Geosynchronous Spaceborne-Airborne Bistatic Moving Target Indication System: Performance Analysis and Configuration Design
<p>The local coordinate system of geosynchronous (GEO) spaceborne-airborne (SA)-bistatic synthetic aperture radar (BSAR) moving target indication (MTI) system.</p> "> Figure 2
<p>Configuration design flow chart of GEO SA-BSAR MTI system.</p> "> Figure 3
<p>Signal to clutter and noise ratio (SCNR) loss for different bistatic configuration: (<b>a</b>) configuration 1 and configuration 2; (<b>b</b>) configuration 3 and configuration 4.</p> "> Figure 4
<p>The variation of minimum detectable velocity (MDV) and maximum unambiguous velocity (MUV) with configuration parameters for different airplane’s velocities: (<b>a</b>) MDV for the airplane’s velocity of 150 m/s; (<b>b</b>) MUV for the airplane’s velocity of 150 m/s; (<b>c</b>) MDV for the airplane’s velocity of 200 m/s; (<b>d</b>) MUV for the airplane’s velocity of 200 m/s; (<b>e</b>) MDV for the airplane’s velocity of 250 m/s; (<b>f</b>) MUV for the airplane’s velocity of 250 m/s.</p> "> Figure 4 Cont.
<p>The variation of minimum detectable velocity (MDV) and maximum unambiguous velocity (MUV) with configuration parameters for different airplane’s velocities: (<b>a</b>) MDV for the airplane’s velocity of 150 m/s; (<b>b</b>) MUV for the airplane’s velocity of 150 m/s; (<b>c</b>) MDV for the airplane’s velocity of 200 m/s; (<b>d</b>) MUV for the airplane’s velocity of 200 m/s; (<b>e</b>) MDV for the airplane’s velocity of 250 m/s; (<b>f</b>) MUV for the airplane’s velocity of 250 m/s.</p> "> Figure 5
<p>Cramer–Rao lower bounds (CRLBs) for radial velocity and azimuth position of different bistatic configurations: (<b>a</b>) CRLBs for radial velocity of configurations 1~4; (<b>b</b>) CRLBs for radial velocity of configurations 5~6; (<b>c</b>) CRLBs for azimuth position of configuration 1~4; (<b>d</b>) CRLBs for azimuth position of configurations 5~6.</p> "> Figure 5 Cont.
<p>Cramer–Rao lower bounds (CRLBs) for radial velocity and azimuth position of different bistatic configurations: (<b>a</b>) CRLBs for radial velocity of configurations 1~4; (<b>b</b>) CRLBs for radial velocity of configurations 5~6; (<b>c</b>) CRLBs for azimuth position of configuration 1~4; (<b>d</b>) CRLBs for azimuth position of configurations 5~6.</p> "> Figure 6
<p>When the velocity angle is 0, the variation of velocity and location accuracy with the receiver’s incidence angle and the ground projection of the bistatic angle for different airplane’s velocities: (<b>a</b>) the variation of velocity accuracy for the airplane’s velocity of 150 m/s; (<b>b</b>) the variation of location accuracy for the airplane’s velocity of 150 m/s; (<b>c</b>) the variation of velocity accuracy for the airplane’s velocity of 200 m/s; (<b>d</b>) the variation of location accuracy for the airplane’s velocity of 200 m/s; (<b>e</b>) the variation of velocity accuracy for the airplane’s velocity of 250 m/s; (<b>f</b>) the variation of location accuracy for the airplane’s velocity of 250 m/s.</p> "> Figure 6 Cont.
