Capacity of Satellite-Based and Reanalysis Precipitation Products in Detecting Long-Term Trends across Mainland China
"> Figure 1
<p>Geographic distribution of the selected 2281 grids (0.25° × 0.25°), at least corresponding to a weather site. The digital elevation model (DEM) with a spatial resolution of 90 m is available at <a href="http://srtm.csi.cgiar.org/" target="_blank">http://srtm.csi.cgiar.org/</a>. [<a href="#B85-remotesensing-12-02902" class="html-bibr">85</a>] Crosses and triangles correspond to 1 and more than 2 sites within a given grid, respectively, followed by the percentage of grid shown in the bracket.</p> "> Figure 2
<p>Linear trends (LTs) for mainland China (MC), ten Water Resources Regions (WRRs), and 2281 grids during 2003–2017. Annual and seasonal LTs averaged over MC and ten WRRs are shown in (<b>a1</b>) and (<b>b1</b>–<b>e1</b>), respectively, in which stars represent significant changes with <span class="html-italic">p</span> < 0.05. (<b>a2</b>) and (<b>b1</b>–<b>e2</b>) show spatial distributions of annual and seasonal P<sub>wd</sub> trends across MC, respectively, with the green cross representing significant changes with <span class="html-italic">p</span> < 0.05. (<b>a1</b>–<b>e3</b>) and (<b>a1</b>–<b>e4</b>) are the same as (<b>a1</b>–<b>e2</b>), but for P<sub>d</sub> and P<sub>n</sub> trends, respectively.</p> "> Figure 3
<p>Correlation coefficients (CCs) for LTs from the selected 12 precipitation products (<b>a1</b>–<b>a5</b>), CC-based optimal products (OPs) for MC and ten WRRs (<b>b1</b>–<b>b5</b>), and number of cases corresponding to OPs for an annual or seasonal scale in ten WRRs (<b>c1</b>–<b>c5</b>). In figures (<b>b1</b>–<b>b5</b>), the number of each box represents the CC of the identified OP, which has been labelled with different colors. The number of figures (<b>c1</b>–<b>c5</b>) indicates the amount of a certain OP.</p> "> Figure 4
<p>Grid percentages with negative (<b>a1</b>–<b>a5</b>) and positive biases (Bs; <b>b1</b>–<b>b5</b>) for annual and seasonal LTs across MC.</p> "> Figure 5
<p>MC Bs derived from the selected 12 precipitation products (<b>a1</b>–<b>a5</b>), B-based optimal products (OPs) for MC and ten WRRs (<b>b1</b>–<b>b5</b>), and number of cases corresponding to B-based OPs on an annual or seasonal scale for ten WRRs (<b>c1</b>–<b>c5</b>). In figures (<b>b1</b>–<b>b5</b>), the number of each box represents grid percentage (%) of OP, which has been labelled with different colors. The number of figures (<b>c1</b>–<b>c5</b>) indicates the amount of a certain OP.</p> "> Figure 6
<p>MC root mean square error (RMSE) derived from the selected 12 precipitation products (<b>a1</b>–<b>a5</b>), RMSE-based optimal products (OPs) for MC and ten WRRs (<b>b1</b>–<b>b5</b>), and number of cases corresponding to RMSE-based OPs for annual or seasonal scale in ten WRRs (<b>c1</b>–<b>c5</b>). In figures (<b>b1</b>–<b>b5</b>), the number of each box represents RMSEs (mm/yr) of OP, which are labelled with different colors. The number of figures (<b>c1</b>–<b>c5</b>) indicates the amount of a certain OP.</p> "> Figure 7
<p>MC accurate sign (AS) values derived from the selected 12 precipitation products (<b>a1</b>–<b>a5</b>), AS-based optimal products (OPs) for MC and ten WRRs (<b>b1</b>–<b>b5</b>), and the number of cases corresponding to AS-based OPs (<b>c1</b>–<b>c5</b>) for the annual or seasonal scales in ten WRRs. For figures (<b>a1</b>–<b>a5</b>), AS is computed with Equation (5), indicating the degree of agreement between the positive or negative sign of precipitation trends from the products and the observed data. In figures (<b>b1</b>–<b>b5</b>), the number in each box represents AS values (%) of the OP, which have been labelled with different colors. The number of figures (<b>c1</b>–<b>c5</b>) indicates the amount of a certain OP.</p> "> Figure 8
<p>MC joint AS (JAS) values derived from the selected 12 precipitation products (<b>a1</b>–<b>a5</b>), and JAS-based optimal products (OPs) for MC and ten WRRs (<b>b</b>). For figures (<b>a1</b>–<b>a5</b>), JAS is computed with Equation (6), indicating the capacity of a given product to rightly detect the signs of both P<sub>d</sub> and P<sub>n</sub> changes relative to the observed data. In (<b>b</b>), the number in each box represents JAS values (%) of the OP, which has been labelled with different colors.</p> ">
Abstract
:1. Introduction
2. Data and Methodology
2.1. Data
2.1.1. Observed Precipitation
2.1.2. Satellite-Based and Reanalysis Precipitation Datasets
2.2. Methodolody
