Sentinel-3A/B SLSTR Pre-Launch Calibration of the Thermal InfraRed Channels
"> Figure 1
<p>The Sea and Land Surface Temperature Radiometers (SLSTR)-B Instrument in the Space Test Chamber (STC) clean room at RAL Space under preparation for the infrared radiometric calibration tests.</p> "> Figure 2
<p>SLSTR calibration rig under preparation for thermal testing showing the main components. (<b>a</b>) earth shine plate, (<b>b</b>) nadir view BB source, (<b>c</b>) oblique view BB source, (<b>d</b>) spacecraft simulator, (<b>e</b>) cold thermal panels, (<b>f</b>) instrument electronics enclosure, (<b>g</b>) field of view optics and (<b>h</b>) space test chamber.</p> "> Figure 3
<p>Uncertainty estimates at k = 1 for SLSTR-A and SLSTR-B calibration tests. Green diamonds, <span style="color:green">◇</span> = uncertainties in the reference brightness temperatures derived from the external BB thermometers and emissivity. Blue squares, <span style="color:blue">☐</span> = uncertainties in the SLSTR measurements derived from the instrument calibration model.</p> "> Figure 4
<p>SLSTR-A (left) and SLSTR-B (right) nadir view measured detector counts vs. scene radiances and brightness temperatures for channels S7–S9. The oblique view shows a similar behavior and is not displayed for that reason. The corresponding scene temperature is shown in the lower axes. <span style="color:red">☐</span> = Detector 1, Integrator 1; <span style="color:blue">☐</span> = Detector 1, Integrator 2; <span style="color:red">Δ</span> = Detector 2, Integrator 1; <span style="color:blue">Δ</span> = Detector 2, Integrator 2. The SLSTR Thermal Infrared (TIR) channels have two detector elements in the along-track direction and are read out in alternate integration cycles, which are calibrated separately.</p> "> Figure 5
<p>SLSTR-A (left) and SLSTR-B (right) non-linearity responses expressed as percentage for channels S7-S9. <span style="color:red">☐</span> = Detector 1, Integrator 1; <span style="color:blue">☐</span> = Detector 1, Integrator 2; <span style="color:red">Δ</span> = Detector 2, Integrator 1; <span style="color:blue">Δ</span> = Detector 2, Integrator 2.</p> "> Figure 6
<p>Detector noise in counts vs. brightness temperature for SLSTR-A (left) and SLSTR-B (right) nadir view for channels S7–S9. The values for the oblique view are not shown as they are very close to the values for the nadir view. <span style="color:red">☐</span> = Detector 1, Integrator 1; <span style="color:blue">☐</span> = Detector 1, Integrator 2; <span style="color:red">Δ</span> = Detector 2, Integrator 1; <span style="color:blue">Δ</span> = Detector 2, Integrator 2.</p> "> Figure 7
<p>SLSTR-A (left) and SLSTR-B (right) nadir view measured Noise Equivalent Difference Temperature (NEDT) vs. brightness temperatures for channels S7–S9. The values for the oblique view are not shown as they are very close to the values for the nadir view. <span style="color:red">☐</span> = Detector 1, Integrator 1; <span style="color:blue">☐</span> = Detector 1, Integrator 2; <span style="color:red">Δ</span> = Detector 2, Integrator 1; <span style="color:blue">Δ</span> = Detector 2, Integrator 2. The red curve corresponds to the predicted values, and the dashed red line shows the System Requirements Definition (SRD) target requirements.</p> "> Figure 8
<p>Differences between brightness temperatures of the external BB sources measured by SLSTR-A and the actual BB brightness temperatures. The vertical red-lines correspond to the temperatures of the on-board s. <span style="color:red">☐</span> = Detector 1, Integrator 1; <span style="color:blue">☐</span> = Detector 1, Integrator 2; <span style="color:red">Δ</span> = Detector 2, Integrator 1; <span style="color:blue">Δ</span> = Detector 2, Integrator 2. Error bars represent the combined uncertainty of the measurement at k = 3.</p> "> Figure 9
<p>Differences between brightness temperatures of the external BB sources measured by SLSTR-B and the actual BB brightness temperatures. The vertical red-lines correspond to the temperatures of the on-board s. <span style="color:red">□</span> = Detector 1, Integrator 1; <span style="color:blue">☐</span> = Detector 1, Integrator 2; <span style="color:red">Δ</span> = Detector 2, Integrator 1; <span style="color:blue">Δ</span> = Detector 2, Integrator 2. Error bars represent the combined uncertainty of the measurement at k = 3.</p> "> Figure 10
