Automatic Generation of Sentinel-1 Continental Scale DInSAR Deformation Time Series through an Extended P-SBAS Processing Pipeline in a Cloud Computing Environment
"> Figure 1
<p>Block diagram of the S-1 IWS P-SBAS processing chain workflow modified from [<a href="#B20-remotesensing-12-02961" class="html-bibr">20</a>].</p> "> Figure 2
<p>Workflow of the automatic CC-based pipeline implementing the S-1 IWS P-SBAS processing. Green, blue and red arrows represent information exchange, data transfer and results visualization, respectively.</p> "> Figure 3
<p>Block diagram of the proposed procedure for the DInSAR deformation signals refinement.</p> "> Figure 4
<p>Examples of the GNSS stations position time series screening operation. Plots (1)–(5) are relevant to the five GNSS stations named ASCC, CESI, ALDB, BARY and GINA, respectively. On the left side the original time series (East-West component) are shown, while on the right side there are the corresponding ones following the data screening procedure. The dashed blue vertical lines identify the dates for which the GNSS auxiliary files report the presence of gaps and/or steps in the time series.</p> "> Figure 5
<p>Planar components of the GNSS stations identified through our data screening and selection procedure, superimposed on the 1-arcsec STRM DEM of the investigated area. (<b>A</b>,<b>B</b>) The East/West velocity components before (<b>A</b>) and after (<b>B</b>) the implemented procedure. (<b>C</b>,<b>D</b>) The same as (<b>A</b>,<b>B</b>) but for the North/South velocity components.</p> "> Figure 6
<p>Pictorial example of the implemented DInSAR deformation results refinement procedure applied to an S-1 IWS frame relevant to a portion of the Central-Northern Italy. (<b>A</b>) Mean deformation velocity map following the straightforward application of the P-SBAS approach. (<b>B</b>) Mean deformation velocity map obtained by interpolating the data relevant to the GNSS stations selected following the lines of <a href="#sec3dot1-remotesensing-12-02961" class="html-sec">Section 3.1</a>. (<b>C</b>) Mean deformation velocity map of the high spatial frequency component. (<b>D</b>) Mean deformation showing the velocity map of the overall signals. The white star in panels A and B identifies the reference pixel, while the white arrows in the lower right corners show the SAR sensor azimuth/range directions. At the bottom a block diagram of the implemented procedure is shown.</p> "> Figure 7
<p>SRTM DEM map of the investigated portion of the Central-Northern Italy, shown in <a href="#remotesensing-12-02961-f006" class="html-fig">Figure 6</a>, highlighting the locations of the GNSS stations. Blue and yellow markers represent stations exploited for and excluded from the DInSAR deformation signals refinement step, respectively.</p> "> Figure 8
<p>(<b>A–R</b>) Comparison between the P-SBAS (black triangles) and the LOS-projected GNSS (red stars) deformation time series relevant to the stations labelled in <a href="#remotesensing-12-02961-f007" class="html-fig">Figure 7</a> with capital letters from A to R. The standard deviation values (in cm) of the difference between the two time series are also reported.</p> "> Figure 9
<p>SRTM DEM of the investigated area with the locations of the analyzed S-1 IWS frames. Note that the red and blue colors identify the frames whose images have been collected during the March 2015–September 2018 and March 2015–March 2020 time intervals, respectively.</p> "> Figure 10
<p>Overall GNSS stations analysed in the presented study. Blue and yellow markers represent the exploited and the discarded stations, respectively, following the screening and selection procedure discussed in <a href="#sec3-remotesensing-12-02961" class="html-sec">Section 3</a>.</p> "> Figure 11
<p>Processing architecture implemented within the ONDA DIAS CC Platform.</p> "> Figure 12
<p>Mosaicking of the LOS mean deformation velocity maps (cm/year), geocoded and superimposed on an optical image of Europe (Mapbox Satellite Streets source). The white rectangles identify the zoom-in areas that are analyzed in more details in the following. Note that the red color corresponds to a sensor-target range increase, while the blue one to a sensor-target range decrease. The inset in the upper right corner reports the SAR sensor azimuth/range and the North/East directions.</p> "> Figure 13
