The Roles of the S3MPC: Monitoring, Validation and Evolution of Sentinel-3 Altimetry Observations
"> Figure 1
<p>(<b>a</b>) Illustration of Sentinel-3 spacecraft showing most of the equipment payload (image courtesy of ESA). (<b>b</b>) Example of track pattern (all lines) surveyed by Sentinel-3A in 27 days in the Agulhas region, South Africa. Blue lines show the nearly uniform coarser coverage from a 4-day period (sub-cycle), with magenta lines showing the subsequent 4 days. [Left-hand figure taken from [<a href="#B2-remotesensing-12-01763" class="html-bibr">2</a>]].</p> "> Figure 2
<p>Land/Sea mask showing the regions of responsibility for data production for mid 2020 onwards (expected). Data over land (light blue) are produced and disseminated by ESA; those over the ocean (dark blue) by EUMETSAT; some regions (white) are common to both, including the polar regions of maximal sea-ice extent and major inland water bodies (e.g., Caspian Sea, Great Lakes, Lake Victoria). As users for terrestrial data may benefit from the records just offshore, and those working in the coastal zone benefit from having the data just inland, these regions extend 25 km outward/inward from the coast to avoid researchers needing to gather data from two sources.</p> "> Figure 3
<p>Organigram showing the areas of expertise of the various Expert Support Laboratories within the STM component of the S3MPC, and their interaction with ESA and EUMETSAT. Overall management of the S3MPC contract is provided by ACRI-ST.</p> "> Figure 4
<p>S3A and S3B whole mission series of calibration parameters correcting science range measurements: (<b>a</b>) calibration path time delay, and (<b>b</b>) range delay due to not-nominal Ultra-Stable Oscillator frequency.</p> "> Figure 5
<p>Complete mission series of S3A and S3B SRAL instrumental corrections for (<b>a</b>) emitted power, and (<b>b</b>) CAL1 PTR width.</p> "> Figure 6
<p>Complete mission averaged CAL1 Intra-burst correction of S3A and S3B: (<b>a</b>) averaged mission series, (<b>b</b>,<b>d</b>) S3A burst corrections progression with respect to first record, and (<b>c</b>,<b>e</b>) S3B burst corrections progression with respect to first record.</p> "> Figure 7
<p>CAL2 correction (in FFT power units) of S3A and S3B missions: (<b>a</b>) averaged mission Transfer Function, (<b>b</b>) S3A CAL2 ripples progression, and (<b>c</b>) S3B CAL2 ripples progression.</p> "> Figure 8
<p>AutoCal correction of S3A and S3B missions: (<b>a</b>) averaged mission attenuation (measured minus reference), (<b>b</b>) S3A attenuations progression with respect to first record, and (<b>c</b>) S3B attenuations progression with respect to first record.</p> "> Figure 9
<p>Daily noise injection temperatures for S3A (red) and S3B (blue). Bold lines show the average, shades the standard deviation and lighter lines are minimum/maximum values. (<b>a</b>) 23.8 GHz channel (<b>b</b>) 36.5 GHz channel.</p> "> Figure 10
<p>Receiver gain for S3A (red) and S3B (blue). Bold lines show the average, shades the standard deviation and lighter lines are minimum/maximum values. (<b>a</b>) 23.8 GHz channel (<b>b</b>) 36.5 GHz channel.</p> "> Figure 11
<p>Monitoring of (<b>a</b>) Cold reference and (<b>b</b>) Hot reference for 23.8 GHz channel of S3A and S3B.</p> "> Figure 12
<p>Monitoring of (<b>a</b>) Cold reference and (<b>b</b>) Hot reference for 36.5 GHz channel of S3A and S3B.</p> "> Figure 13
<p>Comparison of MWR-derived corrections with those from ECMWF model. (<b>a</b>) Mean WTC difference (<b>b</b>) S.D. WTC difference. The vertical lines in cyan indicate changes in the ECMWF operational model used as the reference. Note, there was an update to the S3B characterization file in Dec. 2018, and the default AltiKa algorithm changed from 3-parameter to 5-parameter in Dec. 2019.</p> "> Figure 14
<p>Geographical variation of WTC bias (MWR-derived correction minus those from ECMWF model. (<b>a</b>) S3A, with a mean bias of 0.14 cm removed (<b>b</b>) Jason-3 MWR for the same period, with 0.80 cm removed.</p> "> Figure 15
<p>Comparison of S3A Wind and Wave Data for whole of 2019. (<b>a</b>) Wave height from buoys (<b>b</b>) Wind speed from buoys (<b>c</b>) Wave height from ECMWF WAM model (first guess) (<b>d</b>) Wind speed from ECMWF model (analysis). Plots are 2-D histograms with intervals of 0.5 m/s for wind speed and 0.25 m for SWH; the ‘x’ symbols mark the mean value of altimeter for given in situ, and the ‘o’ symbols show the mean of the in situ for a given altimeter estimate.</p> "> Figure 16
<p>Geographical variation in S3A bias with respect to a model. (<b>a</b>) Wave height (<b>b</b>) Wind speed.</p> "> Figure 17
<p>Time series showing evolution in S3A bias and SDD (Standard deviation of difference) with respect to a model, as different PBs are implemented in the NRT processing or changes made in the ECMWF model (indicated by ‘CY’). (<b>a</b>) Wave height (<b>b</b>) Wind speed. Data are plotted with a 7-day running mean, ‘NH’ is the northern hemisphere, north of 20<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>N; ‘SH’ is south of 20<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>S and ‘TR’ the tropical band in between.</p> "> Figure 18