<p>When the velocity angle is 0, the variation of velocity and location accuracy with the receiver’s incidence angle and the ground projection of the bistatic angle for different airplane’s velocities: (<b>a</b>) the variation of velocity accuracy for the airplane’s velocity of 150 m/s; (<b>b</b>) the variation of location accuracy for the airplane’s velocity of 150 m/s; (<b>c</b>) the variation of velocity accuracy for the airplane’s velocity of 200 m/s; (<b>d</b>) the variation of location accuracy for the airplane’s velocity of 200 m/s; (<b>e</b>) the variation of velocity accuracy for the airplane’s velocity of 250 m/s; (<b>f</b>) the variation of location accuracy for the airplane’s velocity of 250 m/s.</p> "> Figure 7
<p>When the ground projection of bistatic angle is 0, the variation of velocity and location accuracy with the receiver’s incidence angle and ground projection of velocity angle for different airplane’s velocities: (<b>a</b>) the variation of velocity accuracy for the airplane’s velocity of 150 m/s; (<b>b</b>) the variation of location accuracy for the airplane’s velocity of 150 m/s; (<b>c</b>) the variation of velocity accuracy for the airplane’s velocity of 200 m/s; (<b>d</b>) the variation of location accuracy for the airplane’s velocity of 200 m/s; (<b>e</b>) the variation of velocity accuracy for the airplane’s velocity of 250 m/s; (<b>f</b>) the variation of location accuracy for the airplane’s velocity of 250 m/s.</p> "> Figure 7 Cont.
<p>When the ground projection of bistatic angle is 0, the variation of velocity and location accuracy with the receiver’s incidence angle and ground projection of velocity angle for different airplane’s velocities: (<b>a</b>) the variation of velocity accuracy for the airplane’s velocity of 150 m/s; (<b>b</b>) the variation of location accuracy for the airplane’s velocity of 150 m/s; (<b>c</b>) the variation of velocity accuracy for the airplane’s velocity of 200 m/s; (<b>d</b>) the variation of location accuracy for the airplane’s velocity of 200 m/s; (<b>e</b>) the variation of velocity accuracy for the airplane’s velocity of 250 m/s; (<b>f</b>) the variation of location accuracy for the airplane’s velocity of 250 m/s.</p> ">
Abstract
:1. Introduction
2. GEO SA-BSAR System for MTI
2.1. System and Geometry
2.2. Bistatic Configuration
2.3. Special Issues for Moving Target Indication
3. Signal Model and Performance Analysis of GEO SA-BSAR MTI System
3.1. Signal Model
3.1.1. Clutter Signal Model and Clutter Covariance Matrix
3.1.2. Signal Model of Moving Target in RD Domain and Its Steering Vector
3.2. MTI Performance Analysis of GEO SA-BSAR
3.2.1. Minimum Detectable Velocity
3.2.2. Maximum Unambiguous Velocity
3.2.3. Parameter Estimation Accuracy
4. Optimal Configuration Design for GEO SA-BSAR MTI System
5. Simulation Verification
5.1. Output SCNR Loss Analysis
5.2. CRLB Analysis
5.3. Bistatic Configuration Design Results
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Notation List of This Paper
Speed of light | Slow time | ||
Bandwidth | Fast time | ||
Ground projection matrix | Distance between the -th channel and the reference channel | ||
The GEO satellite’s angular velocity | Wavelength | ||
The airplane’s angular velocity | The first-order term coefficient after Taylor expansion of the stationary target at scene center | ||
Unit vectors along the range resolution direction | Azimuth envelope | ||
Unit vectors along the azimuth resolution direction | Azimuth envelope of the spectrum | ||