<p>Zoomed-in view of the mean deformation velocity map relevant to the Campi Flegrei caldera (Italy). (<b>a</b>) LOS mean deformation velocity map superimposed on the SRTM DEM of the zone. (<b>b</b>) Displacement time series relevant to the pixel P1, marked by the white star in the map, located in the maximum deforming area. (<b>c</b>) Plot of the mean deformation velocity along the section crossing the maximum uplift zone and identified by the white dashed line in panel (<b>a</b>).</p> "> Figure 14
<p>Zoomed-in view of the mean deformation velocity map relevant to the Lefkada Island (Greece). (<b>a</b>) LOS mean deformation velocity map superimposed on the SRTM DEM of the zone. (<b>b</b>,<b>c</b>) Displacement time series relevant to the pixels P1 and P2, marked by the white stars in (<b>a</b>) and located in the maximum deforming co-seismic areas. The vertical dashed red lines identify the 17 November 2015 earthquake.</p> "> Figure 15
<p>Zoomed-in view of the mean deformation velocity map relevant to the Northern Black Sea coast (Bulgaria). (<b>a</b>) LOS mean deformation velocity map superimposed on the SRTM DEM of the zone. (<b>b</b>,<b>c</b>) Displacement time series relevant to the pixels, marked by the white stars in (<b>a</b>) and located in the areas of Balchik town (P1) and Kranevo village (P2), both affected by landslides movements.</p> "> Figure 16
<p>Zoomed-in views of the mean deformation velocity map relevant to two wide areas located in Germany (<b>a</b>) and Poland (<b>b</b>), both affected by extensive mining activities. (<b>a</b>,<b>b</b>) LOS mean deformation velocity map superimposed on the SRTM DEM of the zones; the white rectangles identify two areas that are shown in the panels (<b>c</b>,<b>d</b>). (<b>c</b>) Zoom of the LOS mean deformation velocity map in (<b>a</b>) relevant to the Nocthen coalmine (Germany). (<b>d</b>) Zoom of the LOS mean deformation velocity map in (<b>b</b>) relevant to the Katowice coalmine (Poland). (<b>e</b>) Displacement time series relevant to the pixel P1 marked by the white star in (<b>c</b>). (<b>f</b>) Displacement time series relevant to the pixel P2 marked by the white star in (<b>d</b>).</p> "> Figure 17
<p>Correlation map between DInSAR time series and an annual sinusoid relevant to an area located in Northern Italy, close to the city of Milano. (<b>a</b>) Peak-to-peak oscillation amplitude map superimposed on the SRTM DEM of the zone. Note that pixels with peak-to-peak amplitude values equal to 0 are those for which the correlation coefficient is smaller than 0.8. (<b>b</b>–<b>d</b>) Displacement time series relevant to the pixels P1, P2 and P3, marked by the black stars in the map, located in correspondence to the Settala, Sergnano and Ripalta Guerina gas storage sites, respectively.</p> "> Figure 18
<p>Correlation map between the DInSAR time series and an annual sinusoid relevant to the Firenze-Prato-Pistoia basin (North Italy). (<b>a</b>) Peak-to-peak oscillation amplitude map superimposed on the SRTM DEM of the zone. Note that pixels with peak-to-peak amplitude values equal to 0 are those for which the correlation coefficient is smaller than 0.8. (<b>b</b>) Displacement time series relevant to the pixel P1, marked by the black star in the map, located in correspondence of the maximum deforming zone.</p> ">
Abstract
:1. Introduction
2. The S-1 P-SBAS Approach: Basic Rationale and Cloud Computing Implementation
3. Joint Exploitation of GNSS and DInSAR Measurements
3.1. GNSS Data Screening and Selection
- Sufficiently extended in time (in our case at least 2 years) and “cleaned” of possible jumps and artefacts, which may affect the correct estimation of the mean deformation rate components;
- Affected by regional scale signals only, which are therefore spatially correlated and that do not account for high spatial frequency deformation signals (i.e., localized displacements).