<p>Comparison of altimeter SWH data for 2019. (<b>a</b>) Average of all 2019 for Sentinel-3 PLRM data (<b>b</b>) Mean bias of Sentinel-3 SAR mode data to those from PLRM (<b>c</b>) Difference of mean fields from S3:PLRM and Jason-3 (LRM) (<b>d</b>) Probability distribution functions of SWH data for Jan. 2019. Numerical values are the median and (in brackets) the 10th and 90th percentiles. Data are limited to 50<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>S to 60<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>N to avoid effects of undetected sea-ice. Comparison of grid box means for 2019 for (<b>e</b>) S3:SAR relative to PLRM and (<b>f</b>) PLRM relative to Jason-3. Full red lines show mean relationship in 0.2 m wide bins with the dashed lines showing ±2 std. dev. For these last 2 plots some data exist outside the axes shown, but these are relatively few.</p> "> Figure 19
<p>(<b>a</b>) Locations of the wave buoys and Sentinel-3A tracks around southwest UK used for the validation. Root mean square bias of S3A wave height and in situ coastal wave buoys observations as a function of distance to coast: (<b>b</b>) SAR mode (<b>c</b>) PLRM mode. (Each coloured symbol represents a different track-buoy comparison.). From Nencioli and Quartly [<a href="#B33-remotesensing-12-01763" class="html-bibr">33</a>].</p> "> Figure 20
<p>Stack data for (<b>a</b>) Sentinel 3B pass (2020-02-18) over Crete and (<b>b</b>) Sentinel 3B pass (12 February 2020) over Svalbard.</p> "> Figure 21
<p>Schematic showing the effect of errors on the sequence of observed ranges (shown by the range vs. time parabolae). (<b>a</b>) An error in datation (timing of observations) means that the apex appears to occur at a different position along track. (<b>b</b>) An error in range results in a parabola nearer to or further away than expected from the point of closest approach.</p> "> Figure 22
<p>Range bias results.</p> "> Figure 23
<p>Datation bias results.</p> "> Figure 24
<p>Configuration for absolute calibration off Corsica. The regions in colours show the two high-resolution mean sea surfaces that were specifically measured by Bonnefond et al. [<a href="#B41-remotesensing-12-01763" class="html-bibr">41</a>] to link the calibration sites to the altimetry data.</p> "> Figure 25
<p>Sentinel-3A and Sentinel-3B absolute SSH bias estimates on track 741, averaged over the Senetosa and Ajaccio sites for (<b>a</b>) SAR mode and (<b>b</b>) PLRM data, obtained with the two processing methods (OBSPM and NOVELTIS).</p> "> Figure 26
<p>(<b>a</b>) Generic diagram of the regional calibration method (image taken from [<a href="#B42-remotesensing-12-01763" class="html-bibr">42</a>]). (<b>b</b>) Configuration in Corsica for the Sentinel-3A mission. S3A ground tracks in pink, Jason-2 tracks in red and Envisat tracks in yellow. The green dots show the crossover points where the offshore S3A SSH bias was computed in Senetosa.</p> "> Figure 27
<p>Height of the lake surface above the reference ellipsoid as measured by Sentinel-3A with the Ocean retracker for cycle 9 (Oct. 2016), for the two tracks (666 and 707) and with the GNSS on the boat. (Inset shows the position of the tracks over the lake and the challenges of the high surrounding topography).</p> "> Figure 28
<p>Maps of Ku-band Sea Level Anomaly computed using radiometer Wet Tropospheric Correction over Sentinel-3B cycle 35 (i.e., from 25/01/2020 to 21/02/2020), for Sentinel-3A (<b>a</b>) and Sentinel-3B (<b>b</b>).</p> "> Figure 29
<p>Map of mean Sea Surface Height difference at Sentinel-3A SARM/Jason-3 crossovers, computed from April 2016 to September 2019, using Sentinel-3A 2020 reprocessed dataset. The mean bias of 1.97 cm has been removed before plotting.</p> "> Figure 30
<p>Monitoring retracker failure for S3A Cycle 52 (PB2.43) over 3 different areas. (<b>a</b>,<b>b</b>) along-track failure over Lake Vostok area of low slope, (<b>c</b>,<b>d</b>) 10 km gridded percentage failure over the Antarctic ice sheet, (<b>e</b>,<b>f</b>) along-track failure over the SPIRIT marginal zone of high slope.</p> "> Figure 31
<p>Time series of retracker failure for S3A over the Antarctic ice sheets. The coloured line at the bottom indicates changes in processing baseline from PB2.31 until cycle 40, then PB2.43 and finally PB2.61. Note a decrease in % valid does not mean a reduction in performance, but rather better recognition of problem data.</p> "> Figure 32
<p>Comparison of gridded percentage failure rates for OCOG retracker for S3A SAR, Envisat, ERS-2 and CryoSat-2 (LRM mode) over Antarctica.</p> "> Figure 33
<p>OCOG elevation differences at single cycle orbit crossover locations over sub-glacial Lake Vostok. (<b>a</b>) Single cycle example (from Cycle 052), (<b>b</b>) S3A mission time series of standard deviation of differences, with dashed line showing how the selected cycle fits in.</p> "> Figure 34
<p>OCOG elevation differences at single cycle orbit crossover locations over the (<b>a</b>) Greenland and (<b>b</b>) Antarctic ice sheets, and (<b>c</b>,<b>d</b>) mission time series of the Median Absolute Difference (MAD) of crossover differences per band of surface slope. The vertical lines highlight the impact of the change in PB.</p> "> Figure 35
<p>Precision monitored using repeat tracks over Lake Vostok. (<b>a</b>) 14 successive elevation profiles along track. (<b>b</b>) Residuals of selected cycle relative to mean over preceding cycles (<b>c</b>) Variability of residuals as a function of cycle number.</p> "> Figure 36