3. Results
3.1. Gauge Precipitation Changes across MC
3.2. Evaluation Using Correlation Coefficient Metric
3.3. Evaluation Using Bias Metric
3.4. Evaluation Using Error Metric
3.5. Evaluation Using Metric of Sign Accuracy
4. Discussion
4.1. Possible Causes for Variation in Performance among Precipitation Products
4.2. Uncertainties from Rain Gauge Data
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cui, Y.; Yan, D.; Hong, T.; Xiao, C.; Luo, X.; Zhang, Q. Comparison of typical year and multiyear building simulations using a 55-year actual weather data set from China. Appl. Energy 2017, 195, 890–904. [Google Scholar] [CrossRef] [Green Version]
- Kidd, C.; Becker, A.; Huffman, G.J.; Muller, C.L.; Joe, P.; Skofronick-Jackson, G.; Kirschbaum, D.B. So How much of the Earth’s surface is covered by rain gauges? Bull. Am. Meteorol. Soc. 2017, 98, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Wang, K. Contrasting daytime and nighttime precipitation variability between observations and eight reanalysis products from 1979 to 2014 in China. J. Clim. 2017, 30, 6443–6464. [Google Scholar] [CrossRef]
- Milly, P.C.D.; Dunne, K.A.; Vecchia, A.V. Global patterns of trends in streamflow and water availability in a changing climate. Nature 2005, 438, 347–350. [Google Scholar] [CrossRef] [PubMed]
- Sorooshian, S.; AghaKouchak, A.; Arkin, P.; Eylander, J.; Foufoula-Georgiou, E.; Harmon, R.; Hendrickx, J.M.H.; Imam, B.; Kuligowski, R.; Skahill, B.; et al. Advanced concepts on remote sensing of precipitation at multiple scales. Bull. Am. Meteorol. Soc. 2011, 92, 1353–1357. [Google Scholar] [CrossRef]
- Sun, S.; Zhou, S.; Shen, H.; Chai, R.; Chen, H.; Liu, Y.; Shi, W.; Wang, J.; Wang, G.; Zhou, Y. Dissecting Performances of PERSIANN-CDR Precipitation Product over Huai River Basin, China. Remote Sens. 2019, 11, 1805. [Google Scholar] [CrossRef] [Green Version]
- Thornes, J.; Bloss, W.; Bouzarovski, S.; Cai, X.; Chapman, L.; Clark, J.; Dessai, S.; Du, S.; van der Horst, D.; Kendall, M.; et al. Communicating the value of atmospheric services. Meteorol. Appl. 2010, 17, 243–350. [Google Scholar] [CrossRef] [Green Version]
- Murthy, C.S.; Singh, J.; Kumar, P.; Sai, M.V.R.S. A composite index for drought hazard assessment using CPC rainfall time series data. Int. J. Environ. Sci. Technol. 2017, 14, 1981–1988. [Google Scholar] [CrossRef]
- Sun, S.; Chen, H.; Ju, W.; Wang, G.; Sun, G.; Huang, J.; Ma, H.; Gao, C.; Hua, W.; Yan, G. On the coupling between precipitation and potential evapotranspiration: Contributions to decadal drought anomalies in the Southwest China. Clim. Dyn. 2017, 48, 3779–3797. [Google Scholar] [CrossRef]
- Sun, S.; Li, Q.; Li, J.; Wang, G.; Zhou, S.; Chai, R.; Hua, W.; Deng, P.; Wang, J.; Lou, W. Revisiting the evolution of the 2009–2011 meteorological drought over Southwest China. J. Hydrol. 2019, 568, 385–402. [Google Scholar] [CrossRef]
- Wei, J.; Jin, Q.; Yang, Z.-L.; Dirmeyer, P.A. Role of ocean evaporation in California droughts and floods. Geophys. Res. Lett. 2016, 43, 6554–6562. [Google Scholar] [CrossRef] [Green Version]
- Berghuijs, W.R.; Aalbers, E.E.; Larsen, J.R.; Trancoso, R.; Woods, R.A. Recent changes in extreme floods across multiple continents. Environ. Res. Lett. 2017, 12. [Google Scholar] [CrossRef]
- Hong, Y.; Gochis, D.; Cheng, J.T.; Hsu, K.L.; Sorooshian, S. Evaluation of PERSIANN-CCS rainfall measurement using the name event rain gauge network. J. Hydrometeorol. 2007, 8, 469–482. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, P.; Ombadi, M.; Sorooshian, S.; Hsu, K.; AghaKouchak, A.; Braithwaite, D.; Ashouri, H.; Thorstensen, A.R. The PERSIANN family of global satellite precipitation data: A review and evaluation of products. Hydrol. Earth Syst. Sci. 2018, 22, 5801–5816. [Google Scholar] [CrossRef] [Green Version]
- Pan, M.; Li, H.; Wood, E.F. Assessing the skill of satellite-based precipitation estimates in hydrologic applications. Water Resour. Res. 2010, 46, W09535. [Google Scholar] [CrossRef]
- Xie, P.; Janowiak, J.E.; Arkin, P.A.; Adler, R.; Gruber, A.; Ferraro, R.; Huffman, G.J.; Curtis, S. GPCP pentad precipitation analyses: An experimental dataset based on gauge observations and satellite estimates. J. Clim. 2003, 16, 2197–2214. [Google Scholar] [CrossRef] [Green Version]
- Kidd, C.; Kniveton, D.R.; Todd, M.C.; Bellerby, T.J. Satellite rainfall estimation using combined passive microwave and infrared algorithms. J. Hydrometeorol. 2003, 4, 1088–1104. [Google Scholar] [CrossRef]
