An Effective Method for Detecting Clouds in GaoFen-4 Images of Coastal Zones
<p>Study area and the center latitude and longitude of the area used in the present study.</p> "> Figure 2
<p>Flowchart of the EN-Clustering algorithm.</p> "> Figure 3
<p>Cloud detection results for GF-4 PMS scenes in the coastal area. False-color composite images with bands 5, 4, and 3, denoting the near-infrared, red, and green bands, respectively, are depicted in (<b>a</b>,<b>c</b>,<b>e</b>,<b>i</b>,<b>k</b>), while their detection results are presented in (<b>b</b>,<b>d</b>,<b>f</b>,<b>h</b>,<b>j</b>,<b>l</b>), respectively. The cloud detection results in black represent the cloud-free region, while the results in white color represent the cloudy region. The data acquisition dates are listed in <a href="#remotesensing-12-03003-t002" class="html-table">Table 2</a>.</p> "> Figure 4
<p>Cloud detection results for GF-4 PMS scenes over the land area. (<b>a</b>) The PMS data of the Yunnan Province region, China and (<b>c</b>) The PMS data of the central China region. (<b>b</b>,<b>d</b>) are the cloud detection results of (<b>a</b>,<b>c</b>), respectively. The white and black colors represent the cloudy region and the cloud-free region, respectively, of (<b>b</b>,<b>d</b>). The acquisition dates and the central longitudes and latitudes are presented in <a href="#remotesensing-12-03003-t002" class="html-table">Table 2</a>.</p> "> Figure 5
<p>Visual verifications in the case of the coastal area of the SCS for GF-4 data. There are six blocks (<b>a</b>–<b>f</b>) that corresponded to the six data used, as presented in <a href="#remotesensing-12-03003-f003" class="html-fig">Figure 3</a>a,c,e,g,i,k and <a href="#remotesensing-12-03003-t002" class="html-table">Table 2</a> (No. 1–6), respectively. The three magnified images (red boxes) below each block provide detailed information of that particular block (<b>a</b>–<b>f</b>), which mainly includes the cloud detection results for thick clouds, thin clouds, broken clouds, and low clouds in the study area.</p> "> Figure 6
<p>Visual verifications in case of land area for GF-4 data. Two GF-4 PMS images (<b>a</b>,<b>e</b>) were utilized. (<b>b</b>–<b>d</b>) Present the cloud detection results for lakeside, thick cloud and forest, and bare land, respectively, while (<b>f</b>–<b>h</b>) present the cloud detection results for small pieces of cloud, thin cloud, and urban area, respectively.</p> "> Figure 7
<p>A qualitative comparison of the EN-Clustering algorithm for automatic cloud detection with the other commonly-used cloud detection algorithms. The upper row (<b>a</b>–<b>d</b>) presents the original data, i.e., the false-color composite images with bands 5, 4, and 3 of Landsat 8, and bands 4, 3, and 2 of Landsat 7, denoting the NIR, Red, and Green bands, respectively. The second row (<b>e</b>–<b>h</b>) presents the cloud detection results generated using the F-mask algorithm. The third and fourth rows present the cloud detection results of HOT (<b>i</b>–<b>l</b>) and the EN-Clustering (<b>m</b>–<b>p</b>) algorithm, respectively. The white region represents the cloudy region, while the black region represents the cloud-free region.</p> "> Figure 8
