Comparative Analysis of Summer Upwelling and Downwelling Events in NW Spain: A Model-Observations Approach
"> Figure 1
<p>(<b>a</b>) Daily sea surface temperature (SST) for the 15th of July 2014, as predicted by the Iberia––Biscay–Ireland (IBI) forecast system. Northwestern (NW) Iberian upwelling system denoted by the black box. (<b>b</b>) Temporal availability (%) of high-frequency radar (HFR) hourly data for 2014. Locations of Silleiro (B1) and Vilano (B2) buoys and four radar sites (Silleiro (SILL), Finisterre (FINI), Vilán (VILA) and Prior (PRIO)) are marked with a filled dot and squares, respectively. HFR network jointly managed by INTECMAR and Puertos del Estado. CF (in light blue) represents the Cape Finisterre promontory. Rías Baixas denoted by the purple box, with one tiny dark blue dot inside representing a Conductivity–Temperature–Depth (CTD) station (V5). Bathymetric contours show depths at 400 and 1500 m. (<b>c</b>) Spatial distribution of the Geometric Dilution of Precision (GDOP) for the geometry of the Galician HFR system. (<b>d</b>) Annual availability of HFR data: spatial coverage versus temporal coverage. Black dotted lines represent the recommended 80–80% level of data provision.</p> "> Figure 2
<p>Annual (2014) comparison of zonal (<b>a</b>,<b>c</b>) and meridional (<b>b</b>,<b>d</b>) hourly surface current velocities observed by B1 buoy and HFR (at the closest grid point): 30-h low-pass filtered time series (<b>a</b>,<b>b</b>) and best linear fit of scatter plots (<b>c</b>,<b>d</b>). Skill metrics gathered in black boxes.</p> "> Figure 3
<p>Wind roses, indicating predominant propagation direction at B1 buoy during July (<b>a</b>) and September (<b>b</b>) of 2014. Stick diagrams (depicted every 3 h) of hourly averaged wind during the 10-day upwelling-favorable (<b>c</b>) and downwelling-favorable events (<b>d</b>).</p> "> Figure 4
<p>Ten-day averaged surface circulation patterns during upwelling (UPW, <b>a</b>–<b>c</b>) and downwelling (DOW, <b>d</b>–<b>f</b>) wind-driven events as observed with the high-frequency radar (HFR, <b>a</b>,<b>d</b>) and modelled by IBI ocean forecast system (<b>b</b>,<b>e</b>). The associated complex correlation (CC) index between IBI and HFR is presented (<b>c</b>,<b>f</b>). The isolines show the veering. Bold arrows indicate the predominant propagation direction of the wind registered at B1 buoy (shown in <a href="#remotesensing-12-02762-f001" class="html-fig">Figure 1</a>b) during the 10-day periods.</p> "> Figure 5
<p>Ten-day averaged maps of horizontal divergence (<b>a</b>–<b>d</b>) and vorticity (<b>e</b>–<b>h</b>) derived from HFR and IBI model estimations during the upwelling (UPW) and downwelling (DOW) events. In lower panels (<b>e</b>–<b>h</b>), black arrows show a schematic representation of the mean circulation during the analyzed episodes.</p> "> Figure 6
<p>(<b>a</b>) Evolution of daily mean kinetic energy (MKE) under upwelling (UPW) conditions, averaged over the shelf (solid lines) and open waters (dashed lines), derived from hourly surface currents provided by the HFR (blue color) and IBI model (red). (<b>b</b>) Idem, under downwelling (DOW) conditions. (<b>c</b>,<b>d</b>) Evolution of daily averaged low-pass filtered wind speed (module), derived from hourly estimations at B1 buoy, during the UPW and DOW events, respectively.</p> "> Figure 7
<p>Maps of complex correlation (CC) index between low-pass filtered hourly wind at B1 buoy and subtidal surface currents provided by the HFR (<b>a</b>,<b>c</b>) and IBI model (<b>b</b>,<b>d</b>), under upwelling (UPW, <b>a</b>,<b>b</b>) and downwelling (DOW, <b>c</b>,<b>d</b>) conditions. Black dot represents B1 buoy.</p> "> Figure 8
<p>(<b>a</b>) Ten-day averaged map of OSTIA-derived sea surface temperature (SST, colors) and chlorophyll concentration (CHL, isolines) for the upwelling (UPW) event comprised between the 7th and 16th July 2014. (<b>b</b>,<b>c</b>) SST differences between the end and the beginning of the UPW event, computed from OSTIA satellite and IBI model daily estimations, respectively. (<b>d</b>,<b>e</b>) Daily evolution of SST at B1 and B2 buoys location, respectively, as derived from in situ observations (blue line), OSTIA estimations (green line) and IBI model outputs (red line). (<b>f</b>) Ten-day averaged map of OSTIA-derived SST and CHL for the downwelling (DOW) event comprised between the 12th and 21st September 2014. (<b>g</b>,<b>h</b>) SST differences between the end and the beginning of the DOW event, computed from OSTIA satellite and IBI model daily estimations, respectively. (<b>i</b>,<b>j</b>) Daily evolution of SST at B1 and B2 buoys location, respectively, as derived from in situ observations (blue line), OSTIA estimations (green line) and IBI model outputs (red line).</p> "> Figure 9