<p>Comparison of S3B with ICESat-2 over Lake Vostok for (<b>a</b>) April 2019 and (<b>b</b>) the mean monthly difference between December 2018 and August 2019.</p> "> Figure 37
<p>Comparison of S3B with ICESat-2 over Antarctica and Greenland. (<b>a</b>) Map of crossover differences for April 2019. (<b>b</b>) Mean monthly difference between November 2018 and May 2019, with coloured lines representing different editing criteria.</p> "> Figure 38
<p>Comparison of S3B with CryoSat-2 (LRM mode) over Lake Vostok. The plotted variable is the difference in heights recorded by S3B and CryoSat-2 at their mutual crossover points.</p> "> Figure 39
<p>Comparison of S3B with CryoSat-2 (SARin mode) over Antarctic margins.</p> "> Figure 40
<p>Examples of SAR mode waveforms for 4 surface types: (<b>a</b>) open ocean, (<b>b</b>) thick pack ice, (<b>c</b>) thin pack ice and (<b>d</b>) ripple-free water within a lead in the ice. The waveforms differ both in shape and in backscattered power, which in these examples range by a factor of 1000.</p> "> Figure 41
<p>Instrument modes used by CryoSat-2 and S3 over the Arctic. CryoSat-2 has a smaller polar hole (region of no observations) than S3, and CryoSat-2 operated in LRM mode over the ice-free regions along the coast of Norway and around the southern cape of Greenland.</p> "> Figure 42
<p>Comparison of sea ice freeboard measurements for December 2016. CryoSat-2 (<b>a</b>,<b>c</b>) and Sentienl-3A (<b>b</b>,<b>d</b>), and with SAMOSA+ retracker (<b>a</b>,<b>b</b>) and TFMRA50 (<b>c</b>,<b>d</b>).</p> "> Figure 43
<p>Scatter distribution of in situ water height from the historical gauges and the Sentinel-3A measurements. The RMS of the differences is 1.5 cm.</p> "> Figure 44
<p>Water height time series using the limnigraph in Karabulun and Sentinel-3A.</p> "> Figure 45
<p>Percentage of default values and edited measurements over lakes for the OCOG backscatter coefficient for Sentinel-3A.</p> "> Figure 46
<p>Distribution of <math display="inline"><semantics> <msup> <mi>σ</mi> <mn>0</mn> </msup> </semantics></math> values for S3A with OLTC v4.2 (blue) and v5.0 (green) over approximately 17000 river targets.</p> "> Figure 47
<p>Difference of Water Surface Height estimates between SAMOSA retracker and OCOG retracker for (<b>a</b>) Sentinel-3A and (<b>b</b>) Sentinel-3B, both for the 27-day period of Sentinel-3B cycle 35.</p> "> Figure 48
<p>Monitoring of water levels in Lake Ladoga (<b>a</b>) Map showing WSH (m) measured along different S3A and S3B tracks (<b>b</b>) Time series for each track, specified by pass number (S3A in blue, S3B in red. During its tandem mission (Jul.–Oct. 2018) S3B flew the same tracks as S3A; after Nov. 23th 2018 S3B was in it final interleaved orbit.</p> "> Figure 49
<p>Map of Ebro basin showing key rivers and reservoirs.</p> "> Figure 50
<p>Time series of S3A and S3B L2 derived water level over (<b>a</b>) Ribarroja Reservoir, (<b>b</b>) Mequinenza Reservoir.</p> ">
Abstract
:1. Introduction
1.1. The Sentinel-3 Satellites
1.2. Sentinel-3 Surface Topography Mission
1.3. Data Availability and Access
1.4. Sentinel-3 Mission Performance Centre
2. Internal Monitoring of Instrument Performance
2.1. SRAL
- CAL1 Delay: Covering the signal path delay within the transmission and reception chains. It impacts the final range measurement in an additive way.
- CAL1 Power: Measuring the changes in the on-board chirp power by bridging the duplexer to antenna path. It impacts the ocean wind retrieval.
- CAL1 PTR width: The PTR is sinc-shaped. The PTR main lobe width at half power is calculated and used when retrieving the Significant Wave Height.
- CAL1 Burst Power and Phase: In SAR operational mode, the altimeter emits pulses in bursts of 64, but the power and phase will change during a burst. Failure to correct for these intra-burst differences could result in noisier geophysical results and a bias in .
- CAL2: The CAL2 measurement is computed by accumulating a large number of calibration waveforms while the receiving window is located at an altitude where no surface return is expected, forcing the instrument to receive only thermal noise.
- USO frequency: For measuring the two-way travel of the chirp, a clock is needed. This clock is built with an exceptional precision, and therefore called Ultra-Stable Oscillator (USO). However, there may be anomalies in such performances: the EnviSat RA2 USO clock period unexpectedly generated a jump equivalent to 5.6 m and oscillations of 30 cm around the orbit. A specific solution [14] was designed to cope with this anomaly and correct the range measurements. A drift in the clock frequency corresponding to several millimetres per year is expected, with its impact on range being multiplicative.
- AutoCal: The difference between the real attenuation and that expected from the attenuators is needed for the computation. Hence, potential errors could impact the estimation of wind speed.
- Thermistors: As mentioned earlier, the thermal conditions on-board are to be monitored. The correlation between these data and the calibration parameters is important. The potential thermal sensitivity of a particular parameter is to be followed and studied to discard undesired oscillations or excursions.
