MODIS and VIIRS Calibration and Characterization in Support of Producing Long-Term High-Quality Data Products
<p>MODIS scan cavity with on-board calibrators [<a href="#B4-remotesensing-12-03167" class="html-bibr">4</a>].</p> "> Figure 2
<p>VIIRS scan cavity with on-board calibrators [<a href="#B23-remotesensing-12-03167" class="html-bibr">23</a>].</p> "> Figure 3
<p>SD degradation as observed by select solar diffuser stability monitor (SDSM) detectors for Terra MODIS (<b>a</b>), Aqua MODIS (<b>b</b>), S-NPP VIIRS (<b>c</b>), and N20 VIIRS (<b>d</b>) instruments. D1 (0.41 μm), D4 (0.55 μm), and D7 (0.86 μm).</p> "> Figure 4
<p>Terra (<b>a</b>) and Aqua (<b>b</b>) MODIS SD and Lunar on-orbit gain change trends (mirror side 1) for visible (VIS) bands 8 and 3 (dashed lines with symbols: moon; solid lines: SD). B3 (black color): 0.46 μm, B8 (blue color): 0.41 μm.</p> "> Figure 5
<p>S-NPP (<b>a</b>) and N20 (<b>b</b>) VIIRS SD and lunar on-orbit gain change trends for select VIS and near-infrared (NIR) bands (symbols: moon; solid lines: SD). M1: 0.41 μm, M3: 0.49 μm, M5: 0.67 μm, M7: 0.86 μm.</p> "> Figure 6
<p>On-orbit gain change as a function of wavelength at a few select years during the missions for (<b>a</b>) Aqua MODIS and (<b>b</b>) S-NPP VIIRS.</p> "> Figure 7
<p>On-orbit gain change trends for select TEB for (<b>a</b>) Terra MODIS, (<b>b</b>) Aqua MODIS, (<b>c</b>) S-NPP VIIRS, and (<b>d</b>) N20 VIIRS.</p> "> Figure 8
<p>Comparison of Terra band 27 images before (C6) and after the crosstalk correction (C6.1). The image is of Hurricane Dorian on 5 September 2019.</p> "> Figure 9
<p>Example of a simultaneous nadir overpass (SNO) (8 October 2019) pixel-to-pixel comparison of reflectance between Aqua MODIS band 1 and S-NPP VIIRS band I1 at 0.65 μm (<b>left</b>) and band 2 and I2 at 0.86 μm (<b>right</b>).</p> "> Figure 10
<p>Trends of Terra (black) and Aqua (red) MODIS band 1 to S-NPP VIIRS band I1 reflectance ratios.</p> "> Figure 11
<p>Comparison of S-NPP (green) and N20 (blue) VIIRS brightness temperature (BT) difference as a function of BT for I5 (11.4 μm) using Infrared Atmospheric Sounding Interferometer (IASI) as a transfer radiometer. Results of S-NPP and N20 are referenced to Aqua MODIS band 31 and corrected for the RSR differences using IASI from their SNOs.</p> "> Figure 12
<p>Trends of S-NPP (green) and N20 (blue) VIIRS reflectance normalized with MODIS-based BRDF for band I1 (0.65 μm), obtained from 16-day repeatable nadir overpasses over the Libya-4 desert site.</p> "> Figure 13
<p>Relative bias in BT of S-NPP VIIRS M15 relative to Aqua MODIS band 31 determined from the double difference method using near surface temperature measurements at the Dome C site.</p> ">
Abstract
:1. Introduction
2. Instrument Background
3. Algorithm Overview
3.1. MODIS
3.2. VIIRS
4. On-Orbit Performance
5. Calibration Consistency Assessment and Future Effort
6. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
MODIS | Moderate Resolution Imaging Spectroradiometer |
VIIRS | Visible Infrared Imaging Radiometer Suite |
S-NPP | Suomi National Polar-orbiting Partnership |
MCST | MODIS Characterization Support Team |
VCST | VIIRS Characterization Support Team |
JPSS | Joint Polar Satellite System |
SNO | Simultaneous Nadir Overpass |
BRDF | Bidirectional Reflectance Distribution Function |
RSB | Reflective solar bands |
TEB | Thermal emissive bands |
VIS | Visible |
NIR | Near-infrared |
FPA | Focal Plane Assembly |
LWIR | Long-wave infrared |
SMIR | Short and mid-wave infrared |
References
- Salomonson, V.; Barnes, W.L.; Maymon, P.W.; Montgomery, H.E.; Ostrow, H. MODIS: Advanced facility instrument for studies of the Earth as a system. IEEE Trans. Geosci. Rem. Sens. 1989, 27, 145–153. [Google Scholar] [CrossRef]
- Barnes, W.L.; Salomonson, V.V. MODIS: A global image spectroradiometer for the Earth Observing System. Crit. Rev. Opt. Sci. Technol. 1993, CR47, 285–307. [Google Scholar]