<p>Comparison of temperature (TMP) profiles registered at V5 station (denoted in <a href="#remotesensing-12-02762-f001" class="html-fig">Figure 1</a>b) by a CDT device (<b>a</b>) and IBI model (<b>b</b>) at the closest grid point. (<b>c</b>) Differences of TMP between the modelled and the observed profiles. Note that this figure is not a Hovmöller diagram but a temporal concatenation of specific dates: Only those CTD in situ observations that successfully fulfilled the quality control have been depicted.</p> "> Figure 10
<p>Comparison of salinity (SAL) profiles registered at V5 station (denoted in <a href="#remotesensing-12-02762-f001" class="html-fig">Figure 1</a>b) by a CDT device (<b>a</b>) and IBI model (<b>b</b>) at the closest grid point. (<b>c</b>) Differences of SAL between the modelled and the observed profiles. Note that this figure is not a Hovmöller diagram but a temporal concatenation of specific dates: Only those CTD in situ observations that successfully fulfilled the quality control have been depicted.</p> "> Figure 11
<p>(<b>a</b>) Best linear fit of scatter plot between two different coastal upwelling indexes, for the entire year 2014; (<b>b</b>) Annual (2014) evolution of monthly-averaged coastal upwelling indexes: upwelling index based on HFR-derived hourly surface current observations (UI<sub>HFR</sub>) = red line, upwelling index based on hourly data of sea level pressure (UI<sub>BAIXAS</sub>) = blue line and upwelling index based on wind (UI<sub>B1</sub>) = green line. (<b>c</b>–<b>f</b>) Spatial distribution of monthly averaged UI<sub>HFR</sub> over the Galician continental shelf under predominant DOW (<b>c</b>,<b>f</b>) and UPW (<b>d</b>,<b>e</b>) conditions. Bathymetric contour shows depth at 400 m.</p> "> Figure 12
<p>(<b>a</b>) Temporal evolution of hourly UI<sub>HFR</sub> (red line) and 6-hourly UI<sub>BAIXAS</sub> (blue squares) and UI<sub>B1</sub> (green dots) during July 2014. Gray boxes indicate four selected UPW and DOW episodes; (<b>b</b>–<b>e</b>) Maps of time-averaged circulation and Instantaneous Rate of Separation (IROS) for each specific event. IROS magnitudes are normalized by the absolute value of the Coriolis parameter <span class="html-italic">f</span>.</p> "> Figure 13
<p>(<b>a</b>) Temporal evolution of hourly UI<sub>HFR</sub> (red line) and six-hourly UI<sub>BAIXAS</sub> (blue squares) and UI<sub>B1</sub> (green dots) during August 2014. Gray boxes indicate four selected UPW and DOW episodes. (<b>b</b>–<b>e</b>) Maps of time-averaged circulation and Instantaneous Rate of Separation (IROS) for each specific event. IROS magnitudes are normalized by the absolute value of the Coriolis parameter, <span class="html-italic">f</span>.</p> "> Figure 14
<p>(<b>a</b>) Temporal evolution of hourly UI<sub>HFR</sub> (red line) and 6-hourly UI<sub>BAIXAS</sub> (blue squares) and UI<sub>B1</sub> (green dots) during September 2014. Gray boxes indicate four selected UPW and DOW episodes. (<b>b</b>–<b>e</b>) Maps of time-averaged circulation and Instantaneous Rate of Separation (IROS) for each specific event. Bathymetric contour shows depth at 400 m. IROS magnitudes are normalized by the absolute value of the Coriolis parameter, <span class="html-italic">f</span>.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Galician HFR System
- (i)
- Hourly radial currents, moving toward or away from the site, that are representative of the upper 2 m of the water column. The maximum current speed, horizontal range and angular resolution are 100 cm·s−1, 200 km and 5°, respectively. All of those radial current vectors (from two or several sites) within a predefined search radius of 25 km are geometrically combined by applying an unweighted least squares fitting algorithm [35] to estimate hourly total current vectors on a Cartesian regular mesh of 6 × 6 km horizontal resolution.
- (ii)
- Thirty-minute wave estimations for five range cells, regularly spaced every 5.1 km, which extend radially from the site. For further details about this dataset, the reader is referred to Reference [22], as the present work is mainly focused on surface circulation.