Transmitted power. | Slant range history of the target for the -th channel | ||
Transmitting antenna gain | Slant range at ACM | ||
Receiving antenna gain | The first-order term coefficient of the Taylor expansion of the slant range history form the stationary target at scene center to the transmitter | ||
Duty ratio | Coefficients of each order of the Taylor expansion of the slant range history | ||
Synthetic aperture time | Doppler frequency | ||
Slant range of transmitter | M-dimensional identity matrix | ||
Slant range of receiver | Variance of thermal noise | ||
Propagation loss | Expectation | ||
Receiver noise figure | Number of channels | ||
Noise temperature | Transmitter’s position at ACM | ||
Boltzmann constant | Receiver’s position at ACM | ||
Normalized radar cross section | The set of moving target’s position and its velocity |
References
- Gabriel, A.K.; Goldstein, R.M. Bistatic images from SIR-B. In Proceedings of the International Geoscience and Remote Sensing Symposium, Amherst, MA, USA, 7–9 October 1985; p. 112. [Google Scholar]
- Espeter, T.; Walterscheid, I.; Klare, J.; Ender, J.H.G. Synchronization techniques for the bistatic spaceborne/airborne SAR experiment with TerraSAR-X and PAMIR. In Proceedings of the IEEE International Geoscience & Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; pp. 2160–2163. [Google Scholar]
- Espeter, T.; Walterscheid, I.; Klare, J.; Gierull, C.; Brenner, A.; Ender, J.; Loffeld, O. Progress of Hybrid Bistatic SAR: Synchronization Experiments and First Imaging Results. In Proceedings of the 7th European Conference on Synthetic Aperture Radar, Friedrichshafen, Germany, 2–5 June 2008. [Google Scholar]
- Walterscheid, I.; Espeter, T.; Ender, J.H.G. Performance analysis of a hybrid bistatic SAR system operating in the double sliding spotlight mode. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007. [Google Scholar]
- Rodriguezcassola, M.; Baumgartner, S.V.; Krieger, G.; Nottensteiner, A.; Horn, R.; Steinbrecher, U.; Metzig, R.; Limbach, M.; Prats, P.; Fischer, J.V.; et al. Bistatic spaceborne-airborne experiment TerraSAR-X/F-SAR: Data processing and results. In Proceedings of the 2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 7–11 July 2008. [Google Scholar]
- Baumgartner, S.V.; Rodriguez-Cassola, M.; Nottensteiner, A.; Horn, R.; Scheiber, R.; Schwerdt, M.; Steinbrecher, U.; Metzig, R.; Limbach, M.; Mittermayer, J.; et al. Bistatic Experiment Using TerraSAR-X and DLR’s new F-SAR System. In Proceedings of the 7th European Conference on Synthetic Aperture Radar, Friedrichshafen, Germany, 2–5 June 2008. [Google Scholar]
- Walterscheid, I.; Espeter, T.; Klare, J.; Nies, H.; Brenner, A.R.; Ender, J.H.G.; Wang, R.; Loffeld, O.D. Bistatic SAR Experiments with PAMIR and TerraSAR-X—Setup, Processing, and Image Results. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3268–3279. [Google Scholar] [CrossRef]
- Hong, F.; Wang, R.; Zhang, A.; Lu, P.; Balz, T. Integrated time and phase synchronization strategy for a multichannel spaceborne-stationary bistatic SAR system. Remote Sens. 2016, 8, 628. [Google Scholar] [CrossRef] [Green Version]
- Long, T.; Hu, C.; Ding, Z.; Dong, X.; Tian, W.; Zeng, T. Geosynchronous SAR: System and Signal. Processing; Springer: Singapore, 2018. [Google Scholar]
- Long, T.; Dong, X.; Hu, C.; Zeng, T. A New Method of Zero-Doppler Centroid Control in GEO SAR. IEEE Geosci. Remote Sens. Lett. 2011, 8, 512–516. [Google Scholar] [CrossRef]