2.2. S3 Microwave Radiometer
2.2.1. Monitoring of MWR Internal Parameters and Brightness Temperatures
2.2.2. Monitoring of MWR-Derived Level 2 Products
3. Metocean Observations from S3A and S3B
3.1. Procedure
3.2. Routine Assessment
3.3. Effect of Changes in Processing
3.4. Consistency with Other Altimetry Datasets
3.5. Validation of Wave Heights in the Coastal Zone
4. Assessment of Altimeter Range
4.1. Radar Transponders
4.2. Dedicated Altimeter Calibration Site off Corsica
4.3. Lake Issykkul
5. Consistency of Oceanographic Data with Other Missions
6. Sentinel-3 Observations of the Cryosphere
6.1. Land Ice
6.1.1. Monitoring Retracker Statistics over Land Ice
6.1.2. Measurement Precision over Land Ice
6.2. Sea Ice
7. Sentinel-3 Observations over Inland Waters
7.1. Accuracy Assessment at Lake Issykkul
7.2. Global Perspective
7.3. Ebro River Basin
8. Summary and Future Challenges
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ATLAS | Advanced Topographic Laser Altimeter System |
BOM | Beginning of Mission |
BUFR | Binary Universal Form for the Representation of meteorological data |
CL | Closed Loop |
DEM | Digital Elevation Model |
DNB | Dicke Non-balanced |
ECMWF | European Centre for Medium-range Weather Forecasts |
ESA | European Space Agency |
ESL | Expert Support Laboratory |
FMR | Full Mission Reprocessing |
GFO | Geosat Follow-On |
GIM | Global Ionosphere Maps |
GLWD | Global Lakes and Wetlands Database |
GNSS | Global Navigation Satellite System |
GPOD | Grid Processing On Demand |
IPF | Instrument Processing Facility |
LRM | Low Resolution Mode |
MAD | Median Absolute Difference |
MD | Mean Absolute Difference |
NIR | Noise Injection Radiometer |
NRT | Near Real-Time |
NTC | Non-Time Critical |
OCOG | Offset Centre Of Gravity |
OL | Open Loop |
OLTC | Open Loop Tracking Commad |
PB | Processing Baseline |
PLRM | Pseudo Low Resolution Mode |
POD | Precise Orbit Determination |
PPP | Precise Point Positioning |
PTR | Point Target Response |
QWG | Quality Working Group |
RFI | Radio-Frequency Interference |
RMSE | Root Mean Square Error |
S3A | Sentinel-3A |
S3B | Sentinel-3B |
SAR | Synthetic Aperture Radar |
S3MPC | Sentinel-3 Mission Performance Centre |
S3VT | Sentinel-3 Validation Team |
SD | Standard Deviation |
SDD | Standard Deviation of Differences |
SPIRIT | SPOT 5 stereoscopic survey of Polar Ice: Reference Images and Topographies |
SRAL | Sentinel Radar ALtimeter |
SSB | Sea State Bias |
SSH | Sea Surface Height |
STC | Short Time Critical |
STM | Surface Topography Mission |
SWH | Significant Wave Height |
TRP | Transponder |
WSH | Water Surface Height |
References
- Donlon, C.; Berruti, B.; Buongiorno, A.; Ferreira, M.H.; Féménias, P.; Frerick, J.; Goryl, P.; Klein, U.; Laur, H.; Mavrocordatos, C.; et al. The Global Monitoring for Environment and Security (GMES) Sentinel-3 mission. Remote Sens. Environ. 2012, 120, 37–57. [Google Scholar] [CrossRef]
- ESA. Sentinel Online-Overview. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-3/overview (accessed on 24 April 2020).
- Raney, R.K. The delay/Doppler radar altimeter. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1578–1588. [Google Scholar] [CrossRef]
- Wingham, D.; Francis, C.; Baker, S.; Bouzinac, C.; Brockley, D.; Cullen, R.; de Chateau-Thierry, P.; Laxon, S.; Mallow, U.; Mavrocordatos, C.; et al. CryoSat: A mission to determine the fluctuations in Earth’s land and marine ice fields. Adv. Space Res. 2006, 37, 841–871. [Google Scholar] [CrossRef]
- Egido, A.; Smith, W.H.F. Pulse-to-pulse correlation effects in high PRF Low-Resolution Mode altimeters. IEEE Trans. Geosci. Remote Sens. 2019, 57, 2610–2617. [Google Scholar] [CrossRef]
- Imel, D.A. Evaluation of the TOPEX/POSEIDON dual-frequency ionosphere correction. J. Geophys. Res. Ocean. 1994, 99, 24895–24906. [Google Scholar] [CrossRef]
- Chelton, D.B.; Walsh, E.J.; MacArthur, J.L. Pulse Compression and Sea Level Tracking in Satellite Altimetry. J. Atmos. Ocean. Technol. 1989, 6, 407–438. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Martin-Puig, C.; Leuliette, E.; Lillibridge, J.; Roca, M. Evaluating the performance of Jason-2 open-loop and closed-loop tracker modes. J. Atmos. Ocean. Technol. 2016, 33, 2277–2288. [Google Scholar] [CrossRef]
- ESA. Copernicus Open Access Hub. Available online: https://scihub.copernicus.eu/dhus/#/home (accessed on 24 April 2020).
- EUMETSAT. Copernicus Online Data Access. Available online: https://www.eumetsat.int/website/home/Data/DataDelivery/CopernicusOnlineDataAccess/index.html (accessed on 24 April 2020).
- EUMETSAT. SRAL Product Notices. Available online: https://www.eumetsat.int/website/home/Satellites/CurrentSatellites/Sentinel3/AltimetryServices/index.html#PN (accessed on 24 April 2020).
- EUMETSAT; ESA. Sentinel-3 Validation Team. Available online: http://www.s3vt.org (accessed on 24 April 2020).
- ESA. Sentinel Online—Data Product Quality Reports. Available online: https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-altimetry/data-quality-reports (accessed on 12 May 2020).