- Wentz, F.J.; Ricciardulli, L.; Hilburn, K.; Mears, C. How much more rain will global warming bring? Science 2007, 317, 233–235. [Google Scholar] [CrossRef]
- Ebert, E.E.; Manton, M.J.; Arkin, P.A.; Allam, R.J.; Holpin, C.E.; Gruber, A. Results from the GPCP Algorithm Intercomparison Programme. Bull. Am. Meteorol. Soc. 1996, 77, 2875–2887. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Sapiano, M.R.P.; Arkin, P.A. An intercomparison and validation of high-resolution satellite precipitation estimates with 3-hourly gauge data. J. Hydrometeorol. 2009, 10, 149–166. [Google Scholar] [CrossRef]
- Gou, Y.; Ma, Y.; Chen, H.; Weng, Y. Radar-derived quantitative precipitation estimation in complex terrain over the eastern Tibetan Plateau. Atmos. Res. 2018, 203, 286–297. [Google Scholar] [CrossRef]
- Maddox, R.A.; Zhang, J.; Gourley, J.J.; Howard, K.W. Weather radar coverage over the contiguous United States. Weather Forecast. 2002, 17, 927–934. [Google Scholar] [CrossRef]
- Turk, F.J.; Haddad, Z.S.; Kirstetter, P.; You, Y.; Ringerud, S. An observationally based method for stratifying a priori passive microwave observations in a Bayesian-based precipitation retrieval framework. Q. J. R. Meteorol. Soc. 2018, 144, 145–164. [Google Scholar] [CrossRef]
- Kuligowski, R.J.; Li, Y.; Zhang, Y. Impact of TRMM data on a low-latency, high-resolution precipitation algorithm for flash-flood forecasting. J. Appl. Meteorol. Climatol. 2013, 52, 1379–1393. [Google Scholar] [CrossRef]
- Ashouri, H.; Hsu, K.; Sorooshian, S.; Braithwaite, D.K.; Knapp, K.R.; Cecil, L.D.; Nelson, B.R.; Prat, O.P. PERSIANNCDR: Daily precipitation climate data record from multi-satellite observations for hydrological and climate studies. Bull. Am. Meteorol. Soc. 2015, 96, 69–83. [Google Scholar] [CrossRef] [Green Version]
- Adler, R.F.; Huffman, G.J.; Chang, A.; Ferraro, R.; Xie, P.P.; Janowiak, J.; Rudolf, B.; Scjneider, U.; Curtis, S.; Gruber, D.B.A.; et al. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeorol. 2003, 4, 1147–1167. [Google Scholar] [CrossRef]
- Gebregiorgis, A.; Hossain, F. How much can a priori hydrologic model predictability help in optimal merging of satellite precipitation products? J. Hydrometeorol. 2011, 12, 1287–1298. [Google Scholar] [CrossRef] [Green Version]
- Michaelides, S.; Levizzani, V.; Anagnostou, E.; Bauer, P.; Kasparis, T.; Lane, J.E. Precipitation: Measurement, Remote Sensing, Climatology and Modeling. Atmos. Res. 2009, 94, 512–533. [Google Scholar] [CrossRef]
- Prigent, C. Precipitation retrieval from space: An overview. Comptes Rendus Geosci. 2010, 342, 380–389. [Google Scholar] [CrossRef]
- Screen, J.A.; Simmonds, I. Erroneous arctic temperature trends in the ERA-40 reanalysis: A closer look. J. Clim. 2011, 24, 2620–2627. [Google Scholar] [CrossRef] [Green Version]
- Turk, J.T.; Mostovoy, G.V.; Anantharaj, V. The NRL-Blend High Resolution Precipitation Product and its Application to Land Surface Hydrology. In Satellite Rainfall Applications for Surface Hydrology; Gebremichael, M., Hossain, F., Eds.; Springer: Dordrecht, The Netherlands, 2010. [Google Scholar]
- Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Gu, G.; Nelkin, E.J.; Bowman, K.P.; Yong, Y.; Stocker, E.F.; Wolff, D.B. The TRMM Multi-satellite Precipitation Analysis (TMPA): Quasi-global, multi-year, combined-sensor precipitation at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Hsu, K.L.; Gao, X.G.; Sorooshian, S.; Gupta, H.V. Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteorol. 1997, 36, 1176–1190. [Google Scholar] [CrossRef]
- Sorooshian, S.; Hsu, K.-L.; Gao, X.; Gupta, H.V.; Imam, B.; Braithwaite, D. Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Am. Meteorol. Soc. 2000, 81, 2035–2046. [Google Scholar] [CrossRef] [2.3.CO;2" target='_blank'>Green Version]
- Hong, Y.; Hsu, K.L.; Sorooshian, S.; Gao, X. Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system. J. Appl. Meteorol. 2004, 43, 1834–1853. [Google Scholar] [CrossRef] [Green Version]
- Ushio, T.; Kachi, M. Kalman Filtering Applications for Global Satellite Mapping of Precipitation (GSMaP). In Satellite Rainfall Applications for Surface Hydrology; Gebremichael, M., Hossain, F., Eds.; Springer: Dordrecht, The Netherlands, 2010. [Google Scholar]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeorol. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Huffman, G.J. README for Accessing Experimental Realtime TRMM Multi-Satellite Precipitation Analysis (TMPART) Data Sets. NASA Tech. Doc. 2015, 12. Available online: ftp://mesoa.gsfc.nasa.gov/pub/trmmdocs/rt/3B4XRT_README.pdf (accessed on 10 August 2019).