2.2. In Situ Buoys
2.3. Upwelling Indexes
2.4. CTD Device
2.5. Satellite-Derived Products
2.6. IBI Ocean Forecast System
2.7. Methods
3. Results
3.1. Skill Assessment of HFR Estimations
3.2. Skill of IBI to Reproduce Two Upwelling/Downwelling Events
3.2.1. Selection of Upwelling and Downwelling Events
3.2.2. Analysis of the Surface Circulation
3.2.3. Wind Forcing
3.2.4. Sea Surface Temperature Analysis
3.2.5. Vertical Analysis
3.3. New HFR-Derived Upwelling Index: UIHFR
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Botsford, L.W.; Lawrence, C.A.; Dever, E.P.; Hastings, A.; Largier, J. Effects of variable winds on biological productivity on continental shelves in coastal upwelling systems. Deep-Sea Res. Part II 2006, 53, 3116–3140. [Google Scholar] [CrossRef]
- Lachkar, Z.; Gruber, N. What controls biological production in coastal upwelling systems? Insights from a comparative modelling study. Biogeosciences 2011, 8, 2961–2976. [Google Scholar] [CrossRef] [Green Version]
- Hill, A.E.; Hickey, B.M.; Shillington, F.A.; Strub, P.T.; Brink, K.H.; Barton, E.D.; Thomas, A.C. Eastern ocean boundaries coastal segment (E). In The Global Coastal Ocean, Regional Studies and Syntheses, The Sea; Robinson, A.R., Brink, K.H., Eds.; John Wiley and Sons, Inc.: New York, NY, USA, 1998; Volume 11, pp. 29–67. [Google Scholar]
- Largier, J.L.; Magnell, B.A.; Winant, C.D. Subtidal circulation over the northern California shelf. J. Geophys. Res. 1993, 98, 18147–18179. [Google Scholar] [CrossRef]
- Bjorkstedt, E.; Roughgarden, J. Larval transport and coastal upwelling: An application of HF radar in ecological research. Oceanography 1997, 10, 64–67. [Google Scholar] [CrossRef]
- Pitcher, G.C.; Figueiras, F.G.; Hickey, B.M.; Moita, M.T. The physical oceanography of upwelling systems and the development of harmful algal blooms. Prog. Oceanogr. 2010, 85, 5–32. [Google Scholar] [CrossRef] [Green Version]
- deCastro, M.; Gómez-Gesteira, M.; Álvarez, I.; Lorenzo, M.; Cabanas, J.M.; Prego, R.; Crespo, A.J.C. Characterization of fall-winter upwelling recurrence along the Galician western coast (NW Spain) from 2000 to 2005: Dependence on atmospheric forcing. J. Mar. Syst. 2008, 72, 145–158. [Google Scholar] [CrossRef]
- Torres, R.; Barton, E.D. Onset and development of the Iberian poleward flow along the Galician coast. Cont. Shelf Res. 2006, 26, 1134–1153. [Google Scholar] [CrossRef] [Green Version]
- Álvarez, I.; Gómez-Gesteira, M.; deCastro, M.; Prego, R. Variation in upwelling intensity along the North-West Iberian Peninsula (Galicia). J. Atmos. Ocean Sci. 2005, 10, 309–324. [Google Scholar] [CrossRef]
- Torres, R.; Barton, E.D.; Miller, P.; Álvarez-Fanjul, E. Spatial patterns of wind and sea surface temperature in the Galician upwelling region. J. Geophys. Res. 2003, 108, 3130. [Google Scholar] [CrossRef] [Green Version]
- Prego, R.; Bao, R. Upwelling influence on the Galician coast: Silicate in shelf water and underlying surface sediments. Cont. Shelf Res. 1997, 17, 307–318. [Google Scholar] [CrossRef] [Green Version]
- Álvarez, I.; Gómez-Gesteira, M.; deCastro, M.; Lorenzo, M.N.; Crespo, A.J.C.; Dias, J.M. Comparative analysis of upwelling influence between the western and northern coast of the Iberian Peninsula. Cont. Shelf Res. 2011, 31, 388–399. [Google Scholar] [CrossRef]
- Gómez-Gesteira, M.; Moreira, C.; Álvarez, I.; deCastro, M. Ekman transport along the Galician coast (northwest Spain) calculated from forecasted winds. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef]
- Picado, A.; Álvarez, I.; Vaz, N.; Dias, J.M. Chlorophyll concentration along the north-western coast if the Iberian Peninsula vs. atmosphere-ocean-land conditions. J. Coast. Res. 2013, 65, 2047–2052. [Google Scholar] [CrossRef]