<p>The original map (<b>a</b>,<b>g</b>) and the cloud detection results (<b>b</b>,<b>c</b>,<b>h</b>,<b>i</b>) obtained using the EN-Clustering method, for two selected Landsat ETM+ images. (<b>a</b>) ETM+ data acquired on 17 March 2013; (<b>g</b>) ETM+ data acquired on 1 November 2014. (<b>d</b>–<b>f</b>) and (<b>j</b>–<b>l</b>) present the magnified versions of the original data (<b>a</b>,<b>g</b>).</p> "> Figure 9
<p>The original map (<b>a</b>,<b>g</b>) and the cloud detection results (<b>b</b>,<b>c</b>,<b>h</b>,<b>i</b>) obtained using the EN-Clustering method, for two selected HJ-CDD images. (<b>a</b>) CCD1 data of HJ-1A acquired on 19 February 2017. (<b>g</b>) CCD data acquired on 10 December 2016; (<b>d</b>–<b>f</b>) present the magnified versions of the original data (<b>a</b>), while (<b>j</b>–<b>l</b>) present the magnified versions of the original data (<b>g</b>). Data acquisition location for all these data was the northern coastal zone of the SCS.</p> "> Figure 10
<p>The original map (<b>a</b>,<b>g</b>) and the cloud detection results (<b>b</b>,<b>c</b>,<b>h</b>,<b>i</b>) obtained using the EN-Clustering method, for two selected GOCI images. (<b>a</b>,<b>g</b>) GOCI data acquired on 3 August 2017 and 24 October 2017, respectively. (<b>d</b>) The cloud detection results for thick clouds; (<b>e</b>) the thin clouds over the coastal area; (<b>f</b>) the thin and thick cloud detection results over the ocean; (<b>j</b>) the cloud detection results over bare land; (<b>k</b>) the cloud detection results for thick clouds, thin clouds, and small pieces of broken cloud over the coastal area; and (<b>l</b>) the thin cloud, thick cloud, and broken cloud detection results over the ocean.</p> "> Figure 11
<p>The original map (<b>a</b>,<b>g</b>) and the cloud detection results (<b>b</b>,<b>c</b>,<b>h</b>,<b>i</b>) obtained using the EN-Clustering method, for two selected Aqua-MODIS images. (<b>a</b>,<b>g</b>) The utilized MODIS data (<a href="#remotesensing-12-03003-t002" class="html-table">Table 2</a>); (<b>d</b>) the cloud detection results for thick clouds over the coastal area of the SCS; (<b>e</b>) cloud detection results for thin and thick clouds over the land region; (<b>f</b>) a large area of thin clouds over the ocean; (<b>j</b>) cloud detection results for thin clouds over the land; (<b>k</b>) cloud detection results over the coastal area; and (<b>l</b>) thin cloud, thick cloud, and broken cloud detection results over the ocean.</p> "> Figure 12
<p>The original map (<b>b</b>,<b>h</b>) and the cloud detection results (<b>e</b>,<b>k</b>) obtained using the EN-Clustering method, for two selected VIIRS images. (<b>a</b>) Cloud detection results for thick clouds over the Sahara Desert; (<b>d</b>) Cloud detection results for cyclone over the Indian Ocean region; (<b>c</b>,<b>f</b>) thick clouds and broken clouds over the coastal area of the SCS; (<b>g</b>) Thin cloud detection results over the Atlantic Ocean; (<b>j</b>) Thin cloud and broken cloud detection results over the coastal area; (<b>l</b>) Thick cloud and broken cloud detection results over the coastal area of the SCS; and (<b>i</b>) Cloud detection results for thick and thin clouds over Northeast Asia region.</p> "> Figure 13