- Funk, C.C.; Peterson, P.J.; Landsfeld, M.F.; Pedreros, D.H.; Verdin, J.P.; Sukla, S.; Husak, G.J.; Rowland, J.D.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Beck, H.E.; Vergopolan, N.; Pan, M.; Levizzani, V.; van Dijk, A.I.J.M.; Weedon, G.P.; Brocca, L.; Pappenberger, F.; Huffman, G.J.; Wood, E.F. Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrol. Earth Syst. Sci. 2017, 21, 6201–6217. [Google Scholar] [CrossRef] [Green Version]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Kalnay, E. NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–472. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Kanamitsu, M.; Ebisuzaki, W.; Woollen, J.; Yang, S.K.; Hnilo, J.J.; Fiorino, M.; Potter, G.L. NCEP–DOE AMIP-II reanalysis (R-2). Bull. Am. Meteorol. Soc. 2002, 83, 1631–1643. [Google Scholar] [CrossRef]
- Kobayashi, S.; Ota, Y.; Harada, Y.; Ebita, A.; Moriya, M.; Onoda, H.; Onogi, K.; Kamahori, H.; Kobayashi, C.; Endo, H.; et al. The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteorol. Soc. JPN 2015, 93, 5–48. [Google Scholar] [CrossRef] [Green Version]
- Molod, A.; Takacs, L.; Suarez, M.; Bacmeister, J. Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA-2. Geosci. Model. Dev. 2015, 8, 1339–1356. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Bengtsson, L.; Hodges, K.; Esch, M.; Keenlyside, N.; Kornblueh, L.; Luo, J.; Yamagata, T. How may tropical cyclones change in a warmer climate? Tellus A 2007, 59, 539–561. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Iwasaki, T.; Qin, H.; Sha, W. Evaluation of the warm-season diurnal variability over East Asia in recent reanalyses JRA-55, ERA-Interim, NCEP CFSR, and NASA MERRA. J. Clim. 2014, 27, 5517–5537. [Google Scholar] [CrossRef]
- Saha, S.; Moorthi, S.; Pan, H.-L.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Kistler, R.; Wollen, J.; Berhringer, D.; et al. The NCEP Climate Forecast System Reanalysis. Bull. Am. Meteorol. Soc. 2010, 91, 1015–1058. [Google Scholar] [CrossRef]
- Szczypta, C.; Calvet, J.C.; Albergel, C.; Balsamo, G.; Boussetta, S.; Carrer, D.; Lafont, S.; Meurey, C. Verification of the new ECMWF ERA-Interim reanalysis over France. Hydrol. Earth Syst. Sci. 2011, 15, 647–666. [Google Scholar] [CrossRef] [Green Version]
- Anagnostou, E.N. Overview of overland satellite rainfall estimation for hydro-meteorological applications. Surv. Geophys. 2004, 25, 511–537. [Google Scholar] [CrossRef]
- Hodges, K.I.; Lee, R.W.; Bengtsson, L. A comparison of extratropical cyclones in recent reanalyses ERA-Interim, NASA MERRA, NCEP CFSR, and JRA-25. J. Clim. 2011, 24, 4888–4906. [Google Scholar] [CrossRef]
- Laviola, S.; Levizzani, V.; Cattani, E.; Kidd, C. The 183-wsl fast rain rate retrieval algorithm. part II: Validation using ground radar measurements. Atmos. Res. 2013, 134, 77–86. [Google Scholar] [CrossRef]
- Lin, R.; Zhou, T.; Qian, Y. Evaluation of global monsoon precipitation changes based on five reanalysis datasets. J. Clim. 2014, 27, 1271–1289. [Google Scholar] [CrossRef]
- Maggioni, V.; Sapiano, M.R.P.; Adler, R.F. Estimating uncertainties in high-resolution satellite precipitation products: Systematic or random error? J. Hydrometeorol. 2016, 17, 1119–1129. [Google Scholar] [CrossRef]
- Urraca, R.; Huld, T.; Gracia-Amillo, A.; Martinez-De-Pison, F.J.; Kaspar, F.; Sanz-Garcia, A. Evaluation of global horizontal irradiance estimates from ERA5 and COSMO-REA6 reanalyses using ground and satellite-based data. Sol. Energy 2018, 164, 339–354. [Google Scholar] [CrossRef]
- Zhao, D.M.; Fu, C.B. Comparisons of low-level circulation characteristics between ECHAM5/MPI-OM results and NCEP/NCAR re-analysis data in East Asia. Atmos. Ocean. Sci. Lett. 2010, 3, 189–194. [Google Scholar]
- Sungmin, O.; Kirstetter, P.E. Evaluation of diurnal variation of GPM IMERG derived summer precipitation over the contiguous US using MRMS data. Q. J. R. Meteorol. Soc. 2018, 144, 270–281. [Google Scholar]
- Omranian, E.; Sharif, H.O. Evaluation of the Global Precipitation Measurement (GPM) satellite rainfall products over the Lower Colorado River Basin, Texas. J. Am. Water Resour. 2018, 1–17. [Google Scholar] [CrossRef]
- Mahto, S.S.; Mishra, V. Does ERA-5 Outperform other reanalysis products for hydrologic applications in India? J. Geophys. Res. Atmos. 2018, 124, 9423–9441. [Google Scholar] [CrossRef]
- Li, C.; Tang, G.; Hong, Y. Cross-evaluation of ground-based, multi-satellite and reanalysis precipitation products: Applicability of the triple collocation method across Mainland China. J. Hydrol. 2018, 562, 71–83. [Google Scholar] [CrossRef]
- Huang, D.-Q.; Zhu, J.; Zhang, Y.-C.; Huang, Y.; Kuang, X.-Y. Assessment of summer monsoon precipitation derived from five reanalysis datasets over East Asia. Q. J. R. Meteorol. Soc. 2016, 142, 108–119. [Google Scholar] [CrossRef]
- Bai, P.; Liu, X. Evaluation of five satellite-based precipitation products in two gauge-scarce basins on the Tibetan Plateau. Remote Sens. 2018, 10, 1316. [Google Scholar] [CrossRef] [Green Version]