- González-Nuevo, G.; Gago, J.; Cabanas, J.M. Upwelling Index: A powerful tool for marine research in the NW Iberian upwelling system. J. Oper. Oceanogr. 2014, 7, 47–57. [Google Scholar] [CrossRef]
- Souto, C.; Gilcoto, M.; Fariña-Busto, L.; Pérez, F.F. Modeling the residual circulation of a coastal embayment affected by wind-driven upwelling: Circulation of the Ría de Vigo (NW Spain). J. Geophys. Res. 2003, 108, 3340. [Google Scholar] [CrossRef] [Green Version]
- Barton, E.D.; Largier, J.L.; Torres, R.; Sheridan, M.; Trasviña, A.; Souza, A.; Pazos, Y.; Valle-Levinson, A. Coastal upwelling and downwelling forcing of circulation in a semi-enclosed bay: Ria de Vigo. Prog. Oceanogr. 2015, 134, 173–189. [Google Scholar] [CrossRef] [Green Version]
- Barton, E.D.; Torres, R.; Figueiras, F.G.; Gilcoto, M.; Largier, J. Surface water subduction during a downwelling event in a semi-enclosed bay. J. Geophys. Res. Oceans 2016, 121, 7088–7107. [Google Scholar] [CrossRef] [Green Version]
- Gilcoto, M.; Largier, J.L.; Barton, E.D.; Piedracoba, S.; Torres, R.; Graña, R.; Alonso-Perez, F.; Villacieros-Robineau, N.; De la Granda, F. Rapid response to coastal upwelling in a semienclosed bay. Geophys. Res. Lett. 2017, 44. [Google Scholar] [CrossRef] [Green Version]
- Lorente, P.; Piedracoba, S.; Álvarez-Fanjul, E. Validation of high-frequency radar ocean surface current observations in the NW of the Iberian Peninsula. Cont. Shelf Res. 2015, 92, 1–15. [Google Scholar] [CrossRef]
- Lorente, P.; Sotillo, M.G.; Aouf, L.; Amo-Baladrón, A.; Barrera, E.; Dalphinet, A.; Toledano, C.; Rainaud, R.; De Alfonso, M.; Piedracoba, S.; et al. Extreme Wave Height Events in NW Spain: A Combined Multi-Sensor and Model Approach. Remote Sens. 2018, 10, 1. [Google Scholar] [CrossRef] [Green Version]
- Lorente, P.; Basañez Mercader, A.; Piedracoba, S.; Pérez-Muñuzuri, V.; Montero, P.; Sotillo, M.G.; Álvarez-Fanjul, E. Long-term skill assessment of SeaSonde radar-derived wave parameters in the Galician coast (NW Spain). Int. J. Remote Sens. 2019, 40. [Google Scholar] [CrossRef]
- Shkedy, Y.; Fernandez, D.; Teague, C.; Vesecky, J.; Roughgarden, J. Detecting upwelling along the central coast of California during an El Niño year using HF radar. Cont. Shelf Res. 1995, 15, 803–814. [Google Scholar] [CrossRef]
- Shulman, I.; Anderson, S.; Rowley, C.; DeRada, S.; Doyle, J.; Ramp, S. Comparisons of upwelling and relaxation events in the Monterrey Bay area. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Ramp, S.R.; Paduan, J.D.; Shulman, I.; Kindle, J.; Bahr, F.L.; Chavez, F. Observations of upwelling and relation events in the northern Monterrey Bay during August 2000. J. Geophys. Res. 2005, 110. [Google Scholar] [CrossRef]
- Roughan, M.; Terril, E.J.; Largier, J.L.; Otero, M. Observations of divergence and upwelling around Point Loma, California. J. Geophys. Res. 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, D.M.; Largier, J.L. HF radar-derived origin and destination of surface waters off Bodega Bay, California. Deep-Sea Res. II 2006, 53, 2906–2930. [Google Scholar] [CrossRef]
- Enriquez, A. An Investigation of Surface Current Patterns Related to Upwelling in Monterrey Bay, Using High Frequency Radar. Ph.D. Thesis, Naval Postgraduate School, Monterey, CA, USA, 2004. [Google Scholar]
- Paduan, J.D.; Cook, M.S.; Tapia, V.M. Patters of upwelling and relaxation around Monterrey Bay based on long-term observations of surface currents from High Frequency radar. Deep-Sea Res. II 2018, 151, 129–136. [Google Scholar] [CrossRef]