<p>The original map and the snow, ice, and ice cloud detection results obtained for the VIIRS data by using NDSI. Panels (<b>a</b>–<b>c</b>) depict the original maps, while panels (<b>d</b>–<b>f</b>) present the NDSI results corresponding to panels (<b>a</b>–<b>c</b>), respectively. Panel (<b>a</b>) and panel (<b>d</b>) depict the original maps and the NDSI detection results for snow, ice, and ice cloud over the Pamirs, while Panel (<b>c</b>) and panel (<b>f</b>) depict the original maps and the NDSI detection results for snow, ice, and ice cloud over the edge of Antarctica.</p> "> Figure 14
<p>Spectral characteristics of several land features.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Study Area
2.1.2. Datasets
2.2. The Proposed EN-Clustering Method
2.2.1. EN-Clustering Cloud Detection Algorithm
2.2.2. Other Commonly Used Cloud Detection Methods—HOT and F-Mask3.2
3. EN-Clustering Cloud Detection Results for GF-4 PMS Data
3.1. EN-Processing Results of the EN-Clustering Method for Different Underlying Surfaces
3.1.1. EN-Processing Results in Coastal Area
3.1.2. EN-Processing Results in Land Area
3.2. Unsupervised Segmentation of the EN-Processing Results Using ISODATA
3.2.1. Unsupervised Segmentation Results in the Coastal Area
3.2.2. Unsupervised Segmentation Results over the Land Area
3.3. Evaluation of EN-Clustering Cloud Detection Results
3.3.1. Qualitative Comparison of Cloud Detection Results between EN-Clustering and Other Similar Methods
3.3.2. Quantitative Comparison of Cloud Coverage between the Proposed Algorithm and the Official Algorithm
4. Discussion
4.1. Application of EN-Clustering Algorithm to Different Sensors with Different Spatial Resolutions
4.1.1. Landsat ETM+ Application Results, with a Spatial Resolutions of 15 m
4.1.2. HJ-CCD Application Results, with a Spatial Resolutions of 30 m
4.1.3. GOCI Image Application Results, with a Spatial Resolutions of 500 m
4.1.4. Aqua MODIS Application Results, with a Spatial Resolutions of 500 m
4.2. Application of EN-Clustering Algorithm to Different Areas with or without Snow and Ice
4.3. The Impact of Different Underlying Surfaces in the Cloud Detection Task of the Coastal Area
4.4. Summary of the Advantages and Disadvantages of the EN-Clustering Algorithm
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.; Rossow, W.B.; Lacis, A.A.; Oinas, V.; Mishchenko, M.I. Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- Murino, L.; Amato, U.; Carfora, M.F.; Antoniadis, A.; Huang, B.; Menzel, W.P.; Serio, C. Cloud detection of modis multispectral images. J. Atmos. Ocean. Technol. 2014, 31, 347–365. [Google Scholar] [CrossRef]
- Frey, R.A.; Ackerman, S.T.A.; Strabala, I.; Zhang, H.O.; Key, J.R.; Wang, X. Cloud detection with MODIS. Part I: Improvements in the MODIS cloud mask for collection 5. J. Atmos. Ocean. Tech. 2008, 25, 1057–1072. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and expansion of the fmask algorithm: Cloud, cloud shadow, and snow detection for landsats 4–7, 8, and sentinel 2 images. Remote Sens. Environ. 2015, 159, 269–277. [Google Scholar] [CrossRef]
- Jedlovec, G.J.; Haines, S.L.; Lafontaine, F.J. Spatial and temporal varying thresholds for cloud detection in goes imagery. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1705–1717. [Google Scholar] [CrossRef]
- Rossow, W.B.; Mosher, F.; Kinsella, E.; Arking, A.; Desbois, M.; Harrison, E.F.; Minnis, P.; Ruprecht, E.; Seze, G.; Simmer, C. ISCCP Cloud algorithm intercomparison. J. Appl. Meteorol. 1985, 24, 877–903. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Rossow, W.B.; Garder, L.C. Cloud detection using satellite measurements of infrared and visible radiances for ISCCP. J. Clim. 1993, 6, 2341–2369. [Google Scholar] [CrossRef]