- Faugère, Y.; Ollivier, A.; Zanifé, O.Z.; Scharroo, R.; Martini, A.; Roca, M.; Féménias, P. An operational correction for the RA2 side A USO anomaly: Method and performance assessment. In Proceedings of the Envisat Symposium 2007, Montreux, Switzerland, 23–27 April 2007; Volume SP-636. Available online: https://earth.esa.int/envisatsymposium/proceedings/posters/2P2/464907fa.pdf (accessed on 27 May 2020).
- Roca, M.; Laxon, S.; Zelli, C. The EnviSat RA-2 Instrument Design and Tracking Performance. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3489–3506. [Google Scholar] [CrossRef]
- Ablain, M.; Meyssignac, B.; Zawadzki, L.; Jugier, R.; Ribes, A.; Cazenave, A.; Picot, N. Uncertainty in satellite estimate of global mean sea level changes, trend and acceleration. Earth Syst. Sci. Data Discuss. 2019, 2, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Ruf, C.S. Characterization and correction of a drift in calibration of the TOPEX microwave radiometer. IEEE Trans. Geosci. Remote Sens. 2002, 40, 509–511. [Google Scholar] [CrossRef]
- Scharroo, R.; Lillibridge, J.L.; Smith, W.H.; Schrama, E.J. Cross-calibration and long-term monitoring of the microwave radiometers of ERS, TOPEX, GFO, Jason, and Envisat. Mar. Geod. 2004, 27, 279–297. [Google Scholar] [CrossRef]
- Kroodsma, R.A.; McKague, D.S.; Ruf, C.S. Inter-calibration of microwave radiometers using the vicarious cold calibration double difference method. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1006–1013. [Google Scholar] [CrossRef]
- Picard, B.; Frery, M.L.; Obligis, E.; Eymard, L.; Steunou, N.; Picot, N. SARAL/AltiKa wet tropospheric correction: In-flight calibration, retrieval strategies and performances. Mar. Geod. 2015, 38, 277–296. [Google Scholar] [CrossRef] [Green Version]
- Abdalla, S.; Janssen, P.A.; Bidlot, J.R. Jason-2 OGDR wind and wave products: Monitoring, validation and assimilation. Mar. Geod. 2010, 33, 239–255. [Google Scholar] [CrossRef]
- Abdalla, S. SARAL/AltiKa wind and wave products: Monitoring, validation and assimilation. Mar. Geod. 2015, 38, 365–380. [Google Scholar] [CrossRef]
- Abdalla, S.; Dinardo, S.; Benveniste, J.; Janssen, P.A. Assessment of CryoSat-2 SAR mode wind and wave data. Adv. Space Res. 2018, 62, 1421–1433. [Google Scholar] [CrossRef]
- Abdalla, S.; Hersbach, H. The Technical Support for Global Validation of ERS Wind and Wave Products at ECMWF; Technical Report; Final Report for ESA Contract 15988/02/I-LG; European Centre for Medium-Range Weather Forecasts: Reading, UK, 2004. [Google Scholar]
- Kahma, K.K.; Donelan, M.A. A laboratory study of the minimum wind speed for wind wave generation. J. Fluid Mech. 1988, 192, 339–364. [Google Scholar] [CrossRef]
- Donelan, M.A.; Plant, W.J. A threshold for wind-wave growth. J. Geophys. Res. Oceans 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Guymer, T.H.; Quartly, G.D.; Srokosz, M.A. The effects of rain on ERS-1 radar altimeter data. J. Atmos. Ocean. Technol. 1995, 12, 1229–1247. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Quartly, G.D.; Guymer, T.H.; Srokosz, M.A. The effects of rain on Topex radar altimeter data. J. Atmos. Ocean. Technol. 1996, 13, 1209–1229. [Google Scholar] [CrossRef] [Green Version]
- Moreau, T.; Tran, N.; Aublanc, J.; Tison, C.; Le Gac, S.; Boy, F. Impact of long ocean waves on wave height retrieval from SAR altimetry data. Adv. Space Res. 2018, 62, 1434–1444. [Google Scholar] [CrossRef]
- Amarouche, L.; Thibaut, P.; Zanife, O.Z.; Dumont, J.P.; Vincent, P.; Steunou, N. Improving the Jason-1 ground retracking to better account for attitude effects. Mar. Geod. 2004, 27, 171–197. [Google Scholar] [CrossRef]
- Dodet, G.; Piolle, J.F.; Quilfen, Y.; Abdalla, S.; Accensi, M.; Ardhuin, F.; Ash, E.; Bidlot, J.R.; Gommenginger, C.; Marechal, G.; et al. The Sea State CCI dataset v1: Towards a sea state Climate Data Record based on satellite observations. Earth Syst. Sci. Data Discuss. 2020, 2020, 1–28. [Google Scholar] [CrossRef]
- Gomez-Enri, J.; Vignudelli, S.; Quartly, G.D.; Gommenginger, C.P.; Cipollini, P.; Challenor, P.G.; Benveniste, J. Modeling Envisat RA-2 waveforms in the coastal zone: Case study of calm water contamination. IEEE Geosci. Remote Sens. Lett. 2010, 7, 474–478. [Google Scholar] [CrossRef] [Green Version]
- Nencioli, F.; Quartly, G.D. Evaluation of Sentinel-3A wave height observations near the coast of southwest England. Remote Sens. 2019, 11. [Google Scholar] [CrossRef] [Green Version]
- Schlembach, F.; Passaro, M.; Quartly, G.D.; Kurekin, A.; Nencioli, F.; Dodet, G.; Piollé, J.F.; Ardhuin, F.; Bidlot, J.; Schwatke, C.; et al. Round robin assessment of radar altimeter Low Resolution Mode and delay-Doppler retracking algorithms for significant wave height. Remote Sens. 2020, 12, 1254. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Mondéjar, A.; Fornari, M.; Bouffard, J.; Féménias, P.; Roca, M. CryoSat-2 range, datation and interferometer calibration with Svalbard transponder. Adv. Space Res. 2018. [Google Scholar] [CrossRef]
- isardSAT. DeDop: Delay-Doppler Altimetry Studio. Available online: https://www.isardsat.space/dedop/ (accessed on 14 May 2020).