- Rubio, A.; Mader, J.; Corgnati, L.; Mantovani, C.; Griffa, A.; Novellino, A.; Quentin, C.; Wyatt, L.; Schulz-Stellenfleth, J.; Horstmann, J.; et al. HF Radar Activity in European Coastal Seas: Next Steps Towards a Pan-European HF Radar Network. Front. Mar. Sci. 2017, 20. [Google Scholar] [CrossRef] [Green Version]
- Roarty, H.; Cook, T.; Hazard, L.; George, D.; Harlan, J.; Cosoli, S.; Wyatt, L.; Fanjul, E.A.; Terrill, E.; Otero, M.; et al. The Global High Frequency Radar network. Front. Mar. Sci. 2019, 14. [Google Scholar] [CrossRef]
- De Mey-Frémaux, P.; Ayoub, N.; Barth, A.; Brewin, R.; Charria, G.; Campuzano, F.J.; Ciavatta, S.; Cirano, M.; Edwards, C.; Federico, I.; et al. Model-Observations synergy in the coastal ocean. Front. Mar. Sci. 2019, 6. [Google Scholar] [CrossRef] [Green Version]
- Davidson, F.; Alvera-Azcárate, A.; Barth, A.; Brassington, G.B.; Chassignet, E.P.; Clementi, E.; De Mey-Frémaux, P.; Divakaran, P.; Harris, C.; Hernandez, F.; et al. Synergies in Operational Oceanography: The intrinsic need for sustained ocean observations. Front. Mar. Sci. 2019, 6. [Google Scholar] [CrossRef] [Green Version]
- Le Traon, P.Y.; Ali, A.; Álvarez-Fanjul, E.; Aouf, L.; Axell, L.; Aznar, R.; Ballarotta, M.; Behrens, A.; Mounir, B.; Bentamy, A.; et al. The Copernicus Marine Environmental Monitoring Service: Main Scientific Achievements and Future Prospects. Mercator Ocean J. 2017, 56, 1–101. [Google Scholar]
- Barrick, D.E.; Lipa, B.J. Correcting for distorted antenna patterns in CODAR ocean surface measurements. IEEE J. Oceanic Eng. 1986, 11, 304–309. [Google Scholar] [CrossRef]
- Barrick, D. Geometrical Dilution of Statistical Accuracy (GDOSA) in Multi-Static HF Radar Networks; CODAR Ocean Sensors Ltd.: Mountain View, CA, USA, 2006. [Google Scholar]
- Madec, G. NEMO Ocean General Circulation Model, Reference Manual, Internal Report; LODYC/IPSL: Paris, France, 2008. [Google Scholar]
- Sotillo, M.G.; Cailleau, S.; Lorente, P.; Levier, B.; Aznar, R.; Reffray, G.; Amo-Baladrón, A.; Álvarez-Fanjul, E. The MyOcean IBI Ocean Forecast and Reanalysis Systems: Operational products and roadmap to the future Copernicus Service. J. Oper. Oceanogr. 2015, 8, 1–18. [Google Scholar] [CrossRef]
- Kundu, P. Ekman veering observed near the ocean bottom. J. Phys. Oceanogr. 1976, 6, 238–242. [Google Scholar] [CrossRef]
- Futch, V. The Lagrangian Properties of the Flow West of Oahu. Master’s Thesis, University of Hawaii, Honolulu, HI, USA, 2009. [Google Scholar]
- Archer, M.R.; Shay, L.K.; Jaimes, B.; Martinez-Pedraja, J. Observing frontal instabilities of the Florida current using high frequency radar. In Coastal Ocean Observing Systems; Liu, Y., Kerkering, H., Weisberg, R.H., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2015; Chapter 11; pp. 179–208. [Google Scholar] [CrossRef]
- Schaeffer, A.; Gramoulle, A.; Roughan, M.; Mantovanelli, A. Characterizing frontal eddies along the East Australian Current from HF radar observations. J. Geophys. Res. Oceans 2017, 122, 3964–3980. [Google Scholar] [CrossRef]
- Jacox, M.G.; Edwards, C.A.; Hazen, E.L.; Bograd, S.J. Coastal upwelling revisited: Ekman, Bakun and improved upwelling indexes for the US West Coast. J. Geophys. Res. Oceans 2018, 123, 7332–7350. [Google Scholar] [CrossRef]
- Cosoli, S.; Mazzoldi, A.; Gacic, M. Validation of surface current measurements in the Northern Adriatic Sea from High Frequency radars. J. Atmos. Ocean. Technol. 2010, 27, 908–919. [Google Scholar] [CrossRef]
- Robinson, A.M.; Wyatt, L.R.; Howarth, M.J. A two-year comparison between HF radar and ADCP current measurements in Liverpool Bay. J. Oper. Oceanogr. 2011, 4, 33–45. [Google Scholar] [CrossRef] [Green Version]