<p>Results for all measurements where the external BB sources were at the same temperatures as the instrument s. The plot shows the differences between brightness temperatures of the external sources measured by SLSTR-A (left) and SLSTR-B (right) and the actual BB brightness temperatures. The red squares <span style="color:red">☐</span> correspond to the normally heated +Y BB, the blue diamonds <span style="color:blue">◇</span> correspond to the normally cold −Y BB. Error bars correspond to uncertainties at k = 3.</p> "> Figure 11
<p>Results for calibration at different positions around the earth view for a scene temperature of 300 K. Plots show the relative difference in BT as compared to the values at center of the earth views which is indicated by the red line. Note that fewer measurements for SLSTR-A were possible due to operational issues of the BB motors. These were resolved and the full scan for SLSTR-B could be performed. <span style="color:red">☐</span> = Detector 1, Integrator 1; <span style="color:blue">☐</span> = Detector 1, Integrator 2; <span style="color:red">Δ</span> = Detector 2, Integrator 1; <span style="color:blue">Δ</span> = Detector 2, Integrator 2.</p> "> Figure 12
<p>SLSTR-A Orbital simulation results showing the differences between the measured and actual source brightness temperatures. <span style="color:red">☐</span> = Detector 1, Integrator 1; <span style="color:blue">☐</span> = Detector 1, Integrator 2; <span style="color:red">Δ</span> = Detector 2, Integrator 1; <span style="color:blue">Δ</span> = Detector 2, Integrator 1. Error bars are not shown for clarity.</p> "> Figure 13
<p>SLSTR-B Orbital simulation results showing the differences between the measured and actual source brightness temperatures. <span style="color:red">☐</span> = Detector 1, Integrator 1; <span style="color:blue">☐</span> = Detector 1, Integrator 2; <span style="color:red">Δ</span> = Detector 2, Integrator 1; <span style="color:blue">Δ</span> = Detector 2, Integrator 2. Error bars are not shown for clarity.</p> "> Figure 14
<p>Correlations of SLSTR-A nadir view calibration temperature differences (vertical axes) against internal instrument temperatures from TAEO thermometers (horizontal axes) measured during the orbital simulation tests.</p> "> Figure 15
<p>SLSTR-A S8 and S9 BT differences after adjusting for the stray light error. <span style="color:red">☐</span> Uncorrected; <span style="color:blue">◇</span> Corrected data; <b>—</b>Stray-Light Model; <b><span style="color:#0432FF">-</span><span style="color:#0432FF">-</span></b> Combined uncertainty (k = 3).</p> "> Figure 16
<p>S7 BT differences before (top) and after adjusting (bottom) the instrument BB emissivity to the corrected values in <a href="#remotesensing-12-02510-t009" class="html-table">Table 9</a>. <span style="color:red">☐</span> = Detector 1, Integrator 1; <span style="color:blue">☐</span> = Detector 1, Integrator 2; <span style="color:red">Δ</span> = Detector 2, Integrator 1; <span style="color:blue">Δ</span> = Detector 2, Integrator 2. Error bars represent the combined uncertainty at k = 3.</p> "> Figure 17
<p>Spectral reflectance of the black-coating used for the SLSTR A and B BB cavities measured by NIST, and the resulting effective cavity emissivity from 2 to 20 µm [<a href="#B13-remotesensing-12-02510" class="html-bibr">13</a>]. At channel S7 (3.7 mm) the reflectivity of shows strong variation as a function of wavelength, but also from sample to sample suggesting a larger uncertainty of the cavity’s emissivity in this spectral channel.</p> "> Figure 18
<p>Comparison of measured (blue squares) against predicted (solid line) maximum brightness temperature T<sub>max</sub> vs. integration time for S7 channel.</p> ">
Abstract
:1. Introduction
2. Methods and Tools
2.1. Calibration Scheme
2.2. Calibration Facility
2.3. Calibration Sources
2.4. Test Procedure
- IR detectors controlled at the flight operating temperatures of 87 K
- All detectors switched on
- Flight BBs at nominal operating conditions (one unheated at ~260 K and the other heated at ~302 K)
- Full scan cycle operating (nadir and oblique scanners and flip mechanism running)
- Nominal flight Target Position Table (TPT)
- All instrument science packets generated (all bands, scan and HK)
2.5. Analysis Method
2.6. Uncertainties
3. Results
3.1. Response vs. Temperature
3.2. Non-Linearity
3.3. Radiometric Noise
3.4. Comparisons with Scene Temperature
3.5. Comparisons with Different On-Board BB Temperatures
3.6. Response vs. Detector Temperature
3.7. Comparisons vs. Earth View
3.8. Orbital Simulation
4. Discussion
4.1. Stray Light’ Effect
- Configuration of the internal BBs
- Wavelength, with S9 (12 µm) being the worst affected.
- The thermal environment of the instrument.