- Fan, B.; Luo, G.; Zhang, C.; Hu, Z.; Li, C.; Wang, Y.; Bai, L. Evaluation of summer precipitation of CFSR, ERA-Interim and MERRA reanalyses in Xinjiang. Geophys. Res. 2013, 32, 1602–1612, (In Chinese with English Abstract). [Google Scholar]
- de Leeuw, J.; Methven, J.; Blackburn, M. Evaluation of ERA-Interim reanalysis precipitation products using England and Wales observations. Q. J. R. Meteorol. Soc. 2015, 141, 798–806. [Google Scholar] [CrossRef] [Green Version]
- Derin, Y.; Anagnostou, E.N.; Berne, A.; Borga, M.; Boudevillain, B.; Buytaert, W.; Chang, C.-H.; Delrieu, G.; Hong, Y.; Hsu, Y.C.; et al. Multi-regional satellite precipitation products evaluation over complex terrain. J. Hydrometeorol. 2016, 17, 1817–1836. [Google Scholar] [CrossRef]
- Guilloteau, C.; Roca, R.; Gosset, M. A Multiscale Evaluation of the Detection Capabilities of High-Resolution Satellite Precipitation Products in West Africa. J. Hydrometeorol. 2016, 17, 2041–2059. [Google Scholar] [CrossRef]
- Lorenz, C.; Kunstmann, H. The hydrological in three state-of-the-art reanalysis: Intercomparison and performance analysis. J. Hydrometeorol. 2012, 13, 1397–1420. [Google Scholar] [CrossRef] [Green Version]
- Yu, R.; Yuan, W.; Li, J. The asymmetry of rainfall process. Chin. Sci. Bull. 2013, 58, 1850–1856. [Google Scholar] [CrossRef] [Green Version]
- Yu, R.; Yuan, W.; Li, J.; Fu, Y. Diurnal phase of late-night against late-afternoon of stratiform and convective precipitation in summer southern contiguous China. Clim. Dyn. 2010, 35, 567–576. [Google Scholar] [CrossRef] [Green Version]
- Cheng, P.; Gao, L.; Zuo, X.; Zhong, F. Statistical analyses of spatial and temporal variabilities in total, daytime, and nighttime precipitation indices and of extreme dry/wet association with large-scale circulations of Southwest China, 1961–2016. Atmos. Res. 2019, 219, 166–182. [Google Scholar] [CrossRef]
- Ghate, V.P.; Kollias, P. On the controls of daytime precipitation in the Amazonian dry season. J. Hydrometeorol. 2016, 17, 3079–3097. [Google Scholar] [CrossRef]
- Wallace, J.M. Diurnal variations in precipitation and thunderstorm frequency over the conterminous united states. Mon. Weather Rev. 1975, 103, 406–419. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Yu, R.; Xu, Y.; Zhou, T.; Li, J. Relation between rainfall duration and diurnal variation in the warm season precipitation over central eastern China. Geophys. Res. Lett. 2007, 34, L13703. [Google Scholar] [CrossRef] [Green Version]
- Brown, K.; Kamruzzaman, M.; Beecham, S. Trends in sub-daily precipitation in Tasmania using regional dynamically downscaled climate projections. J. Hydrol. Reg. Stud. 2017, 10, 18–34. [Google Scholar] [CrossRef]
- Lenderink, G.; van Meijgaard, E. Linking increases in hourly precipitation extremes to atmospheric temperature and moisture changes. Environ. Res. Lett. 2010, 5, 252–258. [Google Scholar] [CrossRef]
- Lenderink, G.; Mok, H.Y.; Lee, T.C.; van Oldenborgh, G.J. Scaling and trends of hourly precipitation extremes in two different climate zones: Hong Kong and the Netherlands. Hydrol. Earth Syst. Sci. Dis. 2011, 8, 4701–4719. [Google Scholar] [CrossRef]
- Liu, L.Y.; Ma, Z.-G. Intra-annual variability of diurnal cycle precipitation over china from 1960–2000. Atmos. Ocean. Sci. Lett. 2013, 6, 451–456. [Google Scholar]
- Mao, J.Y.; Wu, G.X. Diurnal variations of summer precipitation over the Asian monsoon region as revealed by TRMM satellite data. Sci. China Earth Sci. 2012, 55, 554–566. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, M.; Wang, S.; Wang, J.; Zhao, P.; Zhou, P. Assessment of diurnal variation of summer precipitation over the Qilian Mountains based on an hourly merged dataset from 2008 to 2014. J. Geogr. Sci. 2017, 27, 326–336. [Google Scholar] [CrossRef]
- Lin, C.; Liu, L.; Lin, W.; Bai, Y.; Qi, H.; Yang, H. Characteristics of summer precipitation diurnal variations in Hubei Province. Trans. Atmos. Sci. 2016, 39, 490–500, (In Chinese with English Abstract). [Google Scholar]
- Han, Y.; Ma, Z.; Yang, Q.; Pan, Z. Changing Characteristics of Daytime and Nighttime Precipitation in Xinjiang under Global Warming. Clim. Environ. Res. 2014, 19, 763–772, (In Chinese with English Abstract). [Google Scholar]
- Chen, F.; Gao, Y. Evaluation of precipitation trends from high-resolution satellite precipitation products over Mainland China. Clim. Dyn. 2018, 51, 3311–3331. [Google Scholar] [CrossRef]
- Ren, Z.H.; Zhao, P.; Zhang, Q.; Zhang, Z.F.; Chen, Z. Quality control procedures for hourly precipitation data from automatic weather stations in China. Meteorol. Mon. 2010, 36, 123–132, (In Chinese with English Abstract). [Google Scholar]
- The National Aeronautics and Space Administration (NASA) Shuttle Radar Topographic Mission (SRTM) 90m Digital Elevation Model (DEM) Digital Elevation Database. Available online: http://srtm.csi.cgiar.org/ (accessed on 7 July 2019).