- Garcia-Mondéjar, A.; Mertikas, S.; Galanakis, D.; Labroue, S.; Bruniquel, J.; Quartly, G.; Féménias, P.; Mavrocordatos, C.; Wood, J.; García, P.; et al. Sentinel-3 Transponder Calibration Results. In Proceedings of the Poster Presented at the Ocean Surface Topography Science Team Meeting (OSTST), Miami, FL, USA, 23–27 October 2017. [Google Scholar] [CrossRef]
- Bonnefond, P.; Exertier, P.; Laurain, O.; Guinle, T.; Féménias, P. Corsica: A 20-Yr multi-mission absolute altimeter calibration site. Adv. Space Res. 2019. [Google Scholar] [CrossRef]
- Bonnefond, P.; Exertier, P.; Laurain, O.; Guillot, A.; Picot, N.; Cancet, M.; Lyard, F. SARAL/AltiKa absolute calibration from the multi-mission Corsica facilities. Mar. Geod. 2015, 38, 171–192. [Google Scholar] [CrossRef] [Green Version]
- Bonnefond, P.; Laurain, O.; Exertier, P.; Boy, F.; Guinle, T.; Picot, N.; Labroue, S.; Raynal, M.; Donlon, C.; Féménias, P.; et al. Calibrating the SAR SSH of Sentinel-3A and CryoSat-2 over the Corsica facilities. Remote Sens. 2018, 10. [Google Scholar] [CrossRef] [Green Version]
- Bonnefond, P.; Exertier, P.; Laurain, O.; Ménard, Y.; Orsoni, A.; Jeansou, E.; Haines, B.J.; Kubitschek, D.G.; Born, G. Leveling the sea surface using a GPS-catamaran. Mar. Geod. 2003, 26, 319–334. [Google Scholar] [CrossRef]
- Cancet, M.; Bijac, S.; Chimot, J.; Bonnefond, P.; Jeansou, E.; Laurain, O.; Lyard, F.; Bronner, E.; Féménias, P. Regional in situ validation of satellite altimeters: Calibration and cross-calibration results at the Corsican sites. Adv. Space Res. 2013, 51, 1400–1417. [Google Scholar] [CrossRef]
- Crétaux, J.F.; Bergé-Nguyen, M.; Calmant, S.; Jamangulova, N.; Satylkanov, R.; Lyard, F.; Perosanz, F.; Verron, J.; Samine Montazem, A.; Le Guilcher, G.; et al. Absolute calibration or validation of the altimeters on the Sentinel-3A and the Jason-3 over Lake Issykkul (Kyrgyzstan). Remote Sens. 2018, 10, 1679. [Google Scholar] [CrossRef] [Green Version]
- Loyer, S.; Perosanz, F.; Mercier, F.; Capdeville, H.; Marty, J.C. Zero-difference GPS ambiguity resolution at CNES–CLS IGS Analysis Center. J. Geod. 2012, 86, 991–1003. [Google Scholar] [CrossRef]
- Crétaux, J.F.; Calmant, S.; Romanovski, V.; Shabunin, A.; Lyard, F.; Bergé-Nguyen, M.; Cazenave, A.; Hernandez, F.; Perosanz, F. An absolute calibration site for radar altimeters in the continental domain: Lake Issykkul in Central Asia. J. Geod. 2009, 83. [Google Scholar] [CrossRef]
- Crétaux, J.F.; Calmant, S.; Romanovski, V.; Perosanz, F.; Tashbaeva, S.; Bonnefond, P.; Moreira, D.; Shum, C.K.; Nino, F.; Bergé-Nguyen, M.; et al. Absolute calibration of Jason radar altimeters from GPS kinematic campaigns over Lake Issykkul. Mar. Geod. 2011, 34, 291–318. [Google Scholar] [CrossRef]
- Crétaux, J.F.; Bergé-Nguyen, M.; Calmant, S.; Romanovski, V.; Meyssignac, B.; Perosanz, F.; Tashbaeva, S.; Arsen, A.; Fund, F.; Martignago, N.; et al. Calibration of Envisat radar altimeter over Lake Issykkul. Adv. Space Res. 2013, 51, 1523–1541. [Google Scholar] [CrossRef]
- Quartly, G.D.; Rinne, E.; Passaro, M.; Andersen, O.B.; Dinardo, S.; Fleury, S.; Guillot, A.; Hendricks, S.; Kurekin, A.A.; Müller, F.L.; et al. Retrieving sea level and freeboard in the Arctic: A Review of current radar altimetry methodologies and future perspectives. Remote Sens. 2019, 11. [Google Scholar] [CrossRef] [Green Version]
- Wingham, D.J.; Ridout, A.J.; Scharroo, R.; Arthern, R.J.; Shum, C.K. Antarctic elevation change from 1992 to 1996. Science 1998, 282, 456–458. [Google Scholar] [CrossRef]
- Zwally, H.J.; Bindschadler, R.A.; Brenner, A.C.; Major, J.A.; March, J.G. Growth of Greenland ice sheet: Measurement. Science 1989, 246, 1587–1589. [Google Scholar] [CrossRef]
- Armitage, T.W.K.; Wingham, D.J.; Ridout, A.L. Meteorological origin of the static crossover pattern present in Low-Resolution-Mode CryoSat-2 data over Central Antarctica. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1295–1299. [Google Scholar] [CrossRef]