- Stowe, L.L.; Mcclain, E.P.; Carey, R.M.; Pellegrino, P.; Gutman, G.; Davis, P.; Long, C.; Hart, S. Global distribution of cloud cover derived from NOAA/AVHRR operational satellite data. Adv. Space Res. 1991, 11, 51–54. [Google Scholar] [CrossRef]
- Saunders, R.W.; Kriebel, K.T. An improved method for detecting clear sky and cloudy radiances from AVHRR data. Int. J. Remote Sens. 1988, 9, 123–150. [Google Scholar] [CrossRef]
- Kriebel, K.T.; Saunders, R.W.; Gesell, G. Optical properties of clouds derived from fully cloudy AVHRR Pixels. Beiträge zur Phys. der Atmosphäre 1989, 62, 165–171. [Google Scholar]
- Sun, L.; Wei, J.; Wang, J.; Mi, X.; Guo, Y.; Lv, Y.; Yang, Y.; Gan, P.; Zhou, X.; Jia, C. A Universal Dynamic Threshold Cloud Detection Algorithm (UDTCDA) supported by a prior surface reflectance database. J. Geophys. Res. 2016, 121, 7172–7196. [Google Scholar] [CrossRef]
- Christodoulou, C.I.; Michaelides, S.; Pattichis, C.S. Multifeature texture analysis for the classification of clouds in satellite imagery. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2662–2668. [Google Scholar] [CrossRef]
- Molnar, G.; Coakley, J.A. Retrieval of cloud cover from satellite imagery data: A statistical approach. J. Geophys. Res. Atmos. 1985, 90, 12960–12970. [Google Scholar] [CrossRef]
- Karner, O. A multi-dimensional histogram technique for cloud classification. Int. J. Remote Sens. 2000, 21, 2463–2478. [Google Scholar] [CrossRef]
- Chai, D.; Newsam, S.; Zhang, H.K.; Qiu, Y.; Huang, J. Cloud and cloud shadow detection in Landsat imagery based on deep convolutional neural networks. Remote Sens. Environ. 2019, 225, 307–316. [Google Scholar] [CrossRef]
- Cilli, R.; Monaco, A.; Amoroso, N.; Tateo, A.; Tangaro, S.; Bellotti, R. Machine learning for cloud detection of globally distributed sentinel-2 images. Remote Sens. 2020, 12, 2355. [Google Scholar] [CrossRef]
- Shao, Z.; Pan, Y.; Diao, C.; Cai, J. Cloud detection in remote sensing images based on multiscale features-convolutional neural network. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4062–4076. [Google Scholar] [CrossRef]
- Wieland, M.; Li, Y.; Martinis, S. Multi-sensor cloud and cloud shadow segmentation with a convolutional neural network. Remote Sens. Environ. 2019, 230, 111203. [Google Scholar] [CrossRef]
- Hagolle, O.; Huc, M.; Pascual, D.V.; Dedieu, G. A multi-temporal method for cloud detection, applied to FORMOSAT-2, VENµS, LANDSAT and SENTINEL-2 images. Remote Sens. Environ. 2010, 114, 1747–1755. [Google Scholar] [CrossRef] [Green Version]
- Ackerman, S.A.; Strabala, K.I.; Menzel, W.P.; Frey, R.A.; Moeller, C.C.; Gumley, L.E. Discriminating clear sky from clouds with MODIS. J. Geophys. Res. 1998, 103, 32141–32157. [Google Scholar] [CrossRef]
- Wang, B.; Ono, A.; Muramatsu, K.; Fujiwara, N. Automated detection and removal of clouds and their shadows from Landsat TM images. IEICE Trans. Inf. Syst. 1999, 82, 453–460. [Google Scholar]
- Chen, J.; Du, P.; Wu, C.; Xia, J.; Chanussot, J. Mapping urban land cover of a large area using multiple sensors multiple features. Remote Sens. 2018, 10, 872. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Yu, G.; He, Z.; Yu, H.; Bai, R.; Yang, L.; Wu, D. Entropies of the chinese land use/cover change from 1990 to 2010 at a county level. Entropy-Switz 2017, 19, 51. [Google Scholar] [CrossRef]