- Barnes, W.; Xiong, X.; Guenther, B.; Salomonson, V.V. Development, Characterization, and Performance of the EOS MODIS Sensors. Proc. SPIE 2003, 5151, 337–345. [Google Scholar]
- Xiong, X.; Chiang, K.; Esposito, J.; Guenther, B.; Barnes, W.L. MODIS On-orbit Calibration and Characterization. Metrologia 2003, 40, 89–92. [Google Scholar] [CrossRef]
- Barnes, W.L.; Xiong, X.; Salomonson, V.V. MODIS Instrument Status and Operational Activities. Proc. SPIE 2004, 5542, 14–23. [Google Scholar]
- Xiong, X.; Wenny, B.N.; Barnes, W.L. Overview of NASA Earth Observing Systems Terra and Aqua Moderate Resolution Imaging Spectroradiometer Instrument Calibration Algorithms and On-orbit Performance. J. Appl. Remote Sens. 2009, 3, 032501. [Google Scholar]
- Parkinson, C. Aqua: An Earth-Observing Satellite Mission to Examine Water and Other Climate Variables. IEEE Trans. Geosci. Remote Sens. 2003, 41, 173–183. [Google Scholar] [CrossRef]
- King, M.; Menzel, P.; Kaufman, Y.; Tanre, D.; Gao, B.; Platnick, S.; Ackerman, S.; Remer, L.; Pincus, R.; Hubanks, P. Cloud and Aerosol Properties, Precipitable Water, and Profiles of Temperature and Water Vapor from MODIS. IEEE Trans. Geosci. Remote Sens. 2003, 41, 442–458. [Google Scholar] [CrossRef] [Green Version]
- Justice, C.; Vermote, E.; Townshend, J.; Defries, R.; Roy, D.; Hall, D.; Salomonson, V.; Privette, J.; Riggs, G.; Strahler, A.; et al. The Moderate Resolution Imaging Spectroradiometer (MODIS): Land Remote Sensing for Global Change Research. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1228–1249. [Google Scholar] [CrossRef] [Green Version]
- Esaias, E.; Abbott, M.; Barton, I.; Brown, O.; Campbell, J.; Carder, K.; Clark, D.; Evans, R.; Hoge, F.; Gordon, H.; et al. An Overview of MODIS Capabilities for Ocean Science Observations. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1250–1265. [Google Scholar] [CrossRef] [Green Version]
- Xiong, X.; King, M.; Salomonson, V.; Barnes, W.; Wenny, B.; Angal, A.; Wu, A.; Madhavan, S.; Link, D. Moderate Resolution Imaging Spectroradiometer on Terra and Aqua Missions. In Optical Payloads for Space Missions; Qian, S., Ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015. [Google Scholar]
- Xiong, X.; Butler, J.; Cao, C.; Wu, X. Optical Sensors—VIS/NIR/SWIR. In Comprehensive Remote Sensing Optical Sensors-VIS/NIR/SWIR, 2018 ed.; Liang, S., Ed.; Elsevier: Oxford, UK, 2018; Volume 1, pp. 353–375. [Google Scholar]
- Goldberg, M.D.; Cikanek, H.; Zhou, L.; Price, J. The Joint Polar Satellite System. In Comprehensive Remote Sensing Optical Sensors-VIS/NIR/SWIR, 2018 ed.; Liang, S., Ed.; Elsevier: Oxford, UK, 2018; Volume 1, pp. 91–118. [Google Scholar]
- Ardanuy, P.; Schueler, C.F.; Miller, S.W.; Kealy, P.S.; Cota, S.A.; Haas, J.K.; Welsch, C. NPOESS VIIRS Design Process. Proc. SPIE 2002, 4483, 22–34. [Google Scholar]
- Schueler, C.F.; Clement, E.; Ardanuy, P.; Welsh, C.; DeLuccia, F.; Swenson, H. NPOESS VIIRS sensor design overview. Proc. SPIE 2002, 4483, 11–23. [Google Scholar]
- Lee, T.; Miller, S.; Schueler, C.; Miller, S. NASA MODIS previews NPOESS VIIRS capabilities. Weather Forecast. 2006, 21, 649–655. [Google Scholar] [CrossRef]
- Zhou, L.; Divakarla, M.; Liu, X.; Layns, A.; Goldberg, M. An Overview of the Science Performances and Calibration/Validation of Joint Polar Satellite System Operational Products. Remote Sens. 2019, 11, 698. [Google Scholar] [CrossRef] [Green Version]
- Cao, C.; Deluccia, F.; Xiong, X.; Wolfe, R.; Weng, F. Early On-Orbit Performance of the Visible Infrared Imaging Radiometer Suite Onboard the Suomi National Polar-Orbiting Partnership (S-NPP) Satellite. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1142–1156. [Google Scholar] [CrossRef] [Green Version]
- King, M.D.; Platnick, S. The Earth Observing System (EOS). In Comprehensive Remote Sensing Optical Sensors-VIS/NIR/SWIR, 2018 ed.; Liang, S., Ed.; Elsevier: Oxford, UK, 2018; Volume 1, pp. 7–26. [Google Scholar]