- Rypina, I.I.; Kirincich, A.R.; Limeburner, R.; Udovydchenkov, I.A. Eulerian and lagrangian correspondence of High-Frequency radar and surface drifter data: Effects of radar resolution and flow components. J. Atmos. Ocean. Technol. 2014, 31, 945–966. [Google Scholar] [CrossRef] [Green Version]
- Kohut, J.T.; Glenn, S.M. Improving HF radar surface current measurements with measured antenna beam patterns. J. Atmos. Ocean. Technol. 2003, 20, 1303–1316. [Google Scholar] [CrossRef]
- Emery, W.J.; Thomson, R.E. Data Analysis Methods in Physical Oceanography; Elsevier Science: Amsterdam, The Netherlands, 2001; p. 654. ISBN 9780080477008. [Google Scholar]
- Alfonso, M.; Álvarez-Fanjul, E.; López, J.D. Comparison of CODAR SeaSonde HF Radar Operational Waves and Currents Measurements with Puertos del Estado Buoys; Final Internal Report of Puertos del Estado: Madrid, Spain, 2006; pp. 1–32. [Google Scholar]
- Rubio, A.; Reverdin, G.; Fontán, A.; González, M.; Mader, J. Mapping near-inertial variability in the SE Bay of Biscay from HF radar data and two offshore moored buoys. Geophys. Res. Lett. 2011, 38, L19607. [Google Scholar] [CrossRef]
- Solabarrieta, L.; Rubio, A.; Castanedo, S.; Medina, R.; Charria, G.; Hernández, C. Surface water circulation patterns in the southeastern Bay of Biscay: New evidences from HF radar data. Cont. Shelf Res. 2014, 74, 60–76. [Google Scholar] [CrossRef] [Green Version]
- Lorente, P.; Piedracoba, S.; Soto-Navarro, J.; Álvarez-Fanjul, E. Accuracy assessment of high frequency radar current measurements in the Strait of Gibraltar. J. Oper. Oceanogr. 2014, 7, 59–73. [Google Scholar] [CrossRef]
- Lana, A.; Marmain, J.; Fernández, V.; Tintoré, J.; Orfilia, A. Wind influence on surface current variability in the Ibiza Channel from HF Radar. Ocean Dyn. 2016, 66, 483–497. [Google Scholar] [CrossRef]
- Mihanović, H.; Cosoli, S.; Vilibić, I.; Ivanković, D.; Dadić, V.; Gačić, M. Surface current patterns in the northern Adriatic extracted from high-frequency radar data using self-organizing map analysis. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Gačić, M.; Kovačević, V.; Cosoli, S.; Mazzoldi, A.; Paduan, J.D.; Mancero-Mosquera, I.; Yari, S. Surface current patterns in front of the Venice Lagoon. Estuar. Coast. Shelf Sci. 2009, 82, 485–494. [Google Scholar] [CrossRef]
- McClain, C.R.; Chao, S.Y.; Atkinson, L.P.; Blanton, J.O.; Decastillejo, F. Wind-Driven Upwelling in the Vicinity of Cape Finisterre, Spain. J. Geophys. Res.-Ocean. 1986, 91, 8470–8486. [Google Scholar] [CrossRef] [Green Version]
- Teles-Machado, A.; Peliz, A.; McWilliams, J.C.; Cardoso, R.M.; Soares, P.M.M.; Miranda, P.M.A. On the year-to-year changes of the Iberian Poleward Current. J. Geophys. Res. Oceans 2015, 120. [Google Scholar] [CrossRef]
- Otero, P.; Ruiz-Villareal, M.; Peliz, A. Variability of river plumes off Northwest Iberia in response to wind events. J. Mar. Syst. 2008, 72, 238–255. [Google Scholar] [CrossRef]
- O’Donncha, F.; Hartnett, M.; Nash, S.; Ren, L.; Ragnoli, E. Characterizing observed circulation patterns within a bay using HF radar and numerical model simulations. J. Mar. Syst. 2015, 142, 96–110. [Google Scholar] [CrossRef]
- Cosoli, S.; Licer, M.; Vodopivec, M.; Malacic, V. Surface circulation in the Gulf of Trieste (northern Adriatic Sea) from radar, model, and ADCP comparisons. J. Geophys. Res. Oceans 2013, 118, 6183–6200. [Google Scholar] [CrossRef]
- Aguiar, E.; Mourre, B.; Juza, M.; Reyes, M.; Hérnandez-Lasheras, J.; Cutolo, E.; Mason, E.; Tintoré, J. Multi-platform model assessment in the Western Mediterranean Sea: Impact of downscaling on the surface circulation and mesoscale activity. Ocean Dyn. 2020, 70, 273–288. [Google Scholar] [CrossRef] [Green Version]