3.2. DInSAR Deformation Signals Refinement
4. Exploited SAR and GNSS Data and Cloud Computing Resources
4.1. SAR and GNSS Data
4.2. Cloud Computing Resources
5. Experimental Results
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M.; et al. GMES Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Bonano, M.; Manunta, M.; Pepe, A.; Paglia, L.; Lanari, R. From Previous C-Band to New X-Band SAR Systems: Assessment of the DInSAR Mapping Improvement for Deformation Time-Series Retrieval in Urban Areas. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1973–1984. [Google Scholar] [CrossRef]
- Sansosti, E.; Berardino, P.; Bonano, M.; Calo, F.; Castaldo, R.; Casu, F.; Manunta, M.; Manzo, M.; Pepe, A.; Pepe, S.; et al. How second generation SAR systems are impacting the analysis of ground deformation. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 1–11. [Google Scholar] [CrossRef] [Green Version]
- De Zan, F.; Guarnieri, A.M. TOPSAR: Terrain Observation by Progressive Scans. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2352–2360. [Google Scholar] [CrossRef]
- Massonnet, D.; Feigl, K.L. Radar interferometry and its application to changes in the Earth’s surface. Rev. Geophys. 1998, 36, 441–500. [Google Scholar] [CrossRef] [Green Version]
- Bürgmann, R.; Rosen, P.A.; Fieldingi, E. Synthetic Aperture Radar Interferometry to Measure Earth’s Surface Topography and Its Deformation. Annu. Rev. Earth Planet. Sci. 2000, 28, 169–209. [Google Scholar] [CrossRef]
- Franceschetti, G.; Lanari, R. Synthetic Aperture Radar Processing; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef] [Green Version]
- Casu, F.; Manzo, M.; Lanari, R. A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from DInSAR data. Remote Sens. Environ. 2006, 102, 195–210. [Google Scholar] [CrossRef]
- Lanari, R.; Casu, F.; Manzo, M.; Lundgren, P. Application of the SBAS-DInSAR technique to fault creep: A case study of the Hayward fault, California. Remote Sens. Environ. 2007, 109, 20–28. [Google Scholar] [CrossRef]
- Manzo, M.; Fialko, Y.; Casu, F.; Pepe, A.; Lanari, R. A Quantitative Assessment of DInSAR Measurements of Interseismic Deformation: The Southern San Andreas Fault Case Study. Pure Appl. Geophys. 2012, 169, 1463–1482. [Google Scholar] [CrossRef]
- Lanari, R.; Mora, O.; Manunta, M.; Mallorqui, J.J.; Berardino, P.; Sansosti, E. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1377–1386. [Google Scholar] [CrossRef]
- Manunta, M.; Marsella, M.; Zeni, G.; Sciotti, M.; Atzori, S.; Lanari, R. Two-scale surface deformation analysis using the SBAS-DInSAR technique: A case study of the city of Rome, Italy. Int. J. Remote Sens. 2008, 29, 1665–1684. [Google Scholar] [CrossRef]
- Pepe, A.; Sansosti, E.; Berardino, P.; Lanari, R. On the Generation of ERS/ENVISAT DInSAR Time-Series Via the SBAS Technique. IEEE Geosci. Remote Sens. Lett. 2005, 2, 265–269. [Google Scholar] [CrossRef]