- Santos, A.C.S.E.; Pedrini, H. A combination of k-means clustering and entropy filtering for band selection and classification in hyperspectral images. Int. J. Remote Sens. 2016, 37, 3005–3020. [Google Scholar] [CrossRef]
- Memarsadeghi, N.; Mount, D.M.; Netanyahu, N.S.; Le Moigne, J. A fast implementation of the ISODATA clustering algorithm. Int. J. Comput. Geom. Appl. 2007, 17, 71–103. [Google Scholar] [CrossRef]
- Ricciardelli, E.; Romano, F.; Cuomo, V. Physical and statistical approaches for cloud identification using meteosat second generation-spinning enhanced visible and infrared imager data. Remote Sens. Environ. 2008, 112, 2741–2760. [Google Scholar] [CrossRef]
- Richter, R. A fast atmospheric correction algorithm applied to Landsat TM images. Int. J. Remote Sens. 1990, 11, 159–166. [Google Scholar] [CrossRef]
- Richter, R. Atmospheric correction of satellite data with haze removal including a haze/clear transition region. Comput. Geosci. 1996, 22, 675–681. [Google Scholar] [CrossRef]
- Sun, L.; Mi, X.; Wei, J.; Wang, J.; Tian, X.; Yu, H.; Gan, P. A cloud detection algorithm-generating method for remote sensing data at visible to short-wave infrared wavelengths. ISPRS J. Photogramm. Remote Sens. 2017, 124, 70–88. [Google Scholar] [CrossRef]
- Son, Y.B.; Choi, B.; Kim, Y.H.; Park, Y. Tracing floating green algae blooms in the Yellow Sea and the East China Sea using GOCI satellite data and Lagrangian transport simulations. Remote Sens. Environ. 2015, 156, 21–33. [Google Scholar] [CrossRef]
- Liang, J.; Chin, K.; Dang, C.; Yam, R.C.M. A new method for measuring uncertainty and fuzziness in rough set theory. Int. J. Gen. Syst. 2002, 31, 331–342. [Google Scholar] [CrossRef]
- Zhang, Y.; Guindon, B.; Cihlar, J. An image transform to characterize and compensate for spatial variations in thin cloud contamination of Landsat images. Remote Sens. Environ. 2002, 82, 173–187. [Google Scholar] [CrossRef]
- Gao, B.; Goetz, A.F.H.; Wiscombe, W.J. Cirrus cloud detection from airborne imaging spectrometer data using the 1.38 µm water vapor band. Geophys. Res. Lett. 1993, 20, 301–304. [Google Scholar] [CrossRef]
- Jin, S.; Liu, Y.; Sun, C.; Wei, X.; Li, H.; Han, Z. A study of the environmental factors influencing the growth phases of Ulva prolifera in the southern Yellow Sea, China. Mar. Pollut. Bull. 2018, 135, 1016–1025. [Google Scholar] [CrossRef] [PubMed]
- Niroumand-Jadidi, M.; Santoni, M.; Bruzzone, L.; Bovolo, F. Snow cover estimation underneath the clouds based on multitemporal correlation analysis in historical time-series imagery. IEEE Trans. Geosci. Remote Sens. 2020, 58, 5703–5714. [Google Scholar] [CrossRef]
- Salomonson, V.V.; Appel, I. Estimating fractional snow cover from MODIS using the normalized difference snow index. Remote Sens. Environ. 2004, 89, 351–360. [Google Scholar] [CrossRef]
- Coll, J.; Li, X. Comprehensive accuracy assessment of MODIS daily snow cover products and gap filling methods. ISPRS-J. Photogramm. Remote Sens. 2018, 144, 435–452. [Google Scholar] [CrossRef]
- Parajka, J.; Blöschl, G. Spatio-temporal combination of MODIS images–potential for snow cover mapping. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Simpson, J.J.; McIntire, T.J.; Stitt, J.R.; Hufford, G.L. Improved cloud detection in AVHRR daytime and night-time scenes over the ocean. Int. J. Remote Sens. 2001, 22, 2585–2615. [Google Scholar] [CrossRef]