- Barnes, W.L.; Pagano, T.S.; Salomonson, V.V. Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1. IEEE Trans. Geosci. Rem. Sens. 1998, 36, 4, 1088–1100. [Google Scholar] [CrossRef] [Green Version]
- Datla, R.U.; Rice, J.P.; Lykke, K.R.; Johnson, B.C.; Butler, J.J.; Xiong, X. Best Practice Guidelines for Pre-Launch Characterization and Calibration of Instruments for Passive Optical Remote Sensing. J. Res. Natl. Inst. Stand. Technol. 2009, 116, 621–646. [Google Scholar] [CrossRef]
- Oudrari, H.; Mcintire, J.; Xiong, X.; Butler, J.; Lee, S.; Lei, N.; Schwarting, T.; Sun, J. Prelaunch Radiometric Characterization and Calibration of the SNPP VIIRS Sensor. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2195–2210. [Google Scholar] [CrossRef]
- Oudrari, H.; McIntire, J.; Xiong, X.; Butler, J.; Ji, Q.; Schwarting, T.; Lee, S.; Efremova, B. JPSS-1 VIIRS Pre-Launch Radiometric Performance. Remote Sens. 2016, 8, 41. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Xiong, X.; Sun, C.; Chen, X.; Chaing, K. Suomi-NPP VIIRS day-night band on-orbit calibration and performance. J. Appl. Remote Sens. 2017, 11, 036019. [Google Scholar] [CrossRef]
- Chen, H.; Xiong, X.; Link, D.; Sun, C.; Chiang, K. NOAA-20 Visible Infrared Imaging Radiometer Suite day-night band on-orbit calibration and performance. J. Appl. Rem. Sens. 2020, 14, 034516. [Google Scholar] [CrossRef]
- Xiong, X.; Che, N.; Barnes, W.L. Terra MODIS On-orbit Spatial Characterization and Performance. IEEE Trans. Geosci. Remote Sens. 2005, 43, 355–365. [Google Scholar] [CrossRef]
- Xiong, X.; Che, N.; Barnes, W.L. Terra MODIS On-orbit Spectral Characterization and Performance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2198–2206. [Google Scholar] [CrossRef]
- Xiong, X.; Angal, A.; Twedt, K.; Chen, H.; Link, D.; Geng, X.; Aldoretta, E.; Mu, Q. MODIS Reflective Solar Bands On-Orbit Calibration and Performance. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6355–6371. [Google Scholar] [CrossRef]
- Sun, J.; Xiong, X.; Barnes, W.; Guenther, B. MODIS Reflective Solar Bands On-orbit Lunar Calibration. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2383–2393. [Google Scholar] [CrossRef]
- Sun, J.; Xiong, X.; Angal, A.; Chen, H.; Wu, A.; Geng, X. Time-Dependent Response Versus Scan Angle for MODIS Reflective Solar Bands. IEEE TGRS 2014, 52, 3159–3174. [Google Scholar] [CrossRef] [Green Version]
- Xiong, X.; Chiang, K.-F.; Adimi, F.; Li, W.; Yatagai, H.; Barnes, W.L. MODIS correction algorithm for out-of-band response in the short-wave IR bands. Proc. SPIE 2004, 5234, 605–614. [Google Scholar]
- Xiong, X.; Wu, A.; Wenny, B.N.; Madhavan, S.; Wang, Z.; Li, Y.; Chen, N.; Barnes, W.; Salomonson, V. Terra and Aqua MODIS Thermal Emissive Bands On-Orbit Calibration and Performance. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5709–5721. [Google Scholar] [CrossRef]
- Xiong, X.; Wu, A.; Guenther, B.; Barnes, W.L. On-orbit Monitoring of MODIS Thermal Emissive Bands Response Versus Scan Angle. Proc. SPIE 2007, 6744, 67441I. [Google Scholar]
- Sun, J.; Xiong, X.; Madhavan, S.; Wenny, B.N. Terra MODIS Band 27 Electronic Crosstalk Effect and Its Removal. IEEE Transa. Geosci. Remote Sens. 2014, 52, 1551–1561. [Google Scholar] [CrossRef] [Green Version]
- Wilson, T.; Wu, A.; Shrestha, A.; Geng, X.; Wang, Z.; Moeller, C.; Frey, R.; Xiong, X. Development and Implementation of an Electronic Crosstalk Correction for Bands 27-30 in Terra MODIS Collection 6. Remote Sens. 2017, 9, 569. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Xiong, X.; Wu, A.; Chang, T. Update on the status of Aqua MODIS cold focal plane assembly temperature fluctuation. Proc. SPIE 2017, 10402, 104021R. [Google Scholar]
- NASA. VIIRS.1 NASA Goddard Space Flight Center, Joint Polar Satellite System (JPSS) VIIRS Radiometric Calibration Algorithm Theoretical Basis Document (ATBD); NASA: Washington, DC, USA, 2013. [Google Scholar]