- Bonano, M.; Manunta, M.; Marsella, M.; Lanari, R. Long-term ERS/ENVISAT deformation time-series generation at full spatial resolution via the extended SBAS technique. Int. J. Remote Sens. 2012, 33, 4756–4783. [Google Scholar] [CrossRef]
- Casu, F.; Elefante, S.; Imperatore, P.; Zinno, I.; Manunta, M.; De Luca, C.; Lanari, R. SBAS-DInSAR Parallel Processing for Deformation Time-Series Computation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3285–3296. [Google Scholar] [CrossRef]
- De Luca, C.; Zinno, I.; Manunta, M.; Lanari, R.; Casu, F. Large areas surface deformation analysis through a cloud computing P-SBAS approach for massive processing of DInSAR time series. Remote Sens. Environ. 2017, 202, 3–17. [Google Scholar] [CrossRef]
- Zinno, I.; Casu, F.; De Luca, C.; Elefante, S.; Lanari, R.; Manunta, M. A Cloud Computing Solution for the Efficient Implementation of the P-SBAS DInSAR Approach. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 802–817. [Google Scholar] [CrossRef]
- Zinno, I.; Bonano, M.; Buonanno, S.; Casu, F.; De Luca, C.; Manunta, M.; Manzo, M.; Lanari, R. National Scale Surface Deformation Time Series Generation through Advanced DInSAR Processing of Sentinel-1 Data within a Cloud Computing Environment. IEEE Trans. Big Data 2018, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Manunta, M.; De Luca, C.; Zinno, I.; Casu, F.; Manzo, M.; Bonano, M.; Fusco, A.; Pepe, A.; Onorato, G.; Berardino, P.; et al. The Parallel SBAS Approach for Sentinel-1 Interferometric Wide Swath Deformation Time-Series Generation: Algorithm Description and Products Quality Assessment. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6259–6281. [Google Scholar] [CrossRef]
- Zinno, I.; Elefante, S.; Mossucca, L.; De Luca, C.; Manunta, M.; Terzo, O.; Lanari, R.; Casu, F. A First Assessment of the P-SBAS DInSAR Algorithm Performances Within a Cloud Computing Environment. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4675–4686. [Google Scholar] [CrossRef]
- Zinno, I.; Mossucca, L.; Elefante, S.; De Luca, C.; Casola, V.; Terzo, O.; Casu, F.; Lanari, R. Cloud Computing for Earth Surface Deformation Analysis via Spaceborne Radar Imaging: A Case Study. IEEE Trans. Cloud Comput. 2015, 4, 1. [Google Scholar] [CrossRef]
- Parizzi, A.; González, F.R.; Brcic, R. A Covariance-Based Approach to Merging InSAR and GNSS Displacement Rate Measurements. Remote Sens. 2020, 12, 300. [Google Scholar] [CrossRef] [Green Version]
- Bischoff, C.A.; Ferretti, A.; Novali, F.; Uttini, A.; Giannico, C.; Meloni, F. Nationwide deformation monitoring with SqueeSAR® using Sentinel-1 data. In Proceedings of the Proceedings of the International Association of Hydrological Sciences; Copernicus GmbH: Göttingen, Germany, 2020; Volome 382, pp. 31–37. [Google Scholar]
- Blewitt, G.; Hammond, W.C. Harnessing the GPS Data Explosion for Interdisciplinary Science. Eos 2018, 99, 99. [Google Scholar] [CrossRef]
- Nbsp. Available online: https://www.onda-dias.eu/cms/ (accessed on 10 July 2019).