- Cosoli, S.; Gacic, M.; Mazzoldi, A. Surface current variability and wind influence in the north eastern Adriatic Sea as observed from high-frequency (HF) radar measurements. Cont. Shelf Res. 2012, 33, 1–13. [Google Scholar] [CrossRef]
- Lee, S.H.; Kang, C.Y.; Choi, B.J.; Kim, C.S. Surface Current Response to Wind and Plumes in a Bay-shape Estuary of the eastern Yellow Sea: Ocean Radar Observation. Ocean Sci. 2013, 48, 117–139. [Google Scholar] [CrossRef]
- Stegmann, P.M.; Ullman, D.S. Variability in Chlorophyll and Sea Surface Temperature Fronts in the Long Island Sound Outflow Region from Satellite Observations. J. Geophys. Res. Oceans 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- Ye, H.; Kalhoro, M.A.; Morozov, E.; Tang, D.; Wang, S.; Thies, P.R. Increased chlorophyll-a concentration in the South China Sea caused by occasional sea surface temperature fronts at peripheries of eddies. Int. J. Remote Sens. 2017, 39, 4360–4375. [Google Scholar] [CrossRef]
- Venancio, A.; Montero, P.; Costa, P.; Regueiro, S.; Brands, S.; Taboada, J. An integrated Perspective of the Operational Forecasting System in Rías Baixas (Galicia, Spain) with Observational Data and End-Users. In Computational Science, ICCS 2019, Proceedings of the 9th International Conference, Faro, Portugal, 12–14 June 2019; Springer International Publishing: Cham, Switzerland, 2019. [Google Scholar]
- Ohlmann, C.; White, P.; Washburn, L.; Terril, E.; Emery, B.; Otero, M. Interpretation of coastal HF radar-derived currents with high-resolution drifter data. J. Atmos. Ocean. Technol. 2007, 24, 666–680. [Google Scholar] [CrossRef] [Green Version]
- Kohut, J.; Roarty, H.J.; Glenn, S. Characterizing Observed Environmental variability with HF Doppler radar surface mappers and Acoustic Doppler Current Profilers: Environmental variability in the Coastal Ocean. J. Ocean. Eng. 2006, 31, 876–884. [Google Scholar] [CrossRef]
- Yu, P.; Kurapov, A.L.; Egbert, G.D.; Allen, J.S.; Kosro, M. Variational assimilation of HF radar currents in a coastal ocean model off Oregon. Ocean Model. 2012, 49–50, 86–104. [Google Scholar] [CrossRef]
- Oliveira, P.B.; Peliz, A.; Dubert, J.; Rosa, T.; Santos, A.M.P. Winter geostrophic currents and eddies in the western Iberia coastal transition zone. Deep Sea Res. I 2004, 51, 367–381. [Google Scholar] [CrossRef]
- Peliz, A.; Santos, A.M.P.; Oliveira, P.B.; Dubert, J. Extreme cross-shelf transport induced by eddy interactions southwest of Iberia in winter 2001. Geophys. Res. Lett. 2004, 31, L08301. [Google Scholar] [CrossRef]
- Lorente, P.; García-Sotillo, M.; Amo-Baladrón, A.; Aznar, R.; Levier, B.; Sánchez-Garrido, J.C.; Sammartino, S.; de Pascual-Collar, A.; Reffray, G.; Toledano, C.; et al. Skill assessment of global, regional, and coastal circulation forecast models: Evaluating the benefits of dynamical downscaling in IBI (Iberia–Biscay–Ireland) surface waters. Ocean Sci. 2019, 5, 967–996. [Google Scholar] [CrossRef] [Green Version]
- Huthnance, J.M.; Van Aken, H.M.; White, M.; Barton, E.D.; LeCann, B.; Coelho, E.F.; Álvarez-Fanjul, E.; Miller, P.; Vitorino, J. Ocean margin exchange-water flux estimates. J. Mar. Syst. 2002, 32, 107–137. [Google Scholar] [CrossRef]
- Herrera, J.L.; Piedracoba, S.; Varela, R.; Rosón, G. Spatial analysis of the wind field on the western coast of Galicia (NW Spain) from in situ measurements. Cont. Shelf Res. 2005, 25, 1728–1748. [Google Scholar] [CrossRef]
- Meneghesso, C.; Seabra, R.; Broitman, B.R.; Wethey, D.S.; Burrows, M.T.; Chan, B.K.K.; Guy-Haim, T.; Ribeiro, P.A.; Rilov, G.; Santos, A.M.; et al. Remotely-sensed L4 SST underestimates the thermal fingerprint of coastal upwelling. Remote Sens. Environ. 2020, 237, 111588. [Google Scholar] [CrossRef]