- Hu, C.; Zhang, B.; Dong, X.; Li, Y. Geosynchronous SAR Tomography: Theory and First Experimental Verification Using Beidou IGSO Satellite. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6591–6607. [Google Scholar] [CrossRef]
- Ruiz-Rodon, J.; Broquetas, A.; Makhoul, E.; Guarnieri, A.M.; Rocca, F. Nearly Zero Inclination Geosynchronous SAR Mission Analysis with Long Integration Time for Earth Observation. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6379–6391. [Google Scholar] [CrossRef]
- Cui, W.; Tian, J.; Xia, X.-G.; Wu, S. An approach for parameter estimation of maneuvering targets with nonlinear motions. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 67–83. [Google Scholar] [CrossRef]
- Hobbs, S.; Sanchez, J.P. Laplace plane and low inclination geosynchronous radar mission design. Sci. China Inf. Sci. 2017, 60, 060305. [Google Scholar] [CrossRef]
- Hu, C.; Long, T.; Zeng, T.; Liu, F.; Liu, Z. The Accurate Focusing and Resolution Analysis Method in Geosynchronous SAR. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3548–3563. [Google Scholar] [CrossRef]
- Hu, C.; Chen, Z.; Dong, X.; Cui, C. Multistatic Geosynchronous SAR Resolution Analysis and Grating Lobe Suppression Based on Array Spatial Ambiguity Function. IEEE Trans. Geosci. Remote Sens. 2020. early access. [Google Scholar] [CrossRef]
- Dong, X.; Hu, J.; Hu, C.; Long, T.; Li, Y.; Tian, Y. Modeling and Quantitative Analysis of Tropospheric Impact on Inclined Geosynchronous SAR Imaging. Remote Sens. 2019, 11, 803. [Google Scholar] [CrossRef] [Green Version]
- Hu, C.; Liu, Z.; Long, T. An improved focusing method for geosynchronous SAR. Adv. Space Res. 2013, 51, 1773–1783. [Google Scholar] [CrossRef]
- Hu, C.; Li, Y.; Dong, X.; Wang, R.; Cui, C. Optimal 3D deformation measuring in inclined geosynchronous orbit SAR differential interferometry. Sci. China Inf. Sci. 2017, 60, 060303. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiong, W.; Dong, X.; Hu, C. A Novel Azimuth Spectrum Reconstruction and Imaging Method for Moving Targets in Geosynchronous Spaceborne-Airborne Bistatic Multichannel SAR. IEEE TGRS 2020. early access. [Google Scholar] [CrossRef]
- Melzi, M.; Hu, C.; Dong, X.; Li, Y.; Cui, C. Velocity Estimation of Multiple Moving Targets in Single-Channel Geosynchronous SAR. IEEE TGRS 2020. early access. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiong, W.; Dong, X.; Hu, C.; Sun, Y. GRFT-Based Moving Ship Target Detection and Imaging in Geosynchronous SAR. Remote Sens. 2018, 10, 2002. [Google Scholar] [CrossRef] [Green Version]
- Guttrich, G.; Sievers, W. Wide area surveillance concepts based on geosynchronous illumination and bistatic UAV or satellite reception. In Proceedings of the IEEE Aerospace Conference, Snowmass at Aspen, CO, USA, 13 February 1997. [Google Scholar]
- Wu, J.; Sun, Z.; Huang, Y.; Yang, J.; Lv, Y.; Wang, Z. Geosynchronous spaceborne-airborne bistatic SAR: Potentials and prospects. In Proceedings of the Radar Conference, Arlington, VA, USA, 10–15 May 2015. [Google Scholar]
- Sun, Z.; Wu, J.; Huang, Y.; Yang, J.; Yang, H.; Yang, X. Performance analysis and mission design for inclined geosynchronous spaceborne-airborne bistatic SAR. In Proceedings of the Radar Conference, Arlington, VA, USA, 10–15 May 2015. [Google Scholar]
- Sun, Z.; Wu, J.; Pei, J.; Li, Z.; Huang, Y.; Yang, J. Inclined Geosynchronous Spaceborne–Airborne Bistatic SAR: Performance Analysis and Mission Design. IEEE Trans. Geosci. Remote Sens. 2016, 54, 343–357. [Google Scholar] [CrossRef]