- Rémy, F.; Flament, T.; Blarel, F.; Benveniste, J. Radar altimetry measurements over antarctic ice sheet: A focus on antenna polarization and change in backscatter problems. Adv. Space Res. 2012, 50, 998–1006. [Google Scholar] [CrossRef]
- Wingham, D.; Phalippou, L.; Mavrocordatos, C.; Wallis, D. The mean echo and echo cross product from a beamforming interferometric altimeter and their application to elevation measurement. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2305–2323. [Google Scholar] [CrossRef]
- Richter, A.; Popov, S.V.; Fritsche, M.; Lukin, V.V.; Matveev, A.Y.; Ekaykin, A.A.; Lipenkov, V.Y.; Fedorov, D.V.; Eberlein, L.; Schröder, L.; et al. Height changes over subglacial Lake Vostok, East Antarctica: Insights from GNSS observations. J. Geophys. Res. Earth Surf. 2014, 119, 2460–2480. [Google Scholar] [CrossRef] [Green Version]
- Schröder, L.; Richter, A.; Fedorov, D.V.; Eberlein, L.; Brovkov, E.V.; Popov, S.V.; Knöfel, C.; Horwath, M.; Dietrich, R.; Matveev, A.Y.; et al. Validation of satellite altimetry by kinematic GNSS in central East Antarctica. Cryosphere 2017, 11, 1111–1130. [Google Scholar] [CrossRef] [Green Version]
- Shuman, C.A.; Zwally, H.J.; Schutz, B.E.; Brenner, A.C.; DiMarzio, J.P.; Suchdeo, V.P.; Fricker, H.A. ICESat Antarctic elevation data: Preliminary precision and accuracy assessment. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- McMillan, M.; Muir, A.; Shepherd, A.; Escolà, R.; Roca, M.; Aublanc, J.; Thibaut, P.; Restano, M.; Ambrozio, A.; Benveniste, J. Sentinel-3 delay-Doppler altimetry over Antarctica. Cryosphere 2019, 13, 709–722. [Google Scholar] [CrossRef] [Green Version]
- Smith, B.; Fricker, H.A.; Holschuh, N.; Gardner, A.S.; Adusumilli, S.; Brunt, K.M.; Csatho, B.; Harbeck, K.; Huth, A.; Neumann, T.; et al. Land ice height-retrieval algorithm for NASA’s ICESat-2 photon-counting laser altimeter. Remote Sens. Environ. 2019, 233, 111352. [Google Scholar] [CrossRef] [Green Version]
- Schröder, L.; Horwath, M.; Dietrich, R.; Helm, V.; van den Broeke, M.R.; Ligtenberg, S.R.M. Four decades of Antarctic surface elevation changes from multi-mission satellite altimetry. Cryosphere 2019, 13, 427–449. [Google Scholar] [CrossRef] [Green Version]
- Laforge, A.; Fleury, S.; Dinardo, S.; Garnier, F.; Remy, F.; Benveniste, J.; Bouffard, J.; Verley, J. Toward improved sea ice freeboard observation with SAR altimetry using the physical retracker SAMOSA+. Adv. Space Res. 2020. [Google Scholar] [CrossRef]
- ESA. Grid Processing on Demand. Available online: http://wiki.services.eoportal.org/tiki-index.php?page=Grid+Processing+On+Demand (accessed on 17 April 2020).
- Dinardo, S.; Fenoglio-Marc, L.; Buchhaupt, C.; Becker, M.; Scharroo, R.; Fernandes, M.J.; Benveniste, J. Coastal SAR and PLRM altimetry in German Bight and West Baltic Sea. Adv. Space Res. 2018, 62, 1371–1404. [Google Scholar] [CrossRef]
- Helm, V.; Humbert, A.; Miller, H. Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2. Cryosphere 2014, 8, 1539–1559. [Google Scholar] [CrossRef] [Green Version]
- Lehner, B.; Döll, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 2004, 296, 1–22. [Google Scholar] [CrossRef]
- Gao, Q.; Makhoul, E.; Escorihuela, M.J.; Zribi, M.; Quintana Seguí, P.; García, P.; Roca, M. Analysis of retrackers’ performances and water level retrieval over the Ebro River Basin using Sentinel-3. Remote Sens. 2019, 11, 718. [Google Scholar] [CrossRef] [Green Version]
- Birkett, C.M. The contribution of TOPEX/POSEIDON to the global monitoring of climatically sensitive lakes. J. Geophys. Res. Ocean. 1995, 100, 25179–25204. [Google Scholar] [CrossRef]
Level | |
---|---|
Level 0 | Raw telemetered data |
Level 1A | Geolocated and fully calibrated |
Level 1BS | L1A + fully beamformed → “stack” |
Level 1B | Multi-look processed → SAR waveforms |
Level 2 | Retracked → Geophysical estimates + corrections |
Latency | |
Near Real-Time (NRT) | Within 3 h |
Short Time Critical (STC) | Within 48 h |
Non-Time Critical (NTC) | Within 1 month |
Full Mission reprocessing (FMR) | When needed |