- Xiong, X.; Butler, J.; Chiang, K.; Efremova, B.; Fulbright, J.; Lei, N.; McIntire, J.; Oudrari, H.; Sun, J.; Wang, Z.; et al. VIIRS on-orbit calibration methodologies and performance. J. Geophys. Res. 2014, 119, 5065–5078. [Google Scholar] [CrossRef]
- Lei, N.; Wang, Z.; Xiong, X. On-orbit Radiometric Calibration of Suomi NPP VIIRS Reflective Solar Bands through Observations of a Sunlit Solar Diffuser Panel. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5983–5990. [Google Scholar] [CrossRef]
- Lei, N.; Xiong, X.; Guenther, B. Modeling the Detector Radiometric Gains of the Suomi NPP VIIRS Reflective Solar Bands. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1565–1573. [Google Scholar] [CrossRef]
- Xiong, X.; Sun, J.; Fulbright, J.; Wang, Z.; Butler, J. Lunar Calibration and Performance for S-NPP VIIRS Reflective Solar Bands. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1052–1061. [Google Scholar] [CrossRef]
- Sun, J.; Wang, M. Visible Infrared Imaging Radiometer Suite solar diffuser calibration and its challenges using a solar diffuser stability monitor. Appl. Opt. 2014, 53, 8571–8584. [Google Scholar] [CrossRef] [PubMed]
- Eplee, R.; Turpie, K.; Meister, G.; Patt, F.; Franz, B.; Bailey, S. On-orbit calibration of the Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite for ocean color applications. Appl. Opt. 2015, 54, 1984–2006. [Google Scholar] [CrossRef]
- Efremova, B.; Mcintire, J.; Moyer, D.; Wu, A.; Xiong, X. S-NPP VIIRS thermal emissive bands on-orbit calibration and performance. J. Geophys. Res. 2014, 119, 10859–10875. [Google Scholar] [CrossRef] [Green Version]
- Lei, N.; Xiong, X. Products of the SNPP VIIRS SD Screen Transmittance and the SD BRDFs from Both Yaw Maneuver and Regular On-orbit Data. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1975–1987. [Google Scholar] [CrossRef]
- Lei, N.; Xiong, X. Determination of the NOAA-20 VIIRS screen transmittance functions with both the yaw maneuver and regular on-orbit calibration data. Appl. Opt. 2020, 59, 2992–3001. [Google Scholar] [CrossRef]
- Kwiatkowska, E.; Franz, B.; Meister, G.; McClain, C.; Xiong, X. Cross calibration of ocean color bands from the Moderate Resolution Imaging Spectroradiometer on the Terra platform. Appl. Opt. 2008, 47, 6796–6810. [Google Scholar] [CrossRef] [PubMed]
- Lyapustin, A.; Wang, Y.; Xiong, X.; Meister, G.; Platnick, S.; Levy, R.; Franz, B.; Korkin, S.; Hilkder, T.; Tucker, J.; et al. Science impact of MODIS C5 calibration degradation and C6+ improvements. Atmos. Meas. Tech. Discuss. 2014, 7, 7281–7319. [Google Scholar] [CrossRef] [Green Version]
- Angal, A.; Geng, X.; Xiong, X.; Twedt, K.; Wu, A.; Link, D.; Aldoretta, E. On-orbit calibration of Terra MODIS VIS bands using polarization-corrected desert observations. IEEE Trans. Geosci. Remote Sens. 2020, 58, 5428–5439. [Google Scholar] [CrossRef]
- Xiong, X.; Angal, A.; Li, Y. Improvements in the on-orbit calibration of the Terra MODIS short-wave infrared spectral bands. Proc. SPIE 2018, 10781, 107811C. [Google Scholar]
- Barrie, J.; Fuqua, P.; Meshishnek, M.; Ciofalo, M.; Chu, C.; Chaney, J.; Moision, R.; Graziani, L. Root cause determination of on-orbit degradation of the VIIRS rotating telescope assembly. Proc. SPIE 2012, 8510, 851009. [Google Scholar]
- Iona, G.; Butler, J.; Guenther, B.; Graziani, L.; Johnson, E.; Kennedy, B.; Kent, C.; Lambeck, R.; Waluschka, E.; Xiong, X. VIIRS on-orbit optical anomaly: Investigation, analysis, root cause determination and lessons learned. Proc. SPIE 2012, 8510, 85101C. [Google Scholar]
- Xiong, X.; Angal, A.; Barnes, W.L.; Chen, H.; Chiang, V.; Geng, X.; Li, Y.; Twedt, K.; Wang, Z.; Wilson, T.; et al. Updates of Moderate Resolution Imaging Spectroradiometer on-orbit calibration uncertainty assessments. J. Appl. Remote Sens. 2018, 12, 034001. [Google Scholar] [CrossRef]
