, C.; Berretta, E.; Hodgson, J.; Kothmann, M.; Li, X.; McIvor, J.; Milne, J.; Morris, C.; Peeters, A. An international terminology for grazing lands and grazing animals. Grass Forage Sci. 2011, 66, 2–28. [Google Scholar] [CrossRef]
- Wright, C.K.; Larson, B.; Lark, T.J.; Gibbs, H.K. Recent grassland losses are concentrated around US ethanol refineries. Environ. Res. Lett. 2017, 12, 044001. [Google Scholar] [CrossRef]
- Riitters, K.; Wickham, J.D.; O’neill, R.V.; Jones, K.B.; Smith, E.R.; Coulston, J.W.; Wade, T.G.; Smith, J.H. Fragmentation of continental United States forests. Ecosystems 2002, 5, 0815–0822. [Google Scholar] [CrossRef]
- Riitters, K.; Wickham, J.; O’Neill, R.; Jones, B.; Smith, E. Global-scale patterns of forest fragmentation. Conserv. Ecol. 2000, 4, 3. [Google Scholar] [CrossRef]
- Dong, J.; Xiao, X.; Sheldon, S.; Biradar, C.; Zhang, G.; Duong, N.D.; Hazarika, M.; Wikantika, K.; Takeuhci, W.; Moore III, B. A 50 m forest cover map in Southeast Asia from ALOS/PALSAR and its application on forest fragmentation assessment. PLoS ONE 2014, 9, e85801. [Google Scholar] [CrossRef] [Green Version]
- Kowe, P.; Mutanga, O.; Odindi, J.; Dube, T. A quantitative framework for analysing long term spatial clustering and vegetation fragmentation in an urban landscape using multi-temporal landsat data. INT J. Appl. Earth Obs. 2020, 88, 102057. [Google Scholar] [CrossRef]
- Li, M.; Mao, L.; Zhou, C.; Vogelmann, J.E.; Zhu, Z. Comparing forest fragmentation and its drivers in China and the USA with Globcover v2. 2. J. Environ. Manag. 2010, 91, 2572–2580. [Google Scholar] [CrossRef]
- Frate, L.; Acosta, A.T.; Cabido, M.; Hoyos, L.; Carranza, M.L. Temporal changes in forest contexts at multiple extents: Three decades of fragmentation in the Gran Chaco (1979-2010), Central Argentina. PLoS ONE 2015, 10, e0142855. [Google Scholar] [CrossRef]
- Irwin, E.G.; Bockstael, N.E. The evolution of urban sprawl: Evidence of spatial heterogeneity and increasing land fragmentation. Proc. Natl. Acad. Sci. USA 2007, 104, 20672–20677. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.K.; Pandey, A.C.; Singh, D. Land use fragmentation analysis using remote sensing and Fragstats. In Remote Sensing Applications in Environmental Research; Springer: Berlin/Heidelberg, Germany, 2014; pp. 151–176. [Google Scholar]
- McGarigal, K. Fragstats Help-Version 4.2; University of Massachusetts: Amherst, MA, USA; Available online: https://www.umass.edu/landeco/research/fragstats/documents/fragstats.help.4.2.pdf (accessed on 20 April 2020).
- Adamczyk, J.; Tiede, D. ZonalMetrics-a Python toolbox for zonal landscape structure analysis. Comput. Geosci. 2017, 99, 91–99. [Google Scholar] [CrossRef]
- Johnston, C.A. Agricultural expansion: Land use shell game in the US Northern Plains. Landsc. Ecol. 2014, 29, 81–95. [Google Scholar] [CrossRef]
- Arora, G.; Wolter, P.T. Tracking land cover change along the western edge of the U.S. Corn Belt from 1984 through 2016 using satellite sensor data: Observed trends and contributing factors. J. Land Use Sci. 2018, 13, 59–80. [Google Scholar] [CrossRef]
- Lark, T.J. America’s Food-and Fuel-Scapes: Quantifying Agricultural Land-Use Change Across the United States; The University of Wisconsin madison: Madison, WI, USA, 2017. [Google Scholar]
- World Wildlife Fund. 2017 Plowprint Report. In World Wildlife Fund Northern Great Plains Program; WWF: Gland, Switzerland, 2017. [Google Scholar]
- Hungate, B.A.; Holland, E.A.; Jackson, R.B.; Chapin, F.S.; Mooney, H.A.; Field, C.B. The fate of carbon in grasslands under carbon dioxide enrichment. Nature 1997, 388, 576–579. [Google Scholar] [CrossRef]