TRP Position | Crete | Svalbard | |||
---|---|---|---|---|---|
S3A (46 Passes) | S3B (18 Passes) | S3A (9 Passes) | S3B (10 Passes) | ||
Range Bias [mm] | 6.79 | −6.59 | −109.92 | −68.44 | |
Datation Bias [microseconds] | −125.95 | −25.47 | −84.94 | −43.29 | |
Range Stack Alignment [mm/beam] | 0.07 | 0.02 | 0.07 | 0.02 | |
Range Noise [mm] | 0.81 | 0.83 | 15.30 | 6.93 |
Satellite | Processing Centre | SAR | PLRM | |||
---|---|---|---|---|---|---|
SSH Bias (mm) | # Cycles | SSH Bias (mm) | # Cycles | |||
Senetosa | ||||||
S3A | OBSPM | 47 | 46 | |||
S3A | NOVELTIS | 47 | 46 | |||
S3B | OBSPM | 4 | 4 | |||
S3B | NOVELTIS | 4 | 4 | |||
Ajaccio | ||||||
S3A | OBSPM | 42 | 38 | |||
S3A | NOVELTIS | 44 | 40 | |||
S3B | OBSPM | 4 | 4 | |||
S3B | NOVELTIS | 4 | 4 | |||
Mean | ||||||
S3A | OBSPM | 42 | 38 | |||
S3A | NOVELTIS | 44 | 39 | |||
S3B | OBSPM | 4 | 4 | |||
S3B | NOVELTIS | 4 | 4 |
Senetosa | SAR | PLRM | |||||
---|---|---|---|---|---|---|---|
PB 2.33 (S3MPC) | Mean | STD | # Cycles | Mean | STD | # Cycles | |
Cycles1-26 | (mm) | (mm) | (mm) | (mm) | |||
Track 741 (local) | 24 | 24 | 28 | 23 | |||
no ocean dyn. corr. | |||||||
Track 741 (local) | 26 | 24 | 30 | 23 | |||
Track 741 X J2 085 | 31 | 24 | 36 | 23 | |||
Track 044 X Env 887 | 33 | 25 | 47 | 23 | |||
Track 044 X J2 222 | 27 | 25 | 40 | 23 | |||
Regional mean | 29 | 25 | 38 | 23 |
Reservoir | Width | Track | Tracking Mode | RMSE/Bias/MD [m] | |
---|---|---|---|---|---|
L2 Ocean | L2 OCOG | ||||
Ebro | 1.8 km | S3A 014 | CL→ OL | 3.6/−1.0/1.91 | 2.2 /−0.76/1.32 |
Sotonera | 4.5 km | S3A 222 | CL→ OL | 1.3/−0.96/0.96 | 1.15/−0.98 /0.98 |
Ribarroja | 400 m | S3A 242 | OL | 0.77/−0.55/0.55 | 0.77/−0.52/ 0.52 |
Cavallers | 800 m | S3A 299 | OL | Off-track | |
San Salvador | 800 m | S3A 299 | OL | Off-track |
Reservoir | Width | Track | Tracking Mode | RMSE/Bias/MD [m] | |
---|---|---|---|---|---|
L2 Ocean | L2 OCOG | ||||
Ullibarri | 260 m | S3B 128 | OL | 2.89/0.3/1.48 | 0.89/−0.89/0.89 |
Canelles | 260 m | S3B 299 | OL | 1.96/−1.3/1.3 | 2.05/−1.4/1.4 |
Santa Ana | 300 m–1.8 km | S3B 299 | OL | 0.89/−0.88/0.88 | 1.05/−1.04/1.04 |
Reservoir | Width | Track | Tracking Mode | RMSE/Bias/MD [m] | |
---|---|---|---|---|---|
L2 Ocean | L2 OCOG | ||||
Ribarroja | 400 m | S3A 242 | OL | 1.17/−0.88/0.89 | 1.15/−0.82/0.82 |
S3B 336 | 0.43/−0.38/0.39 | 0.52/−0.48/0.48 | |||
Mequinenza | 600 m | S3A 279 | OL | 2.32/−1.6/1.6 | 1.58/−1.18/1.18 |
S3B 242 | 0.64/−0.49/0.59 | 0.78/−0.61/0.67 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quartly, G.D.; Nencioli, F.; Raynal, M.; Bonnefond, P.; Nilo Garcia, P.; Garcia-Mondéjar, A.; Flores de la Cruz, A.; Crétaux, J.-F.; Taburet, N.; Frery, M.-L.; et al. The Roles of the S3MPC: Monitoring, Validation and Evolution of Sentinel-3 Altimetry Observations. Remote Sens. 2020, 12, 1763. https://doi.org/10.3390/rs12111763
Quartly GD, Nencioli F, Raynal M, Bonnefond P, Nilo Garcia P, Garcia-Mondéjar A, Flores de la Cruz A, Crétaux J-F, Taburet N, Frery M-L, et al. The Roles of the S3MPC: Monitoring, Validation and Evolution of Sentinel-3 Altimetry Observations. Remote Sensing. 2020; 12(11):1763. https://doi.org/10.3390/rs12111763
Chicago/Turabian StyleQuartly, Graham D., Francesco Nencioli, Matthias Raynal, Pascal Bonnefond, Pablo Nilo Garcia, Albert Garcia-Mondéjar, Adrián Flores de la Cruz, Jean-Francois Crétaux, Nicolas Taburet, Marie-Laure Frery, and et al. 2020. "The Roles of the S3MPC: Monitoring, Validation and Evolution of Sentinel-3 Altimetry Observations" Remote Sensing 12, no. 11: 1763. https://doi.org/10.3390/rs12111763
APA StyleQuartly, G. D., Nencioli, F., Raynal, M., Bonnefond, P., Nilo Garcia, P., Garcia-Mondéjar, A., Flores de la Cruz, A., Crétaux, J.-F., Taburet, N., Frery, M.-L., Cancet, M., Muir, A., Brockley, D., McMillan, M., Abdalla, S., Fleury, S., Cadier, E., Gao, Q., Escorihuela, M. J., ... Lucas, B. (2020). The Roles of the S3MPC: Monitoring, Validation and Evolution of Sentinel-3 Altimetry Observations. Remote Sensing, 12(11), 1763. https://doi.org/10.3390/rs12111763