- Wu, J.; Sun, Z.; Zhang, Q.; An, H.; Yang, J.; Li, C.; Li, D. Geosynchronous spaceborne-airborne bistatic SAR for earth observation: Advantages and main aspects. In Proceedings of the 2016 IEEE 13th International Conference on Signal Processing (ICSP), Chengdu, China, 6–10 November 2016. [Google Scholar]
- Wu, J.; Sun, Z.; Li, Z.; Huang, Y.; Yang, J.; Liu, Z. Focusing Translational Variant Bistatic Forward-Looking SAR Using Keystone Transform and Extended Nonlinear Chirp Scaling. Remote Sens. 2016, 8, 840. [Google Scholar] [CrossRef] [Green Version]
- An, H.; Wu, J.; Sun, Z.; Yang, J. A Two-Step Nonlinear Chirp Scaling Method for Multichannel GEO Spaceborne-Airborne Bistatic SAR Spectrum Reconstructing and Focusing. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3713–3728. [Google Scholar] [CrossRef]
- Wu, J.; Sun, Z.; An, H.; Qu, J.; Yang, J. Azimuth Signal Multichannel Reconstruction and Channel Configuration Design for Geosynchronous Spaceborne-Airborne Bistatic SAR. IEEE Trans. Geosci. Remote Sens. 2018, 57, 1861–1872. [Google Scholar] [CrossRef]
- Li, G.; Xu, J.; Peng, Y.-N.; Xia, X.-G. Bistatic Linear Antenna Array SAR for Moving Target Detection, Location, and Imaging with Two Passive Airborne Radars. IEEE Trans. Geosci. Remote Sens. 2007, 45, 554–565. [Google Scholar] [CrossRef]
- Zeng, T.; Cherniakov, M.; Long, T. Generalized approach to resolution analysis in BSAR. IEEE Trans. Aerosp. Electron. Syst. 2005, 41, 461–474. [Google Scholar] [CrossRef]
- Li, T.; Chen, K.-S.; Jin, M. Analysis and Simulation on Imaging Performance of Backward and Forward Bistatic Synthetic Aperture Radar. Remote Sens. 2018, 10, 1676. [Google Scholar] [CrossRef] [Green Version]
- Fung, A.; Liu, W.; Chen, K.; Tsay, M. An improved IEM model for bistatic scattering from rough surfaces. J. Electromagn. Waves Appl. 2002, 16, 689–702. [Google Scholar] [CrossRef]
- Mhetre, P.S. Genetic algorithm for linear and nonlinear equation. Int. J. Adv. Eng. Technol. 2012, 3, 114–118. [Google Scholar]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Wong, F.; Cumming, I.; Neo, Y.L. Focusing Bistatic SAR Data Using the Nonlinear Chirp Scaling Algorithm. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2493–2505. [Google Scholar] [CrossRef] [Green Version]
- Fertig, L.B. Analytical expressions for space-time adaptive processing (STAP) performance. IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 42–53. [Google Scholar] [CrossRef]
- Cerutti-Maori, D.; Sikaneta, I.; Gierull, C.H. Optimum SAR/GMTI Processing and Its Application to the Radar Satellite RADARSAT-2 for Traffic Monitoring. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3868–3881. [Google Scholar] [CrossRef]
- Gierull, C.H.; Cerutti-Maori, D.; Ender, J. Ground Moving Target Indication with Tandem Satellite Constellations. IEEE Geosci. Remote Sens. Lett. 2008, 5, 710–714. [Google Scholar] [CrossRef]
- Deb, K.; Jain, H. An Evolutionary Many-Objective Optimization Algorithm Using Reference Point-Based Nondominated Sorting Approach, Part I: Solving Problems with Box Constraints. IEEE Trans. Evol. Comput. 2014, 18, 577–601. [Google Scholar] [CrossRef]
Receiver System Parameters | GEO SAR Orbit Elements | ||
---|---|---|---|
Wavelength | 0.24 m | Eccentricity | 0 |
Bandwidth | 100 MHz | Inclination | 16° |
Receiver’s height | 10 km | Semi-major axis | 42,164 km |
Receiver’s velocity | 200 m/s | Longitude of ascending node | 88° |