- Xiao, J.; Ollinger, S.V.; Frolking, S.; Hurtt, G.C.; Hollinger, D.Y.; Davis, K.J.; Pan, Y.; Zhang, X.; Deng, F.; Chen, J. Data-driven diagnostics of terrestrial carbon dynamics over North America. Agric. Forest Meteorol. 2014, 197, 142–157. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Wylie, B.K.; Ji, L.; Gilmanov, T.G.; Tieszen, L.L.; Howard, D.M. Upscaling carbon fluxes over the Great Plains grasslands: Sinks and sources. J. Geophys. Res.-Biogeosci. 2011, 116, G00J03. [Google Scholar] [CrossRef]
- Hayes, D.J.; Turner, D.P.; Stinson, G.; McGuire, A.D.; Wei, Y.; West, T.O.; Heath, L.S.; De Jong, B.; McConkey, B.G.; Birdsey, R.A. Reconciling estimates of the contemporary North American carbon balance among terrestrial biosphere models, atmospheric inversions, and a new approach for estimating net ecosystem exchange from inventory-based data. Glob. Chang. Biol. 2012, 18, 1282–1299. [Google Scholar] [CrossRef] [Green Version]
- Henwood, W.D. Toward a strategy for the conservation and protection of the world’s temperate grasslands. Great Plains Res. 2010, 1, 121–134. [Google Scholar]
- Carlier, L.; Rotar, I.; Vlahova, M.; Vidican, R. Importance and functions of grasslands. Not. Bot. Horti Agrobot. Cluj-Napoca 2009, 37, 25–30. [Google Scholar]
- Guo, L.B.; Gifford, R. Soil carbon stocks and land use change: A meta analysis. Glob. Chang. Biol. 2002, 8, 345–360. [Google Scholar] [CrossRef]
- Huang, Z.; Davis, M.R.; Condron, L.M.; Clinton, P.W. Soil carbon pools, plant biomarkers and mean carbon residence time after afforestation of grassland with three tree species. Soil Biol. Biochem. 2011, 43, 1341–1349. [Google Scholar] [CrossRef]
- Uuemaa, E.; Roosaare, J.; Mander, Ü. Landscape metrics as indicators of river water quality at catchment scale. Hydrol. Res. 2007, 38, 125–138. [Google Scholar] [CrossRef]
- Amiri, B.J.; Nakane, K. Modeling the linkage between river water quality and landscape metrics in the Chugoku district of Japan. Water Resour. Manag. 2009, 23, 931–956. [Google Scholar] [CrossRef]
- Duarte, G.T.; Santos, P.M.; Cornelissen, T.G.; Ribeiro, M.C.; Paglia, A.P. The effects of landscape patterns on ecosystem services: Meta-analyses of landscape services. Landsc. Ecol. 2018, 33, 1247–1257. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Dunn, R.; Young, R.; Connolly, R.; Dale, P.; Dehayr, R.; Lemckert, C.; McKinnon, S.; Powell, B.; Teasdale, P. Impact of urbanization on coastal wetland structure and function. Austral. Ecol. 2006, 31, 149–163. [Google Scholar] [CrossRef]
- York, A.M.; Shrestha, M.; Boone, C.G.; Zhang, S.; Harrington, J.A.; Prebyl, T.J.; Swann, A.; Agar, M.; Antolin, M.F.; Nolen, B. Land fragmentation under rapid urbanization: A cross-site analysis of Southwestern cities. Urban Ecosyst. 2011, 14, 429–455. [Google Scholar] [CrossRef]
- Sinha, V.; Patel, M.R.; Patel, J.V. PET waste management by chemical recycling: A review. J. Polym. Environ. 2010, 18, 8–25. [Google Scholar] [CrossRef]
- Huang, J.; Zhan, J.; Yan, H.; Wu, F.; Deng, X. Evaluation of the impacts of land use on water quality: A case study in the Chaohu Lake basin. Sci. World J. 2013, 2013, 329187. [Google Scholar] [CrossRef] [Green Version]
- Shi, P.; Zhang, Y.; Li, Z.; Li, P.; Xu, G. Influence of land use and land cover patterns on seasonal water quality at multi-spatial scales. Catena 2017, 151, 182–190. [Google Scholar] [CrossRef]
- Easton, Z.M.; Petrovic, A.M. Fertilizer Source Effect on Ground and Surface Water Quality in Drainage from Turfgrass. J. Environ. Qual. 2004, 33, 645–655. [Google Scholar] [CrossRef]
- Coulter, C.B.; Kolka, R.K.; Thompson, J.A. Water quality in agricultural, urban, and mixed land use watersheds 1. J. Am. Water Resour. Assoc. 2004, 40, 1593–1601. [Google Scholar] [CrossRef]
- Ray, J.A.; Webb, A.S.; O’dell, P.W. Groundwater Sensitivity Regions of Kentucky. In Kentucky Department for Environmental Protection—Division of Water—Groundwater Branch. 1:500,000; Kentucky Department for Environmental Protection: Frankfort, KY, USA, 1994. [Google Scholar]