- Pepe, A.; Yang, Y.; Manzo, M.; Lanari, R. Improved EMCF-SBAS Processing Chain Based on Advanced Techniques for the Noise-Filtering and Selection of Small Baseline Multi-Look DInSAR Interferograms. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4394–4417. [Google Scholar] [CrossRef]
- Pepe, A.; Lanari, R. On the Extension of the Minimum Cost Flow Algorithm for Phase Unwrapping of Multitemporal Differential SAR Interferograms. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2374–2383. [Google Scholar] [CrossRef]
- Shirzaei, M.; Bürgmann, R. Topography correlated atmospheric delay correction in radar interferometry using wavelet transforms. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Buonanno, S.; Zeni, G.; Fusco, A.; Manunta, M.; Marsella, M.; Carrara, P.; Lanari, R. A GeoNode-Based Platform for an Effective Exploitation of Advanced DInSAR Measurements. Remote Sens. 2019, 11, 2133. [Google Scholar] [CrossRef] [Green Version]
- The Sentinel-1 IPF Auxiliary Product Specification. Available online: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/document-library/-/asset_publisher/1dO7RF5fJMbd/content/sentinel-1-ipf-auxiliary-product-specification;jsessionid=DA0DD0EF437909E50BA09E8F1FD22CD5.jvm1?redirect=https%3A%2F%2Fsentinel.esa.int%2Fweb%2Fsentinel%2Fuser-guides%2Fsentinel-1-sar%2Fdocument-library%3Bjsessionid%3DDA0DD0EF437909E50BA09E8F1FD22CD5.jvm1%3Fp_p_id%3D101_INSTANCE_1dO7RF5fJMbd%26p_p_lifecycle%3D0%26p_p_state%3Dnormal%26p_p_mode%3Dview%26p_p_col_id%3Dcolumn-1%26p_p_col_count%3D1 (accessed on 10 September 2020).
- De Luca, C.; Onorato, G.; Casu, F.; Lanari, R.; Manunta, M. A Genetic Algorithm for Phase Unwrapping Errors Correction in the SBAS-DInSAR Approach. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2019; pp. 266–269. [Google Scholar]
- Serpelloni, E.; Faccenna, C.; Spada, G.; Dong, D.; Williams, S. Vertical GPS ground motion rates in the Euro-Mediterranean region: New evidence of velocity gradients at different spatial scales along the Nubia-Eurasia plate boundary. J. Geophys. Res. Solid Earth 2013, 118, 6003–6024. [Google Scholar] [CrossRef] [Green Version]
- Wegmuller, U.; Strozzi, T.; Bitelli, G. Validation of ERS differential SAR interferometry for land subsidence mapping: The Bologna case study. In Proceedings of the IEEE 1999 International Geoscience and Remote Sensing Symposium, IGARSS’99 (Cat. No.99CH36293), Hamburg, Germany, 28 June–2 July 1999; pp. 1131–1133. [Google Scholar] [CrossRef]
- Solari, L.; Del Soldato, M.; Bianchini, S.; Ciampalini, A.; Ezquerro, P.; Montalti, R.; Raspini, F.; Moretti, S. From ERS 1/2 to Sentinel-1: Subsidence Monitoring in Italy in the Last Two Decades. Front. Earth Sci. 2018, 6, 149. [Google Scholar] [CrossRef]
- Del Soldato, M.; Farolfi, G.; Rosi, A.; Raspini, F.; Casagli, N. Subsidence Evolution of the Firenze–Prato–Pistoia Plain (Central Italy) Combining PSI and GNSS Data. Remote Sens. 2018, 10, 1146. [Google Scholar] [CrossRef] [Green Version]
- Gambolati, G. CENAS: Coastal Evolution of the Upper Adriatic Sea due to Sea Level Rise and Natural and Anthropogenic Land Subsidence; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1998. [Google Scholar]
- Lavecchia, G.; Castaldo, R.; De Nardis, R.; De Novellis, V.; Ferrarini, F.; Pepe, S.; Brozzetti, F.; Solaro, G.; Cirillo, D.; Bonano, M.; et al. Ground deformation and source geometry of the 24 August 2016 Amatrice earthquake (Central Italy) investigated through analytical and numerical modeling of DInSAR measurements and structural-geological data. Geophys. Res. Lett. 2016, 43, 12389–12398. [Google Scholar] [CrossRef]