- Lei, N.; Twedt, K.; McIntire, J.; Xiong, X. SNPP VIIRS RSB Earth View Reflectance Uncertainty. In Proceedings of the IEEE 2017 International Geoscience Remote Sensing Symposium, Fort Worth, TX, USA, 23–28 July 2017; pp. 5916–5919. [Google Scholar]
- Chiang, K.; McIntire, J.; Xiong, X. VIIRS Thermal Emissive Bands L1B Calibration Uncertainty. In Proceedings of the IEEE 2017 International Geoscience & Remote Sensing Symposium, Fort Worth, TX, USA, 23–28 July 2017; pp. 4197–4200. [Google Scholar]
- Rao, C.R.N.; Chen, J. Inter-satellite calibration linkages for the visible and near-infrared channels of the Advanced Very High Resolution Radiometer on the NOAA-7,-9, and-11 spacecraft. Int. J. Remote Sens. 1995, 16, 1931–1942. [Google Scholar]
- Abdou, B.A.; Bruegge, C.J.; Helmlinger, M.C.; Conel, J.E.; Pilorz, S.H.; Ledeboer, W.; Gaitley, B.; Thome, K. Vicarious calibration experiment in support of the Multi-angle Imaging SpectroRadiometer. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1500–1511. [Google Scholar] [CrossRef]
- Biggar, S.F.; Thome, K.J.; Wisniewski, W. Vicarious radiometric calibration of EO-1 sensors by reference to high-reflectance ground targets. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1174–1179. [Google Scholar] [CrossRef] [Green Version]
- Thome, K.; Biggar, S.; Choi, H. Vicarious calibration of Terra ASTER, MISR, and MODIS. In Proceedings SPIE Earth Observing Systems IX; International Society for Optics and Photonics: Bellingham, WA, USA, 2004; Volume 5542, pp. 290–299. [Google Scholar]
- Cao, C.; Weinreb, M.; Xu, H. Predicting simultaneous nadir overpasses among polar-orbiting meteorological satellites for intersatellite calibration of radiometers. J. Atmos. Ocean. Technol. 2004, 21, 537–542. [Google Scholar] [CrossRef]
- Wu, A.; Xiong, X.; Cao, C. Terra and Aqua MODIS inter-comparison of three reflective solar bands using AVHRR onboard the NOAAKLM satellites. Int. J. Remote Sens. 2008, 29, 1997–2010. [Google Scholar] [CrossRef]
- Doelling, D.R.; Haney, C.O.; Scarino, B.R.; Gopalan, A.; Bhatt, R. Improvements to the geostationary visible imager ray-matching calibration algorithm for CERES Edition 4. J. Atmos. Oceanic Technol. 2016, 33, 2679–2698. [Google Scholar] [CrossRef]
- Uprety, S.; Cao, C.; Xiong, X.; Blonski, S.; Wu, A.; Shao, X. Radiometric intercomparison between Suomi-NPP VIIRS and aqua MODIS reflective solar bands using simultaneous nadir overpass in the low latitudes. J. Atmos. Ocean. Technol. 2013, 30, 2720–2736. [Google Scholar] [CrossRef]
- Heidinger, A.K.; Cao, C.; Sullivan, J. Using Moderate Resolution Imaging Spectrometer (MODIS) to calibrate advanced very high resolution radiometer reflectance channels. J. Geophys. Res. 2002, 107, 4702. [Google Scholar] [CrossRef] [Green Version]
- Tobin, D.C.; Revercomb, H.; Moeller, C.; Pagano, T. Use of atmospheric infrared sounder high–spectral resolution spectra to assess the calibration of Moderate resolution Imaging Spectroradiometer on EOS Aqua. J. Geophys. Res. 2006, 111, D09S05. [Google Scholar] [CrossRef]
- Veglio, P.; Tobin, D.C.; Dutcher, S.; Quinn, G.; Moeller, C. Long-term assessment of Aqua MODIS radiance observation using comparisons with AIRS and IASI. J. Geophys. Res. Atmos. 2016, 121, 8460–8471. [Google Scholar] [CrossRef]
- Efremova, B.; Wu, A.; Xiong, X. Relative spectral response corrected calibration inter-comparison of S-NPP VIIRS and Aqua MODIS thermal emissive bands. Proc. SPIE 2014, 9218, 92180G. [Google Scholar]
- Li, Y.; Wu, A.; Xiong, X. Inter-comparison of S-NPP VIIRS and Aqua MODIS thermal emissive bands using hyperspectral infrared sounder measurements as a transfer reference. Remote Sens. 2016, 8, 72. [Google Scholar] [CrossRef] [Green Version]
- Xiong, X.; Wu, A.; Wenny, B.; Choi, T.; Angal, A. Progress and lessons from MODIS calibration intercomparison using ground test sites. Can. J. Remote Sens. 2010, 36, 540–552. [Google Scholar] [CrossRef]