- Appeared to be correlated with the external earth view baffle temperatures
- Stronger in oblique view than for nadir view
- Detector temperature
- Earth view position
- Optics temperatures
- External thermal environment
- Processing errors
- We can then deduce , and , from the measurements where X = 0 and X = 1.
- The physical source of the stray light signal must be within the vicinity of the main signal and determined by the measured temperatures. So, for the earth views these will be the external baffles, and for the internal BB sources these will be the optical enclosure.
4.2. S7 Emissivity
4.3. Saturation of S7
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ohring, G.; Wielicki, B.; Spencer, R.; Emery, B.; Datla, R. Satellite instrument calibration for measuring global climate change. Bull. Am. Meteorol. Soc. 2005, 86, 1303–1313. [Google Scholar] [CrossRef]
- Liua, X.; Wub, W.; Wielickia, B.A.; Yangb, Q.; Kizerb, S.H.; Huangc, X.; Chenc, X.; Katoa, S.; Sheaa, Y.L.; Mlynczaka, M.G. Spectrally Dependent CLARREO Infrared Spectrometer Calibration Requirement for Climate Change Detection. J. Clim. 2017, 30, 3979–3998. [Google Scholar] [CrossRef]
- Drinkwater, M.R.; Rebhan, H. Sentinel-3 Mission Requirements Document and References Therein. In Sentinel-3 Project Document, EOP-SMO/1151/MD-md; ESA, ESTEC: Noordwijk, The Netherlands, 2007; Available online: http://esamultimedia.esa.int/docs/GMES/GMES_Sentinel3_MRD_V2.0_update.pdf (accessed on 3 August 2020).
- Donlon, C.; Berruti, B.; Buongiorno, A.; Ferreira, M.-H.; Féménias, P.; Frerick, J.; Goryl, P.; Klein, U.; Laur, H.; Mavrocordatos, C.; et al. The Global Monitoring for Environment and Security (GMES) Sentinel-3 Mission. Remote. Sens. Environ. 2012, 120, 37–57. [Google Scholar] [CrossRef]
- Llewellyn-Jones, D.; Remedios, J. The Advanced Along Track Scanning Radiometer (AATSR) and its predecessors ATSR-1 and ATSR-2: An introduction to the special issue. Remote. Sens. Environ. 2012, 116, 1–3. [Google Scholar] [CrossRef]
- Závody, A.M.; Mutlow, C.T.; Llewellyn-Jones, D.T. A radiative-transfer model for sea-surface temperature retrieval for the Along-Track Scanning Radiometer. J. Geophys. Res. Ocean. 1995, 100, 937–952. [Google Scholar] [CrossRef]
- Coppo, P.; Ricciarelli, B.; Brandani, F.; Delderfield, J.; Ferlet, M.; Mutlow, C.; Munro, G.; Nightingale, T.; Smith, D.; Bianchi, S.; et al. SLSTR: A high accuracy dual scan temperature radiometer for sea and land surface monitoring from space. J. Mod. Opt. 2010, 57, 1815–1830. [Google Scholar] [CrossRef]
- Coppo, P.; Mastrandrea, C.; Stagi, M.; Calamai, L.; Nieke, J. Sea and Land Surface Temperature Radiometer detection assembly design and performance. J. Appl. Remote. Sens. 2014, 8, 084979. [Google Scholar] [CrossRef]
- Hawkins, G.; Sherwood, R.; Djotni, K.; Coppo, P.; Höhnemann, H.; Belli, F. Cooled Infrared Filters and Dichroics for the Sea and Land Surface Temperature Radiometer (SLSTR). Appl. Opt. 2013, 52, 2125–2135. [Google Scholar] [CrossRef] [PubMed]
- Mason, I.M.; Sheather, P.H.; Bowles, J.A.; Davies, G. Blackbody calibration sources of high accuracy for a spaceborne infrared instrument: The along Track Scanning Radiometer. Appl. Opt. 1996, 35, 629–639. [Google Scholar] [CrossRef] [PubMed]
- Nightingale, T.J.; McPheat, R.; Smith, D.L.; Mortimer, H.; Polehampton, E.; Lee, A. Sentinel-3A/B SLSTR spectral response calibration (Manuscript in preparation).Spectral Responses and Test Reports are Available for Download at. Available online: https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-slstr/instrument/measured-spectral-response-function-data (accessed on 23 June 2020).
- SLSTR BlackBody Subsystem & Temperature Acquisition Electronics Technical Budgets Report. In Sentinel-3 Project Document, S3-RP-ABS-SL-0017; ESA, ESTEC: Noordwijk, The Netherlands, 2012.