- Huang, R.; Chen, W.; Ding, Y.; Li, C. Studies on the monsoon dynamics and the interaction between monsoon and ENSO cycle. Chin. J. Atmos. Sci. 2003, 27, 484–502, (In Chinese with English Abstract). [Google Scholar]
- Hsu, K.; Sellars, S.; Nguyen, P.; Braithwaite, D.; Chu, W. G-WADI PERSIANN-CCS GeoServer for extreme precipitation event monitoring. Sci. Cold Arid Reg. 2013, 5, 6–15. [Google Scholar]
- Liu, Y.; Wu, Y.; Feng, Z.; Huang, X.; Wang, D. Evaluation of a Variety of Satellite Retrieved Precipitation Products Based on Extreme Rainfall in China. Trop. Geogr. 2007, 37, 417–433, (In Chinese with English Abstract). [Google Scholar]
- Shen, Y.; Xiong, A.; Wang, Y.; Xie, P. Performance of high-resolution satellite precipitation products over China. J. Geophys. Res. Atmos. 2010, 115, D02114. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, X.; Meng, S.; Wu, D.; Chen, Y.; Jiang, F.; Zhu, B. Magnitude agreement, occurrence consistency, and elevation dependency of satellite-based precipitation products over the Tibetan Plateau. Remote Sens. 2020, 12, 1750. [Google Scholar] [CrossRef]
- Xiao, S.; Xia, J.; Zou, L. Evaluation of multi-satellite precipitation products and their ability in capturing the characteristics of extreme climate events over the Yangtze River Basin, China. Water 2020, 12, 1179. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.; Chen, Z.; Shen, Y.; Zhang, S.; Shi, R. Evaluation of Satellite Rainfall Estimates over the Chinese Mainland. Remote Sens. 2014, 6, 11649–11672. [Google Scholar] [CrossRef] [Green Version]
- Ngo-Duc, T.; Matsumoto, J.; Kamimera, H.; Bui, H.-H. Monthly adjustment of Global Satellite Mapping of Precipitation (GSMaP) data over the VuGia–ThuBon River Basin in Central Vietnam using an artificial neural network. Hydrol. Res. Lett. 2013, 7, 85–90. [Google Scholar] [CrossRef] [Green Version]
- Try, S.; Tanaka, S.; Tanaka, K.; Sayama, T.; Oeurng, C.; UK, S.; Takara, K.; Hu, M.; Han, D. Comparison of gridded precipitation datasets for rainfall-runoff and inundation modeling in the Mekong River Basin. PLoS ONE 2020, 15, e0226814. [Google Scholar] [CrossRef] [Green Version]
- Fallah, A.; Rakhshandehroo, G.R.; Berg, P.; Sungmin, O.; Orth, R. Evaluation of precipitation datasets against local observations in southwestern Iran. Int. J. Climatol. 2020, 40, 4102–4116. [Google Scholar] [CrossRef] [Green Version]
- Nogueira, M. Inter-comparison of ERA-5, ERA-Interim and GPCP rainfall over the last 40 years: Process-based analysis of systematic and random differences. J. Hydrol. 2020, 583, 124632. [Google Scholar] [CrossRef]
- Nogueira, M. The multi-scale structure of atmospheric energetic constraints on globally averaged precipitation. Earth Syst. Dyn. 2019, 10, 219–232. [Google Scholar] [CrossRef] [Green Version]
- Stephens, G.L.; Ellis, T.D. Controls of global-mean precipitation increases in global warming GCM experiments. J. Clim. 2008, 21, 6141–6155. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, T.; Frauenfeld, O.W.; Ye, B. Evaluation of precipitation from the ERA-40, NCEP-1, and NCEP-2 reanalyses and CMAP-1, CMAP-2, and GPCP-2 with ground-based measurements in China. J. Geophys. Res. Atmos. 2009, 114, D09105. [Google Scholar] [CrossRef]
- Tang, D.; Ma, C.; Wang, Y.; Xu, X. Multiscale evaluation of NCEP and CRUNCEP data sets at 90 large U.S. cities. J. Geophys. Res. Atmos. 2017, 122, 7433–7444. [Google Scholar] [CrossRef]
- Hua, W.; Zhou, L.; Nicholson, S.E.; Chen, H.; Qin, M. Assessing reanalysis data for understanding rainfall climatology and variability over Central Equatorial Africa. Clim. Dyn. 2019, 53, 5139. [Google Scholar] [CrossRef] [Green Version]
- Trenberth, K.E.; Fasullo, J.T.; Mackaro, J. Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J. Clim. 2011, 24, 4907–4924. [Google Scholar] [CrossRef]
- Zhang, L.; Kumar, A.; Wang, W. Influence of changes in observations on precipitation: A case study for the Climate Forecast System Reanalysis (CFSR). J. Geophys. Res. Atmos. 2012, 117, D08105. [Google Scholar] [CrossRef] [Green Version]