- Wenny, B.; Xiong, X. Using a Cold Earth Surface Target to Characterize Long-term Stability of the MODIS Thermal Emissive Bands. IEEE Geosci. Remote Sens. Lett. 2008, 5, 162–165. [Google Scholar] [CrossRef]
- Xiong, X.; Wu, A.; Wenny, B. Using Dome C for moderate resolution imaging spectroradiometer calibration stability and consistency. J. Appl. Remote Sens. 2009, 3, 033520. [Google Scholar]
- Madhavan, S.; Brinkmann, J.; Wenny, B.N.; Wu, A.; Xiong, X. Evaluation of VIIRS and MODIS thermal emissive band calibration stability using ground target. Remote Sens. 2016, 8, 158. [Google Scholar] [CrossRef] [Green Version]
- Diaz, C.P.; Xiong, X.; Wu, A. MODIS thermal emissive bands calibration stability using in-situ ocean targets and remotely-sensed SST retrievals provided by the group for high resolution sea surface temperature. In Proceedings SPIE 11014, Ocean Sensing and Monitoring XI; International Society for Optics and Photonics: Bellingham, WA, USA, 2019; Volume 110140, p. 110140. [Google Scholar]
- Wu, A.; Chiang, K.; Lei, N.; Xiong, X. Evaluation of NOAA-20 VIIRS reflective solar bands calibration performance using vicarious approaches. In Proceedings of SPIE, Sensors, Systems, and Next-Generation Satellites XXIII; International Society for Optics and Photonics: Bellingham, WA, USA, 2019; Volume 11151, p. 1115125. [Google Scholar]
- Uprety, S.; Cao, C.; Shao, X. Radiometric consistency between GOES-16 ABI and VIIRS on Suomi NPP and NOAA-20. J. Appl. Remote Sens. 2020, 14, 032407. [Google Scholar] [CrossRef]
- Gottwald, M.; Bovensmann, H. SCIAMACHY-Exploring the Changing Earth’s Atmosphere; Springer: Dordrecht, The Netherlands; Heidelberg, Germany; London, UK; New York, NY, USA, 2011; ISBN 978-90-481-9895-5. [Google Scholar]
- Wu, A.; Xiong, X.; Doelling, D.; Morstad, D.; Angal, A.; Bhatt, R. Characterization of Terra and Aqua MODIS VIS, NIR, and SWIR Spectral Bands’ Calibration Stability. IEEE Trans. Geosci. Remote Sens. 2012, 51, 4330–4338. [Google Scholar] [CrossRef]
- Doelling, D.R.; Wu, A.; Xiong, X.; Scarino, B.R.; Bhatt, R.; Haney, C.O.; Morstad, D.; Gopalan, A. The Radiometric Stability and Scaling of Collection 6 Terra-and Aqua-MODIS VIS, NIR, and SWIR Spectral Bands. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4520–4535. [Google Scholar] [CrossRef]
Band | Center Wavelength | Bandwidth | Ltyp or Ttyp | SNR/NEdT Spec. | Terra SNR/NEdT | Aqua SNR/NEdT | Primary Purpose | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PL | 2002 | 2011 | 2020 | PL | 2002 | 2011 | 2020 | ||||||
1 | 0.645 | 0.05 | 21.8 | 128 | 172 | 192 | 203 | 190 | 182 | 197 | 211 | 227 | Land/cloud/aerosol boundaries |
2 | 0.858 | 0.035 | 24.7 | 201 | 418 | 489 | 515 | 490 | 446 | 509 | 552 | 567 | |
3 | 0.469 | 0.02 | 35.3 | 243 | 309 | 317 | 216 | 195 | 316 | 321 | 287 | 285 | Land/cloud/aerosol properties |
4 | 0.555 | 0.02 | 29 | 228 | 310 | 322 | 272 | 214 | 308 | 324 | 322 | 326 | |
5 | 1.24 | 0.02 | 5.4 | 74 | 114 | 93 | 86 | 81 | 149 | 151 | 145 | 145 | |
6 | 1.64 | 0.024 | 7.3 | 275 | 393 | 383 | 374 | 368 | 132 | 452 | 446 | 488 | |
7 | 2.13 | 0.05 | 1 | 110 | 70 | 103 | 98 | 93 | 141 | 154 | 154 | 156 | |
8 | 0.412 | 0.015 | 44.9 | 880 | 906 | 987 | 712 | 691 | 977 | 1121 | 749 | 728 | Ocean color, phytoplankton, biogeochemistry |
9 | 0.443 | 0.01 | 41.9 | 838 | 1148 | 1442 | 978 | 860 | 1391 | 1538 | 1262 | 1233 | |
10 | 0.488 | 0.01 | 32.1 | 802 | 1099 | 1525 | 1309 | 1158 | 1307 | 1560 | 1430 | 1419 | |
11 | 0.531 | 0.01 | 27.9 | 754 | 1154 | 1686 | 1613 | 1440 | 1282 | 1726 | 1695 | 1683 | |
12 | 0.551 | 0.01 | 21 | 750 | 983 | 1400 | 1197 | 952 | 1185 | 1528 | 1479 | 1489 | |
13 | 0.667 | 0.01 | 9.5 | 910 | 1065 | 1346 | 1380 | 1360 | 1210 | 1442 | 1499 | 1522 | |
14 | 0.678 | 0.01 | 8.7 | 1087 | 1253 | 1485 | 1380 | 1208 | 1207 | 1571 | 1585 | 1600 | |
15 | 0.748 | 0.01 | 10.2 | 586 | 756 | 1451 | 1488 | 1426 | 1078 | 1566 | 1609 | 1618 | |
16 | 0.869 | 0.015 | 6.2 | 516 | 712 | 1214 | 1259 | 1243 | 944 | 1436 | 1465 | 1481 | |