Synthetic aperture time | 10 s | ||
Number of channels | 3 | Argument of perigee | —— |
Antenna size | 6 m |
Bistatic Configuration | Imaging Performance | |||||
---|---|---|---|---|---|---|
(°) | (°) | (°) | (m) | (m) | (°) | (dB) |
66.9126 | 347.8532 | 194.8475 | 3.0577 | 3.0425 | 89.9844 | 20.0000 |
System Parameters | Electromagnetic Characteristic Parameter | ||
---|---|---|---|
Peak transmitting power | 5000 W | Root mean square height | 1.002 cm |
Noise temperature | 300 K | Correlation length | 21.34 cm |
Transmitting antenna gain | 50 dB | Complex dielectric constant | 7 |
Receiving antenna gain | 20.8 dB | Polarization mode | VV |
Propagation loss | 3.5 dB | ||
Noise figure | 4 dB | Rough surface probability distribution | exponential |
Duty ratio | 0.4 |
No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
(deg) | 35 | 60 | 35 | 60 | 35 | 60 | 35 | 60 |
(deg) | 0 | 0 | 150 | 150 | 0 | 0 | 150 | 150 |
(deg) | 0 | 0 | 0 | 0 | 140 | 140 | 140 | 140 |
Parameters | Values | Parameters | Values |
---|---|---|---|
Population size | 100 | Number of iterations | 500 |
Mutation probability | 0.33 | Crossover probability | 0.9 |
Mutation factor | 20 | Crossover factor | 20 |
Configuration Number | 1 | 2 | 3 | 4 | |
---|---|---|---|---|---|
Configuration Parameters | (deg) | 19.48 | 22.24 | 24.00 | 27.01 |
(deg) | 80.44 | 75.93 | 74.97 | 72.97 | |
(deg) | 204.50 | 201.64 | 205.55 | 205.83 | |
MTI Performance | (m/s) | 3.91 | 3.86 | 3.74 | 3.52 |
(m/s) | 35.42 | 32.95 | 31.87 | 30.05 | |
(m/s) | 0.055 | 0.15 | 0.15 | 0.16 | |
(m) | 2.22 | 6.42 | 7.36 | 8.52 | |
Imaging Performance | (m) | 3.92 | 3.65 | 3.53 | 3.32 |
(m) | 1.22 | 1.26 | 1.28 | 1.33 |
Configuration Number | 1 | 2 | 3 | |
---|---|---|---|---|
Configuration Parameters | (deg) | 19.48 | 21.61 | 22.21 |
(deg) | 80.45 | 76.33 | 75.98 | |
(deg) | 205.78 | 200.26 | 210.55 | |
MTI Performance | (m/s) | 3.92 | 3.91 | 3.86 |
(m/s) | 35.42 | 33.36 | 32.97 | |
(m/s) | 0.056 | 0.14 | 0.15 | |
(m) | 2.22 | 6.08 | 6.30 | |
Imaging Performance | (m) | 3.92 | 3.69 | 3.65 |
(m) | 1.21 | 1.26 | 1.23 |
Configuration Number | 1 | 2 | 3 | |
---|---|---|---|---|
Configuration Parameters | (deg) | 19.48 | 22.07 | 28.44 |
(deg) | 279.49 | 283.93 | 284.02 | |
(deg) | 153.64 | 148.77 | 146.97 | |
MTI Performance | (m/s) | 3.92 | 3.88 | 3.52 |
(m/s) | 35.44 | 33.06 | 30.02 | |
(m/s) | 0.056 | 0.15 | 0.13 | |
(m) | 2.17 | 6.20 | 6.78 | |
Imaging Performance | (m) | 3.92 | 3.66 | 3.65 |
(m) | 1.21 | 1.23 | 1.23 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, X.; Cui, C.; Li, Y.; Hu, C. Geosynchronous Spaceborne-Airborne Bistatic Moving Target Indication System: Performance Analysis and Configuration Design. Remote Sens. 2020, 12, 1810. https://doi.org/10.3390/rs12111810
Dong X, Cui C, Li Y, Hu C. Geosynchronous Spaceborne-Airborne Bistatic Moving Target Indication System: Performance Analysis and Configuration Design. Remote Sensing. 2020; 12(11):1810. https://doi.org/10.3390/rs12111810
Chicago/Turabian StyleDong, Xichao, Chang Cui, Yuanhao Li, and Cheng Hu. 2020. "Geosynchronous Spaceborne-Airborne Bistatic Moving Target Indication System: Performance Analysis and Configuration Design" Remote Sensing 12, no. 11: 1810. https://doi.org/10.3390/rs12111810
APA StyleDong, X., Cui, C., Li, Y., & Hu, C. (2020). Geosynchronous Spaceborne-Airborne Bistatic Moving Target Indication System: Performance Analysis and Configuration Design. Remote Sensing, 12(11), 1810. https://doi.org/10.3390/rs12111810