- Cheloni, D.; De Novellis, V.; Albano, M.; Antonioli, A.; Anzidei, M.; Atzori, S.; Avallone, A.; Bignami, C.; Bonano, M.; Calcaterra, S.; et al. Geodetic model of the 2016 Central Italy earthquake sequence inferred from InSAR and GPS data. Geophys. Res. Lett. 2017, 44, 6778–6787. [Google Scholar] [CrossRef]
- Rutter, C.M.; Isaaks, E.H.; Srivastava, R.M. An Introduction to Applied Geostatistics. J. Am. Stat. Assoc. 1991, 86, 548. [Google Scholar] [CrossRef]
- Fornaro, G.; Franceschetti, G.; Lanari, R.; Sansosti, E.; Tesauro, M. Global and local phase-unwrapping techniques: A comparison. J. Opt. Soc. Am. A 1997, 14, 2702–2708. [Google Scholar] [CrossRef]
- Fornaro, G.; Franceschetti, G.; Lanari, R.; Rossi, D.; Tesauro, M. Interferometric SAR phase unwrapping using the finite element method. IEE Proc.—Radar Sonar Navig. 1997, 144, 266. [Google Scholar] [CrossRef]
- Trasatti, E.; Casu, F.; Giunchi, C.; Pepe, S.; Solaro, G.; Tagliaventi, S.; Berardino, P.; Manzo, M.; Pepe, A.; Ricciardi, G.P.; et al. The 2004–2006 uplift episode at Campi Flegrei caldera (Italy): Constraints from SBAS-DInSAR ENVISAT data and Bayesian source inference. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Manconi, A.; Walter, T.R.; Manzo, M.; Zeni, G.; Tizzani, P.; Sansosti, E.; Lanari, R. On the effects of 3-D mechanical heterogeneities at Campi Flegrei caldera, southern Italy. J. Geophys. Res. Space Phys. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- D’Auria, L.; Giudicepietro, F.; Martini, M.; Lanari, R. The 4D imaging of the source of ground deformation at Campi Flegrei caldera (southern Italy). J. Geophys. Res. Space Phys. 2012, 117. [Google Scholar] [CrossRef]
- Samsonov, S.; Tiampo, K.F.; Camacho, A.G.; Fernández, J.; Gonzalez, P.J. Spatiotemporal analysis and interpretation of 1993-2013 ground deformation at Campi Flegrei, Italy, observed by advanced DInSAR. Geophys. Res. Lett. 2014, 41, 6101–6108. [Google Scholar] [CrossRef] [Green Version]
- D’Auria, L.; Pepe, S.; Castaldo, R.; Giudicepietro, F.; Macedonio, G.; Ricciolino, P.; Tizzani, P.; Casu, F.; Lanari, R.; Manzo, M.; et al. Magma injection beneath the urban area of Naples: A new mechanism for the 2012–2013 volcanic unrest at Campi Flegrei caldera. Sci. Rep. 2015, 5, 13100. [Google Scholar] [CrossRef] [Green Version]
- Ganas, A.; Elias, P.; Bozionelos, G.; Papathanassiou, G.; Avallone, A.; Papastergios, A.; Valkaniotis, S.; Parcharidis, I.; Briole, P. Coseismic deformation, field observations and seismic fault of the 17 November 2015 M = 6.5, Lefkada Island, Greece earthquake. Tectonophys. 2016, 687, 210–222. [Google Scholar] [CrossRef]
- Bie, L.; Gonzalez, P.J.; Rietbrock, A. Slip distribution of the 2015 Lefkada earthquake and its implications for fault segmentation. Geophys. J. Int. 2017, 210, 420–427. [Google Scholar] [CrossRef]
- Evstatiev, D.; Evlogiev, Y. Landslides along the northern Black Sea coast between Varna city and Kavarna town (Bulgaria). Geo-Eco-Marina 2013, 19, 39–58. [Google Scholar]
- Tang, W.; Motagh, M.; Zhan, W. Monitoring active open-pit mine stability in the Rhenish coalfields of Germany using a coherence-based SBAS method. Int. J. Appl. Earth Obs. Geoinf. 2020, 93, 102217. [Google Scholar] [CrossRef]
- Perski, Z. ERS InSAR data for Geological Interpretation of Mining Subsidence in Upper Silesian Coal Basin in Poland. In Proceedings of the FRINGE’99 2nd International Workshop on SAR Interferometry, Liege, Belgium, 10–12 November 1999. [Google Scholar]