17 | 0.905 | 0.03 | 10 | 167 | 359 | 348 | 329 | 291 | 251 | 368 | 374 | 375 | Atmospheric water vapor |
18 | 0.936 | 0.01 | 3.6 | 57 | 92 | 90 | 93 | 92 | 88 | 91 | 92 | 94 | |
19 | 0.94 | 0.05 | 15 | 250 | 465 | 508 | 487 | 445 | 381 | 509 | 515 | 514 | |
26 | 1.375 | 0.03 | 6 | 150 | 213 | 250 | 242 | 224 | 224 | 280 | 280 | 280 | Cirrus clouds |
20 | 3.75 | 0.18 | 300 | 0.05 | 0.02 | 0.03 | 0.03 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | Surface/cloud temperature |
21 | 3.96 | 0.06 | 335 | 0.2 | 0.17 | 0.16 | 0.16 | 0.20 | 0.21 | 0.19 | |||
22 | 3.96 | 0.06 | 300 | 0.07 | 0.03 | 0.03 | 0.03 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | |
23 | 4.05 | 0.06 | 300 | 0.07 | 0.02 | 0.02 | 0.02 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | |
24 | 4.47 | 0.07 | 250 | 0.25 | 0.12 | 0.13 | 0.13 | 0.13 | 0.14 | 0.11 | 0.11 | 0.11 | Atmospheric temperature |
25 | 4.52 | 0.07 | 275 | 0.25 | 0.06 | 0.05 | 0.05 | 0.05 | 0.05 | 0.04 | 0.04 | 0.04 | |
27 | 6.72 | 0.36 | 240 | 0.25 | 0.11 | 0.09 | 0.10 | 0.17 | 0.10 | 0.10 | 0.10 | 0.10 | Water vapor |
28 | 7.33 | 0.3 | 250 | 0.25 | 0.05 | 0.06 | 0.06 | 0.07 | 0.05 | 0.05 | 0.05 | 0.05 | |
29 | 8.55 | 0.3 | 300 | 0.05 | 0.02 | 0.02 | 0.03 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | Cloud properties |
30 | 9.73 | 0.3 | 250 | 0.25 | 0.10 | 0.10 | 0.11 | 0.15 | 0.07 | 0.09 | 0.09 | 0.10 | Ozone |
31 | 11.03 | 0.5 | 300 | 0.05 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.02 | 0.02 | 0.02 | Surface/cloud temperature |
32 | 12.02 | 0.5 | 300 | 0.05 | 0.03 | 0.04 | 0.04 | 0.04 | 0.01 | 0.03 | 0.03 | 0.03 | |
33 | 13.34 | 0.3 | 260 | 0.25 | 0.14 | 0.13 | 0.13 | 0.14 | 0.08 | 0.08 | 0.08 | 0.08 | Cloud top altitude |
34 | 13.64 | 0.3 | 250 | 0.25 | 0.20 | 0.20 | 0.20 | 0.21 | 0.12 | 0.12 | 0.12 | 0.12 | |
35 | 13.94 | 0.3 | 240 | 0.25 | 0.33 | 0.23 | 0.23 | 0.24 | 0.14 | 0.15 | 0.15 | 0.15 | |
36 | 14.24 | 0.3 | 220 | 0.35 | 0.44 | 0.43 | 0.44 | 0.45 | 0.22 | 0.23 | 0.23 | 0.23 |
Band | Center Wavelength | Bandwidth | Ltyp or Ttyp | SNR/NEdT Spec. | SNPP SNR/NEdT | N20 SNR/NEdT | Primary Purpose | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PL | 2012 | 2016 | 2020 | PL | 2018 | 2019 | 2020 | ||||||
I1 | 0.64 | 0.08 | 22 | 119 | 241 | 208 | 197 | 193 | 227 | 224 | 224 | 224 | Imaging bands |
I2 | 0.865 | 0.039 | 25 | 150 | 304 | 255 | 206 | 189 | 287 | 281 | 282 | 282 | |
I3 | 1.61 | 0.06 | 7.3 | 6 | 172 | 150 | 135 | 129 | 190 | 178 | 178 | 179 | |
I4 | 3.74 | 0.38 | 270 | 2.5 | 0.410 | 0.408 | 0.405 | 0.407 | 0.420 | 0.402 | 0.393 | 0.396 | |
I5 | 11.45 | 1.9 | 210 | 1.5 | 0.420 | 0.384 | 0.397 | 0.402 | 0.410 | 0.421 | 0.423 | 0.424 | |
M1 HG | 0.412 | 0.02 | 44.9 | 352 | 617 | 580 | 568 | 558 | 636 | 637 | 641 | 635 | Ocean Color, Aerosols |
M1 LG | 155 | 316 | 1092 | 1036 | 998 | 985 | 1066 | 1097 | 1110 | 1092 | |||
M2 HG | 0.445 | 0.018 | 40 | 380 | 622 | 575 | 570 | 567 | 573 | 560 | 562 | 562 | |
M2 LG | 146 | 409 | 1118 | 1037 | 1023 | 1034 | 986 | 991 | 998 | 1004 | |||
M3 HG | 0.488 | 0.02 | 32 | 416 | 690 | 628 | 620 | 616 | 706 | 675 | 677 | 677 | |
M3 LG | 123 | 414 | 1111 | 985 | 966 | 968 | 1063 | 1022 | 1053 | 1038 | |||
M4 HG | 0.555 | 0.02 | 21 | 362 | 581 | 538 | 529 | 527 | 559 | 538 | 540 | 540 | |
M4 LG | 90 | 315 | 963 | 836 | 838 | 833 | 844 | 833 | 839 | 832 | |||
M5 HG | 0.672 | 0.02 | 10 | 242 | 367 | 323 | 293 | 297 | 380 | 386 | 386 | 386 | |
M5 LG | 68 | 360 | 828 | 688 | 629 | 616 | 751 | 761 | 764 | 761 | |||
M6 | 0.746 | 0.015 | 9.6 | 199 | 415 | 355 | 319 | 304 | 428 | 416 | 416 | 416 | |
M7 HG | 0.865 | 0.039 | 6.4 | 215 | 520 | 444 | 355 | 327 | 549 | 524 | 527 | 526 | |
M7 LG | 33.4 | 340 | 846 | 600 | 457 | 412 | 760 | 702 | 710 | 711 | |||
M8 | 1.24 | 0.02 | 5.4 | 74 | 273 | 224 | 175 | 159 | 335 | 322 | 322 | 323 | Cloud Particle Size, Cirrus, Snow Fractions |