- Brasseur, P.; Bahurel, P.; Bertino, L.; Birol, F.; Brankart, J.M.; Ferry, N.; Losa, S.; Remy, E.; Schröter, J.; Skachko, S.; et al. Data assimilation for marine monitoring and prediction: The MERCATOR operational assimilation systems and the MERSEA developments. Q. J. R. Meteorol. Soc. 2005, 131, 3561–3582. [Google Scholar] [CrossRef] [Green Version]
- Varela, R.; Álvarez, I.; Santos, F.; deCastro, M.; Gómez-Gesteira, M. Has upwelling strengthened along worldwide coasts over 1982–2010? Sci. Rep. 2015, 5. [Google Scholar] [CrossRef]
- Barton, E.D.; Field, D.B.; Roy, C. Canary current upwelling: More or less? Prog. Oceanogr. 2013, 116, 167–178. [Google Scholar] [CrossRef] [Green Version]
- García-Reyes, M.; Largier, J. Observations of increased wind-driven coastal upwelling off central California. J. Geophys. Res. Oceans 2010, 115, C04011. [Google Scholar] [CrossRef] [Green Version]
- Sousa, M.C.; Ribeiro, A.; Des, M.; Gomez-Gesteira, M.; deCastro, M.; Dias, J.M. NW Iberian Peninsula coastal upwelling future weakening: Competition between wind intensification and surface heating. Sci. Total Environ. 2020, 703, 134808. [Google Scholar] [CrossRef] [PubMed]
Buoy | Name | Model | Deployment | Longitude | Latitude | Depth | Sampling |
---|---|---|---|---|---|---|---|
B1 | Silleiro | Seawatch | 1998 | 9.44°W | 42.12°N | 600 m | 1 h |
B2 | Vilano | Seawatch | 1998 | 9.22°W | 43.50°N | 386 m | 1 h |
Name | Variable | Type | Level | Resolution | Frequency | Provider |
---|---|---|---|---|---|---|
OSTIA | SST | L4 (gap-filled) | Surface | 0.05° | Daily | UK MetOffice |
CHLL4 | CHL | L4 (gap-filled) | Surface | 0.01° | Daily | Ocean Color TAC |
Reference | HFR (MHz) | Region | RMSE/Correlation |
---|---|---|---|
[49] | CODAR SeaSonde (4.86) | Galicia | 5–7 cm·s−1/0.68–0.88 |
[50] | CODAR SeaSonde (4.53) | Bay of Biscay | 8–13 cm·s−1/0.34–0.86 |
[51] | CODAR SeaSonde (4.53) | Bay of Biscay | 8–15 cm·s−1/0.27–0.67 |
[52] | CODAR SeaSonde (27) | Strait of Gibraltar | 8–22 cm·s−1/0.31–0.81 |
[53] | CODAR SeaSonde (13.5) | Ibiza Channel | 7–12 cm·s−1/0.59–0.72 |
[20] | CODAR SeaSonde (4.86) | Galicia | 8–13 cm·s−1/0.56–0.74 |
Skill Metric | UPW-Entire | UPW-Shelf | DOW-Entire | DOW-Shelf |
---|---|---|---|---|
Zonal RMSE (cm·s−1) | 11.00 | 9.59 | 11.77 | 10.48 |
Meridional RMSE (cm·s−1) | 10.94 | 8.26 | 12.68 | 11.87 |
Zonal correlation | 0.51 | 0.61 | 0.51 | 0.63 |
Meridional correlation | 0.44 | 0.58 | 0.42 | 0.61 |
CC | 0.50 | 0.63 | 0.50 | 0.66 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lorente, P.; Piedracoba, S.; Montero, P.; Sotillo, M.G.; Ruiz, M.I.; Álvarez-Fanjul, E. Comparative Analysis of Summer Upwelling and Downwelling Events in NW Spain: A Model-Observations Approach. Remote Sens. 2020, 12, 2762. https://doi.org/10.3390/rs12172762
Lorente P, Piedracoba S, Montero P, Sotillo MG, Ruiz MI, Álvarez-Fanjul E. Comparative Analysis of Summer Upwelling and Downwelling Events in NW Spain: A Model-Observations Approach. Remote Sensing. 2020; 12(17):2762. https://doi.org/10.3390/rs12172762
Chicago/Turabian StyleLorente, Pablo, Silvia Piedracoba, Pedro Montero, Marcos G. Sotillo, María Isabel Ruiz, and Enrique Álvarez-Fanjul. 2020. "Comparative Analysis of Summer Upwelling and Downwelling Events in NW Spain: A Model-Observations Approach" Remote Sensing 12, no. 17: 2762. https://doi.org/10.3390/rs12172762
APA StyleLorente, P., Piedracoba, S., Montero, P., Sotillo, M. G., Ruiz, M. I., & Álvarez-Fanjul, E. (2020). Comparative Analysis of Summer Upwelling and Downwelling Events in NW Spain: A Model-Observations Approach. Remote Sensing, 12(17), 2762. https://doi.org/10.3390/rs12172762