- Hamal, K.; Sharma, S.; Khadka, N.; Baniya, B.; Ali, M.; Shrestha, M.S.; Xu, T.; Shrestha, D.; Dawadi, B. Evaluation of MERRA-2 Precipitation Products Using Gauge Observation in Nepal. Hydrology 2020, 7, 40. [Google Scholar] [CrossRef]
- Zandler, H.; Haag, I.; Samimi, C. Evaluation needs and temporal performance differences of gridded precipitation products in peripheral mountain regions. Sci. Rep. 2019, 9, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devine, K.A.; Mekis, É. Field accuracy of Canadian rain measurements. Atmos. Ocean. 2008, 46, 213–227. [Google Scholar] [CrossRef]
- Lanza, L.G.; Vuerich, E. The WMO Field Intercomparison of Rain Intensity Gauges. Atmos. Res. 2009, 94, 534–543. [Google Scholar] [CrossRef]
- Pollock, M.D.; O’Donnell, G.; Quinn, P.; Dutton, M.; Black, A.; Wilkinson, M.E.; Colli, M.; Stagnaro, M.; Lanza, L.G.; Lewis, E.; et al. Quantifying and mitigating wind-induced undercatch in rainfall measurements. Water Resour. Res. 2018, 54, 3863–3875. [Google Scholar] [CrossRef]
- Shedekar, V.S.; King, K.W.; Fausey, N.R.; Soboyejo, A.B.O.; Harmel, R.D.; Brown, L.C. Assessment of measurement errors and dynamic calibration methods for three different tipping bucket rain gauges. Atmos. Res. 2016, 178, 445–458. [Google Scholar] [CrossRef] [Green Version]
- Sieck, L.C.; Burges, S.J.; Steiner, M. Challenges in obtaining reliable measurements of point rainfall. Water Resour. Res. 2007, 43, W01420. [Google Scholar] [CrossRef]
- Wang, X.; Xu, H.; Qian, B.; Feng, Y.; Mekis, E. Adjusted daily rainfall and snowfall data for Canada. Atmos. Ocean. 2017, 55, 155–168. [Google Scholar] [CrossRef] [Green Version]
- Groisman, P.Y.; Koknaeva, V.V.; Belokrylova, T.A.; Karl, T.R. Overcoming biases of precipitation measurement: A history of the USSR experience. Bull. Am. Meteorol. Soc. 1991, 72, 1725–1732. [Google Scholar] [CrossRef]
- Strangeways, I. Improving precipitation measurement. Int. J. Climatol. 2004, 24, 1443–1460. [Google Scholar] [CrossRef]
- Adam, J.C.; Lettenmaier, D.P. Adjustment of global gridded precipitation for systematic bias. J. Geophys. Res. Atmos. 2003, 108, 4257. [Google Scholar] [CrossRef]
- Kochendorfer, J.; Nitu, R.; Wolff, M.A.; Mekis, E.; Rasmussen, R.; Baker, B.; Earle, M.E.; Reverdin, A.; Wong, K.; Simith, C.D.; et al. Analysis of single-Alter-shielded and unshielded measurements of mixed and solid precipitation from WMO-SPICE. Hydrol. Earth Syst. Sci. 2017, 21, 3525–3542. [Google Scholar] [CrossRef] [Green Version]
- Leeper, R.D.; Kochendorfer, J. Evaporation from weighing precipitation gauges: Impacts on automated gauge measurements and quality assurance methods. Atmos. Meas. Tech. 2015, 8, 2291–2300. [Google Scholar] [CrossRef]
- Stewart, R.D.; Hut, R.; Rupp, D.; Gupta, H.; Selker, J.S. A resonating rainfall and evaporation recorder. Water Resour. Res. 2012, 48, W08601. [Google Scholar] [CrossRef]
- Yang, D.; Ohata, T. A bias-corrected Siberian regional precipitation climatology. J. Hydrometeorol. 2001, 2, 122–139. [Google Scholar] [CrossRef]
- Buishand, T. Some methods for testing the homogeneity of rainfall records. J. Hydrol. 1982, 58, 11–27. [Google Scholar] [CrossRef]
- García-Marín, A.P.; Estévez, J.; Morbidelli, R.; Saltalippi, C.; Ayuso-Muñoz, J.L.; Flammini, A. Assessing inhomogeneities in extreme annual rainfall data series by multifractal approach. Water 2020, 12, 1030. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Fu, Z.; Chen, X.; Qu, J.; Wang, J.; Peng, X. Inhomogeneity of precipitation and its influencing factors in Northwest China from 1961 to 2015. Theor. Appl. Climatol. 2019, 138, 1831–1844. [Google Scholar] [CrossRef]
- Peterson, T.C.; Easterling, D.R. Creation of homogeneous composite climatological reference series. Int. J. Climatol. 1994, 14, 671–680. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Z.; Huang, Y.; Jin, Q.; Chen, X.; Chang, J. Evaluation of the GPM IMERG v5 and TRMM 3B42 v7 Precipitation Products in the Yangtze River Basin, China. Water 2019, 11, 1459. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Q.; Liu, J.; Tian, J.; Jiao, Y.; Li, C.; Wang, W.; Yu, F. Evaluation of the radar QPE and rain gauge data merging methods in Northern China. Remote Sens. 2020, 12, 363. [Google Scholar] [CrossRef] [Green Version]