M9 | 1.378 | 0.015 | 6 | 83 | 253 | 225 | 190 | 177 | 325 | 297 | 297 | 298 | |
M10 | 1.61 | 0.06 | 7.3 | 342 | 714 | 585 | 526 | 506 | 765 | 657 | 659 | 665 | |
M11 | 2.25 | 0.05 | 0.12 (1) | 10 (90) | 25 | 21 | 21 | 20 | 216 | 198 | 199 | 199 | |
M12 | 3.7 | 0.18 | 270 | 0.396 | 0.130 | 0.128 | 0.117 | 0.117 | 0.120 | 0.098 | 0.100 | 0.099 | SST, Cloud Top properties |
M13 HG | 4.05 | 0.155 | 300 | 0.107 | 0.044 | 0.042 | 0.040 | 0.040 | 0.043 | 0.040 | 0.039 | 0.039 | |
M13 LG | 380 | 0.423 | |||||||||||
M14 | 8.55 | 0.3 | 270 | 0.091 | 0.061 | 0.053 | 0.055 | 0.055 | 0.050 | 0.047 | 0.047 | 0.047 | |
M15 | 10.763 | 1 | 300 | 0.07 | 0.030 | 0.029 | 0.027 | 0.027 | 0.026 | 0.024 | 0.024 | 0.024 | |
M16 | 12.013 | 0.95 | 300 | 0.072 | 0.038 | 0.028 | 0.029 | 0.029 | 0.043 | 0.031 | 0.031 | 0.031 |
Method | Period | B1 | B2 | B4 | B8 | B9 | B12 | B20 | B29 | B31 | B32 | B35 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SNO | 2012–2020 | (−)1.2 (1.3) | (−)0.8 (1.4) | (−)0.8 (1.1) | 0.5 (1.6) | 1.0 (1.7) | (−)1.3 (3.2) | 0.11 (1.24) | (−)0.03 (0.20) | 0.10 (0.15) | 0.11 (0.17) | 0.20 (0.19) |
Desert | 2002–2020 | (−)1.2 (1.0) | 0.3 (1.1) | (−)0.3 (1.2) | (−)0.2 (1.9) | (−)0.5 (1.7) | n/a | n/a | n/a | n/a | n/a | n/a |
Dome C | 2002–2019 | (−)0.8 (2.6) | 0.6 (2.6) | (−)0.1 (2.7) | n/a | n/a | n/a | 0.96 (4.37) | 0.24 (2.52) | 0.21 (2.53) | 0.26 (2.52) | (–)0.14 (2.55) |
Ocean | 2010–2019 | n/a | n/a | n/a | n/a | n/a | n/a | 0.23 (2.24) | (–)0.02 (2.33) | (–)0.03 (2.49) | 0.04 (2.48) | 1.71 (0.81) |
Method | Period | M1 | M2 | M4 | M7 | I1 | I2 | M13 | M14 | M15 | M16 | I5 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SNO | 2018–2020 | 6.3 (1.8) | 5.2 (1.6) | 3.4 (1.6) | 3.5 (1.8) | 3.8 (1.6) | 3.6 (1.8) | 0.12 (0.22) | n/a | 0.02 (0.20) | 0.10 (0.15) | 0.10 (0.16) |
Desert | 2018–2020 | 7.0 (1.3) | 6.1 (1.2) | 3.7 (1.2) | 2.8 (0.9) | 3.7 (1.1) | 3.1 (1.1) | n/a | n/a | n/a | n/a | n/a |
Dome C | 2018–2019 | 6.7 (1.4) | 4.7 (1.4) | 5.2 (2.9) | 2.9 (2.9) | 3.8 (2.7) | 3.3 (3.0) | (−)0.15 (1.96) | 0.23 (2.09) | 0.70 (2.17) | 0.64 (2.19) | n/a |
Ocean | 2018–2020 | n/a | n/a | n/a | n/a | n/a | n/a | 0.01 (4.72) | 0.60 (5.46) | 0.11 (6.04) | (−)0.07 (6.41) | n/a |
Method | Period | M1 B8 | M2 B9 | M4 B4 | M7 B2 | I1 B1 | I2 B2 | M13 B22 | M13 B23 | M15 B31 | M16 B32 |
---|---|---|---|---|---|---|---|---|---|---|---|
SNO | 2018–2020 | 2.1 (1.6) | 5.0 (1.5) | 3.2 (1.5) | 2.8 (1.7) | 3.0 (1.5) | 2.7 (1.7) | 0.09 (0.52) | 0.11 (0.51) | 0.11 (0.22) | 0.07 (0.23) |
Desert | 2018–2020 | 4.2 (1.1) | 5.3 (0.8) | 2.4 (0.8) | 0.6 (0.5) | 3.6 (0.7) | 0.9 (0.8) | n/a | n/a | n/a | n/a |
Dome C | 2018–2020 | 3.9 (1.0) | n/a | 2.6 (1.8) | 1.0 (2.2) | 2.9 (1.8) | 1.3 (2.2) | (−)0.95 (2.75) | 1.24 (1.59) | (−)0.13 (1.60) | (−)0.24 (1.59) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, X.; Angal, A.; Chang, T.; Chiang, K.; Lei, N.; Li, Y.; Sun, J.; Twedt, K.; Wu, A. MODIS and VIIRS Calibration and Characterization in Support of Producing Long-Term High-Quality Data Products. Remote Sens. 2020, 12, 3167. https://doi.org/10.3390/rs12193167
Xiong X, Angal A, Chang T, Chiang K, Lei N, Li Y, Sun J, Twedt K, Wu A. MODIS and VIIRS Calibration and Characterization in Support of Producing Long-Term High-Quality Data Products. Remote Sensing. 2020; 12(19):3167. https://doi.org/10.3390/rs12193167
Chicago/Turabian StyleXiong, Xiaoxiong, Amit Angal, Tiejun Chang, Kwofu Chiang, Ning Lei, Yonghong Li, Junqiang Sun, Kevin Twedt, and Aisheng Wu. 2020. "MODIS and VIIRS Calibration and Characterization in Support of Producing Long-Term High-Quality Data Products" Remote Sensing 12, no. 19: 3167. https://doi.org/10.3390/rs12193167
APA StyleXiong, X., Angal, A., Chang, T., Chiang, K., Lei, N., Li, Y., Sun, J., Twedt, K., & Wu, A. (2020). MODIS and VIIRS Calibration and Characterization in Support of Producing Long-Term High-Quality Data Products. Remote Sensing, 12(19), 3167. https://doi.org/10.3390/rs12193167