- KÄrner, O.; Di Girolamo, L. On automatic cloud detection over ocean. Int. J. Remote Sens. 2001, 22, 3047–3052. [Google Scholar] [CrossRef]
- Zi, Y.; Xie, F.; Jiang, Z. A cloud detection method for Landsat 8 images based on PCANet. Remote Sens. 2018, 10, 877. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Guindon, B. Quantitative assessment of a haze suppression methodology for satellite imagery: Effect on land cover classification performance. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1082–1089. [Google Scholar] [CrossRef]
- Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens. 2003, 24, 583–594. [Google Scholar] [CrossRef]
Data | GF4 PMS | CMOS GOCI | HJ1A CCD | Landsat OLI | Landsat ETM+ | Aqua MODIS | NPP VIIRS |
---|---|---|---|---|---|---|---|
Repetitively | 20 s | 1 h | 2 days | 16 days | 16 days | 1 days | 1 days |
Field of View(km) | 500 × 500 | 2500 × 2500 | 700 × 700 | 185 × 185 | 185 × 185 | 2300 × 2300 | 3000 × 3000 |
Coverage | Regional | Regional | Global | Global | Global | Global | Global |
Launch Date | 2015.12 | 2010.6 | 2008.9 | 2003.2 | 1999.4 | 2002.5 | 2011.1 |
Bands used (nm) | 485,560 | 443,490 | 475,560 | 443,483,563 | 485,565 | 443,488,555 | 445,488,555 |
Resolution (m) | 50 | 500 | 30 | 15 | 15 | 500 | 5000 |
No. | Sensors | Scene ID | Date | Season | Lon- Lat |
---|---|---|---|---|---|
1 | PMS | GF4_PMI_E117.6_N14.4_20160720 | 2016/7/20 | Summer | 117.6 E, 14.4 N |
2 | PMS | GF4_PMI_E117.7_N14.5_20160718 | 2016/7/18 | Summer | 117.7 E, 14.5 N |
3 | PMS | GF4_PMI_E121.0_N10.9_20160716 | 2016/7/16 | Summer | 121.0 E, 10.9 N |
4 | PMS | GF4_PMI_E121.1_N11.0_20160718 | 2016/7/18 | Summer | 121.1 E, 11.0 N |
5 | PMS | GF4_PMI_E121.4_N14.5_20160718 | 2016/7/18 | Summer | 121.4 E, 14.5 N |
6 | PMS | GF4_PMI_E110.6_N14.4_20160720 | 2016/7/20 | Summer | 110.6 E, 14.4 N |
7 | PMS | GF4_PMS_E104.0_N23.5_20170729 | 2017/7/29 | Summer | 104.0 E, 23.5 N |
8 | PMS | GF4_PMI_E114.4_N26.7_20170724 | 2017/7/24 | Summer | 114.4 E, 26.7 N |
9 | GOCI | COMS_GOCI_L1B _2017080305 | 2017/8/3 | Summer | 129.994 E, 35.54 N |
10 | GOCI | COMS_GOCI_L1B _2017102404 | 2017/10/24 | Autumn | 129.994 E, 35.54 N |
11 | CCD | HJ1A-CCD1–20170219 | 2017/2/19 | Winter | 110.36 E, 23.42 N |
12 | CCD | HJ1A-CCD1–20161210 | 2016/12/10 | Winter | 112.734 E, 22.12 N |
13 | OLI | LC81240462017262LGN00 | 2017/9/19 | Autumn | 109.84 E, 20.22 N |
14 | OLI | LC81240472015273LGN00 | 2015/9/30 | Autumn | 109.49 E, 18.77 N |
15 | ETM+ | LE71160522013075EDC00 | 2013/3/16 | Spring | 120.21 E, 11.62 N |
16 | ETM+ | LE71210432014305EDC00 | 2014/11/1 | Autumn | 115.45 E, 24.55 N |
17 | MODIS | MYD02HKM.A2008359.0535.005 | 2008/12/25 | Winter | 118.4 E, 17.85 N |
18 | MODIS | MYD02HKM.A2010190.0525.005 | 2010/7/10 | Summer | 117.06 E, 34.997 N |
19 | VIIRS | VNP09CMG.A2018032.2018033 | 2018/2/2 | Winter | 0 E, 0 N |
20 | VIIRS | VNP09CMG.A2018111.2018112 | 2018/4/22 | Autumn | 0 E, 0 N |
Datasets | Scene ID | Cloud Coverage of Original Provided (%) | Cloud Coverage from EN-Clustering Method (%) |
---|---|---|---|
GF-4-PMS | GF4_PMI_E117.6_N14.4_20160720 | 6 | 42.13 |
GF-4-PMS | GF4_PMI_E117.7_N14.5_20160718 | 3 | 54.21 |
GF-4 PMS | GF4_PMI_E121.0_N10.9_20160716 | 3 | 33.03 |
GF-4 PMS | GF4_PMI_E121.1_N11.0_20160718 | 1 | 26.26 |