- Thakur, M.K.; Kumar, T.V.L.; Rao, K.K.; Barbosa, H.; Rao, V.B. A new perspective in understanding rainfall from satellites over a complex topographic region of India. Sci. Rep. 2019, 9, 15610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steiner, M.; Smith, J.A.; Burges, S.J.; Alonso, C.V.; Darden, R.W. Effect of bias adjustment and rain gauge data quality control on radar rainfall estimation. Water Resour. Res. 1999, 35, 2487–2503. [Google Scholar] [CrossRef]
- Tang, G.; Behrangi, A.; Long, D.; Li, C.; Hong, Y. Accounting for spatiotemporal errors of gauges: A critical step to evaluate gridded precipitation products. J. Hydrol. 2018, 559, 294–306. [Google Scholar] [CrossRef] [Green Version]
- Villarini, G.; Mandapaka, P.V.; Krajewski, W.F.; Moore, R.J. Rainfall and sampling uncertainties: A rain gauge perspective. J. Geophys. Res. Atmos. 2008, 113, D11102. [Google Scholar] [CrossRef]
- Wood, S.J.; Jones, D.A.; Moore, R.J. Accuracy of rainfall measurement for scales of hydrological interest. Hydrol. Earth Syst. Sci. 2000, 4, 531–543. [Google Scholar] [CrossRef] [Green Version]
Products | Spatial Resolution and Space Span | Temporal Resolution and Time Span | Bias Correction | Assimilation System | References |
---|---|---|---|---|---|
TRMM-3B42RT (V7) | 0.25° × 0.25°, 50° S–50° N | 2000 to present, 3-hourly | No | / | [32] |
TRMM-3B42 (V7) | 0.25° × 0.25°, 50° S–50° N | 2000 to 2017, 3-hourly | Corrected with GPCP, and CAMS | / | [32] |
PERSIANN | 0.25° × 0.25°, 60°S–60°N | 2000 to present, 3-hourly | No | / | [34] |
PERSIANN-CCS | 0.04° × 0.04°, 60° S–60° N | 2003 to present, 3-hourly | No | / | [35] |
GSMaP-RNL (V6) | 0.1° × 0.1°, 60° S–60° N | 2000 to present, hourly | No | / | [36] |
GSMaP-RNLG (V6) | 0.1° × 0.1°, 60° S–60° N | 2000 to present, hourly | Corrected with CPCU | / | [36] |
JRA-55 | 1.25° × 1.25°, Global | 1958 to present, 3-hourly | No | 4D-VAR | [44] |
ERA-Interim | 0.75° × 0.75°, Global | 1979 to present, 3-hourly | No | 4D-VAR | [49] |
ERA-5 | 0.25° × 0.25°, Global | 1979 to present, 3-hourly | No | 4D-VAR | [46] |
NCEP1 | 1.875° × 1.875°, Global | 1948 to present, 6-hourly | No | 3D-VAR | [42] |
NCEP2 | 1.875° × 1.875°, Global | 1979to present, 6-hourly | No | 3D-VAR | [43] |
MERRA-2 | 0.5° × 0.667°, Global | 1980 to present, hourly | Corrected with CPCU or CMAP/GPCPv2.1 | 3D-VAR | [45] |
Annual | Spring | Summer | Autumn | Winter | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LTwd | LTd | LTn | LTwd | LTd | LTn | LTwd | LTd | LTn | LTwd | LTd | LTn | LTwd | LTd | LTn | |
Significant Increase | 67 | 69 | 61 | 51 | 52 | 54 | 55 | 56 | 51 | 74 | 76 | 71 | 51 | 52 | 54 |
(p < 0.05) Increase | 11 | 11 | 9 | 6 | 6 | 5 | 6 | 6 | 4 | 17 | 14 | 17 | 3 | 2 | 3 |
Significant decrease | 33 | 31 | 39 | 49 | 48 | 46 | 45 | 44 | 49 | 26 | 24 | 29 | 49 | 48 | 46 |
(p < 0.05) Decrease | 3 | 1 | 4 | 3 | 3 | 2 | 7 | 5 | 6 | 0 | 0 | 0 | 3 | 3 | 2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, S.; Shi, W.; Zhou, S.; Chai, R.; Chen, H.; Wang, G.; Zhou, Y.; Shen, H. Capacity of Satellite-Based and Reanalysis Precipitation Products in Detecting Long-Term Trends across Mainland China. Remote Sens. 2020, 12, 2902. https://doi.org/10.3390/rs12182902
Sun S, Shi W, Zhou S, Chai R, Chen H, Wang G, Zhou Y, Shen H. Capacity of Satellite-Based and Reanalysis Precipitation Products in Detecting Long-Term Trends across Mainland China. Remote Sensing. 2020; 12(18):2902. https://doi.org/10.3390/rs12182902
Chicago/Turabian StyleSun, Shanlei, Wanrong Shi, Shujia Zhou, Rongfan Chai, Haishan Chen, Guojie Wang, Yang Zhou, and Huayu Shen. 2020. "Capacity of Satellite-Based and Reanalysis Precipitation Products in Detecting Long-Term Trends across Mainland China" Remote Sensing 12, no. 18: 2902. https://doi.org/10.3390/rs12182902