- Liu, X.; Hu, J.; Sun, Q.; Li, Z.W.; Zhu, J. Deriving 3-D Time-Series Ground Deformations Induced by Underground Fluid Flows with InSAR: Case Study of Sebei Gas Fields, China. Remote Sens. 2017, 9, 1129. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, J.; Zebker, H.A.; Galloway, D.L.; Amelung, F. Seasonal subsidence and rebound in Las Vegas Valley, Nevada, observed by Synthetic Aperture Radar Interferometry. Water Resour. Res. 2001, 37, 1551–1566. [Google Scholar] [CrossRef]
- Schreier, G. Opportunities by the Copernicus Program for Archaeological Research and World Heritage Site Conservation. Remote Sens. Archaeol. Cult. Landsc. 2020. [Google Scholar] [CrossRef]
- Bonano, M.; Manunta, M.; Zinno, I.; Buonanno, S.; Ojha, C.; Lanari, R. A large scale exploitation of high resolution satellite SAR data to analyze surface deformation in urban areas through the parallel full resolution SBAS-DInSAR approach. In Proceedings of the 21st EGU General Assembly, Vienna, Austria, 7–12 April 2019. [Google Scholar]
- Tarek, M.; Brissette, F.P.; Arsenault, R. Evaluation of the ERA5 reanalysis as a potential reference dataset for hydrological modeling over North-America. Hydrol. Earth Syst. Sci. 2020, 24, 2527–2544. [Google Scholar]
- Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.-S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Liu, Y.; Zhang, X.; Ye, Y.; Yin, G.; Johnson, B.A. Deep learning in remote sensing applications: A meta-analysis and review. ISPRS J. Photogramm. Remote Sens. 2019, 152, 166–177. [Google Scholar] [CrossRef]
- The European Ground Motion Service (EGMS). Available online: https://land.copernicus.eu/user-corner/technical-library/european-ground-motion-service (accessed on 10 September 2020).
ONDA DIAS Computing Nodes Configuration | |
---|---|
Architecture | 64 bit |
vCPU/vCores * | 64 |
RAM | 512 GB |
Internal Disks | 18.5 TB (5 SSD in RAID 0 configuration) |
Network | 2 Gb/s |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lanari, R.; Bonano, M.; Casu, F.; Luca, C.D.; Manunta, M.; Manzo, M.; Onorato, G.; Zinno, I. Automatic Generation of Sentinel-1 Continental Scale DInSAR Deformation Time Series through an Extended P-SBAS Processing Pipeline in a Cloud Computing Environment. Remote Sens. 2020, 12, 2961. https://doi.org/10.3390/rs12182961
Lanari R, Bonano M, Casu F, Luca CD, Manunta M, Manzo M, Onorato G, Zinno I. Automatic Generation of Sentinel-1 Continental Scale DInSAR Deformation Time Series through an Extended P-SBAS Processing Pipeline in a Cloud Computing Environment. Remote Sensing. 2020; 12(18):2961. https://doi.org/10.3390/rs12182961
Chicago/Turabian StyleLanari, Riccardo, Manuela Bonano, Francesco Casu, Claudio De Luca, Michele Manunta, Mariarosaria Manzo, Giovanni Onorato, and Ivana Zinno. 2020. "Automatic Generation of Sentinel-1 Continental Scale DInSAR Deformation Time Series through an Extended P-SBAS Processing Pipeline in a Cloud Computing Environment" Remote Sensing 12, no. 18: 2961. https://doi.org/10.3390/rs12182961
APA StyleLanari, R., Bonano, M., Casu, F., Luca, C. D., Manunta, M., Manzo, M., Onorato, G., & Zinno, I. (2020). Automatic Generation of Sentinel-1 Continental Scale DInSAR Deformation Time Series through an Extended P-SBAS Processing Pipeline in a Cloud Computing Environment. Remote Sensing, 12(18), 2961. https://doi.org/10.3390/rs12182961