GF-4 PMS | GF4_PMI_E121.4_N14.5_20160718 | 3 | 37.63 |
GF-4 PMS | GF4_PMI_E110.6_N14.4_20160720 | 1 | 30.11 |
GF-4 PMS | GF4_PMS_E104.0_N23.5_20170729 | 19 | 28.75 |
GF-4 PMS | GF4_PMI_E114.4_N26.7_20170724 | 15 | 20.12 |
LC8-OLI | LC81240462017262LGN00 | 38.29 | 18.78 |
LC8-OLI | LC81240472015273LGN00 | 36.26 | 8.57 |
LE7 ETM+ | LE71160522013075EDC00 | 17.5 | 10.58 |
LE7 ETM+ | LE71210432014305EDC00 | 91.4 | 24.36 |
NO. | Name | Cloud-Free Region | Thin Cloud | Thick Cloud | KC | OA | |||
---|---|---|---|---|---|---|---|---|---|
PA% | UA% | PA% | UA% | PA% | UA% | ||||
1 | GF4_PMI_E117.6_N14.4_20160720 | 98.85 | 98.33 | 76.87 | 95.58 | 99.31 | 86.87 | 90.68 | 94.29 |
2 | GF4_PMI_E117.7_N14.5_20160718 | 89.31 | 98.63 | 98.12 | 88.98 | 99.36 | 98.92 | 91.68 | 94.66 |
3 | GF4_PMI_E121.0_N10.9_20160716 | 93.51 | 86.9 | 62.72 | 76.67 | 96.67 | 98.14 | 76.57 | 87.02 |
4 | GF4_PMI_E121.1_N11.0_20160718 | 99.66 | 86.28 | 76.72 | 99 | 97.52 | 92.96 | 81.64 | 90.47 |
5 | GF4_PMI_E121.4_N14.5_20160718 | 95.27 | 98.23 | 93.02 | 91.26 | 99.62 | 95.76 | 93.18 | 95.69 |
6 | GF4_PMI_E110.6_N14.4_20160720 | 99.7 | 90.36 | 84.02 | 98.3 | 97.75 | 92.61 | 89.67 | 93.39 |
7 | GF4_PMS_E104.0_N23.5_20170729 | 99.69 | 99.92 | 72.64 | 55.81 | 99.92 | 99.73 | 99.29 | 99.69 |
8 | GF4_PMI_E114.4_N26.7_20170724 | 96.7 | 99.74 | 79.15 | 43.2 | 97.96 | 91.24 | 89.34 | 96.63 |
9 | COMS_GOCI_L1B_GA_20170803051643 | 99.8 | 78.9 | 59.43 | 94.17 | 98.99 | 99.12 | 86.55 | 92.45 |
10 | COMS_GOCI_L1B_GA_20171024041641 | 99.73 | 99.1 | 67.89 | 90.25 | 99.92 | 97.2 | 90.9 | 98.82 |
11 | HJ1A-CCD1–20170219-L20003071564 | 99.98 | 99.93 | 98.82 | 40.58 | 94.84 | 99.88 | 97.12 | 99.72 |
12 | HJ1A-CCD1–20161210-L20003015930 | 99.8 | 99.39 | 85.84 | 52.42 | 95.45 | 99.82 | 95.85 | 97.99 |
13 | LC81240462017262LGN00 | 98.43 | 98.72 | 80.08 | 70.99 | 92.18 | 96.22 | 88.98 | 96.63 |
14 | LC81240472015273LGN00 | 99.62 | 90.85 | 59.25 | 96.53 | 95.99 | 96.25 | 74.54 | 91.72 |
15 | LE71160522013075EDC00 | 94.02 | 98.49 | 66.45 | 94.65 | 99.99 | 98.2 | 82.32 | 93.74 |
16 | LE71210432014305EDC00 | 99.86 | 99.29 | 70.23 | 94.63 | 98.21 | 93.61 | 93.41 | 98.19 |
17 | MYD02HKM.A2008359.0535.005 | 99.88 | 95.37 | 87.64 | 99.61 | 99.96 | 99.1 | 96.37 | 97.74 |
18 | MYD02HKM.A2010190.0525.005 | 98.66 | 74.91 | 61.05 | 97.54 | 99.98 | 99.1 | 84.83 | 90.67 |
Average Value | 98.0 | 94.14 | 76.08 | 82.78 | 97.74 | 95.94 | 88.97 | 94.75 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Du, J.; Xia, J.; Chen, C.; Zeng, Q.; Tian, L.; Wang, L.; Mao, Z. An Effective Method for Detecting Clouds in GaoFen-4 Images of Coastal Zones. Remote Sens. 2020, 12, 3003. https://doi.org/10.3390/rs12183003
Wang Z, Du J, Xia J, Chen C, Zeng Q, Tian L, Wang L, Mao Z. An Effective Method for Detecting Clouds in GaoFen-4 Images of Coastal Zones. Remote Sensing. 2020; 12(18):3003. https://doi.org/10.3390/rs12183003
Chicago/Turabian StyleWang, Zheng, Jun Du, Junshi Xia, Cheng Chen, Qun Zeng, Liqiao Tian, Lihui Wang, and Zhihua Mao. 2020. "An Effective Method for Detecting Clouds in GaoFen-4 Images of Coastal Zones" Remote Sensing 12, no. 18: 3003. https://doi.org/10.3390/rs12183003
APA StyleWang, Z., Du, J., Xia, J., Chen, C., Zeng, Q., Tian, L., Wang, L., & Mao, Z. (2020). An Effective Method for Detecting Clouds in GaoFen-4 Images of Coastal Zones. Remote Sensing, 12(18), 3003. https://doi.org/10.3390/rs12183003