- Dieterich, M.; van der Straaten, J. Cultural Landscapes and Land Use: The Nature Conservation—Society Interface; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Lark, T.J.; Mueller, R.M.; Johnson, D.M.; Gibbs, H.K. Measuring land-use and land-cover change using the US department of agriculture’s cropland data layer: Cautions and recommendations. Int. J. Appl. Earth Observ. 2017, 62, 224–235. [Google Scholar] [CrossRef]
- Reitsma, K.D.; Clay, D.E.; Clay, S.A.; Dunn, B.H.; Reese, C. Does the US cropland data layer provide an 520 accurate benchmark for land-use change estimates? J. Agron. 2016, 108, 266–272. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Coomes, D.A.; Gibson, L.; Hu, G.; Liu, J.; Luo, Y.; Wu, C.; Yu, M. Forest fragmentation in China and its effect on biodiversity. Biol. Rev. 2019, 94, 1636–1657. [Google Scholar] [CrossRef] [PubMed]
- Ryan, S.J.; Southworth, J.; Hartter, J.; Dowhaniuk, N.; Fuda, R.K.; Diem, J.E. Household level influences on fragmentation in an African park landscape. Appl. Geogr. 2015, 58, 18–31. [Google Scholar] [CrossRef]
- Zhao, R.; Xie, Z.; Zhang, L.; Zhu, W.; Li, J.; Liang, D. Assessment of wetland fragmentation in the middle reaches of the Heihe River by the type change tracker model. J. Arid Land 2015, 7, 177–188. [Google Scholar] [CrossRef]
- Riitters, K.; Wickham, J.D.; Wade, T.G.; Vogt, P. Global survey of anthropogenic neighborhood threats to conservation of grass-shrub and forest vegetation. J. Environ. Manag. 2012, 97, 116–121. [Google Scholar] [CrossRef]
Landscape Index | Abbreviation | Definition | Explanation |
---|---|---|---|
Patch density | PD | number of grassland patches; total landscape area (m2) | |
Edge density | ED | total length (m) of edge in grassland | |
Percentage of landscape | PLAND | area (m2) of grassland patch ; total landscape area (m2) | |
Number of patches | NP | Number of grassland patches | |
Patch area mean | AREA_MN | Mean Grassland Patch Area | |
Effective mesh size | EFMS |
2008 | 2018 | |||||||
---|---|---|---|---|---|---|---|---|
Cropland | Grassland | Forests | Developed | Shrubland | Wetland | Water | Barren | |
Cropland | 41.82 | 20.1 | 1.52 | 0.48 | 0.05 | 0 | 0.05 | 0.08 |
Grassland | 86.21 | 859.24 | 79.51 | 9.89 | 7.11 | 0.03 | 1.48 | 0.99 |
Forests | 2.02 | 10.21 | 814.17 | 2.07 | 1.38 | 0.57 | 1.1 | 0.24 |
Developed | 1.58 | 3.36 | 0.94 | 236.81 | 0.01 | 0.02 | 0.11 | 0.51 |
Shrubland | 0.01 | 0.29 | 1.62 | 0 | 4.71 | 0 | 0.02 | 0 |
Wetland | 0 | 0 | 0.31 | 0 | 0 | 0.18 | 0.02 | 0 |
Water | 0.02 | 0.47 | 1.05 | 0.06 | 0.1 | 0.05 | 27.13 | 0.26 |
Barren | 0.01 | 0.11 | 0.03 | 0.12 | 0 | 0 | 0.02 | 0.19 |
Period | PLAND | NP | PD | ED | AREA_MN | MESH | |
---|---|---|---|---|---|---|---|
2008 | Inner BR | 61.55 | 13654 | 2.93 | 85.56 | 21.02 | 4663.71 |
Outer BR | 43.49 | 95065 | 5.42 | 98.83 | 8.03 | 2675.22 | |
Entire BR | 47.01 | 108338 | 4.88 | 95.59 | 9.64 | 6629.84 | |
2018 | Inner BR | 55.4 | 17543 | 3.76 | 85.86 | 14.72 | 1655.28 |
Outer BR | 36.5 | 109853 | 6.26 | 89.94 | 5.83 | 936.54 | |
Entire BR | 40.24 | 126874 | 5.71 | 88.66 | 7.04 | 1816.58 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, B.; Yang, Y.; Yang, J.; Smith, R.; Fox, J.; Ruane, A.C.; Liu, J.; Ren, W. Recent Shrinkage and Fragmentation of Bluegrass Landscape in Kentucky. Remote Sens. 2020, 12, 1815. https://doi.org/10.3390/rs12111815
Tao B, Yang Y, Yang J, Smith R, Fox J, Ruane AC, Liu J, Ren W. Recent Shrinkage and Fragmentation of Bluegrass Landscape in Kentucky. Remote Sensing. 2020; 12(11):1815. https://doi.org/10.3390/rs12111815
Chicago/Turabian StyleTao, Bo, Yanjun Yang, Jia Yang, Ray Smith, James Fox, Alex C. Ruane, Jinze Liu, and Wei Ren. 2020. "Recent Shrinkage and Fragmentation of Bluegrass Landscape in Kentucky" Remote Sensing 12, no. 11: 1815. https://doi.org/10.3390/rs12111815