- Peters, D.; Etxaluze, M.; Smith, D. Report on BBS Emissivity and Sensitivity to Temperature Gradients. In Sentinel-3 Project Document, S3-RP-RAL-SL-114; RAL Space: Harwell, UK, 2018. [Google Scholar]
- Smith, D.L.; Nightingale, T.J.; Mortimer, H.; Middleton, K.; Edeson, R.; Cox, C.V.; Mutlow, C.T.; Maddison, B.J.; Coppo, P. Calibration approach and plan for the sea and land surface temperature radiometer. J. Appl. Remote. Sens. 2014, 8, 84980. [Google Scholar] [CrossRef]
- Smith, D.; Mutlow, C.; Delderfield, J.; Watkins, B.; Mason, G. ATSR infrared radiometric calibration and in-orbit performance. Remote. Sens. Environ. 2012, 116, 4–16. [Google Scholar] [CrossRef]
- Mason, G. Test and Calibration of the Along Track Scanning Radiometer, A Satellite-Borne Infrared Radiometer Designed to Measure Sea Surface Temperature. Ph.D. Thesis, University of Oxford, Oxford, UK, 1991. [Google Scholar]
- Monte, C. ATSR BB Emissivity Measurements. Private Communication. 2012. Available online: https://ioccg.org/wp-content/uploads/2015/02/optical-radiometry-excerpt.pdf (accessed on 23 June 2020).
- Prokhorov, A.; Prokhorova, N.I. Application of the three-component bidirectional reflectance distribution function model to Monte Carlo calculation of spectral effective emissivities of nonisothermal blackbody cavities. Appl. Opt. 2012, 51, 8003–8012. [Google Scholar] [CrossRef] [PubMed]
- Theocharous, E.; Fox, N.P. CEOS comparison of the IR Brightness temperature measurements in support of satellite validation. Part II: Laboratory comparisons of the brightness temperature of blackbodies. NPL Rep. OP3 2010. Available online: http://eprintspublications.npl.co.uk/id/eprint/4744 (accessed on 3 August 2020).
- JASMIN. Available online: http://Jasmin.ac.uk (accessed on 4 June 2020).
- Joint Committee for Guides in Metrology, Evaluation of Measurement Data. Guide to the Expression of Uncertainty in Measurement (JCGM 100:2008). Available online: https://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf (accessed on 30 July 2019).
- Smith, D.; Hunt, S.; Wooliams, E.; Etxaluze, M.; Peters, D.; Nightingale, T.; Mittaz, J. Traceability of the Sentinel-3 SLSTR Level-1 Infrared Radiometric Processing. (Unpublished; Manuscript in preparation).
- Theocharous, E.; Ishii, J.; Fox, N.P. Absolute linearity measurements on HgCdTe detectors in the infrared region. Appl. Opt. 2004, 43, 4182–4188. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Vayyshenker, I.; Li, X.; Scott, T. Accurate Measurement of Optical Detector Nonlinearity Proc. In Proceedings of the Natl. Conf. Stds. Labs., Chicago, IL, USA, 3 July–4 August 1994. [Google Scholar]
- Mavrocordatos, C. SLSTR LWIR channels calibration issue: Pre-launch Status. In Sentinel-3 Project Document S3-TN-ESA-SL-0663; ESA, ESTEC: Noordwijk, The Netherlands, 2016. [Google Scholar]
- Adibekyan, A.; Kononogova, E.; Monte, C.; Hollandt, J. High-Accuracy Emissivity Data on the Coatings Nextel 811–21, Herberts 1534, Aeroglaze Z306 and Acktar Fractal Black. Int. J. Thermophys. 2017, 38, 89. [Google Scholar] [CrossRef] [Green Version]
- Tomazic, I.; O’Carroll, A.; Hewison, T.; Ackerman, J.; Donlon, C.; Nieke, J.; Andela, B.; Coppens, D.; Smith, D. Initial comparison between Sentinel-3A SLSTR and IASI aboard MetOp-A and MetOp-B. GSICS Q. 2016, 10. [Google Scholar] [CrossRef]
- Hunt, S.E.; Mittaz, J.P.D.; Smith, D.L.; Polehampton, E.; Yemelyanova, R.; Woolliams, E.R.; Donlon, C. A Level 1 and Level 2 Comparison of the Sentinel-3A/B SLSTR Tandem Phase Data using Metrological Principles. Remote Sens. 2020. (Under review). [Google Scholar]
Band Number | Central Wavelength (μm) | Bandwidth (μm) | Spatial Resolution at Nadir | Function |
---|---|---|---|---|
S1 | 0.555 | 0.020 | 0.5 km | Chlorophyll Dual-view AOD over land |
S2 | 0.659 | 0.020 | 0.5 km | Vegetation Index Dual-view AOD over land |
S3 | 0.870 | 0.020 | 0.5 km | Vegetation Index Dual-view AOD over land |
S4 | 1.375 | 0.015 | 0.5 km | Thin Cirrus Cloud Detection |
S5 | 1.610 | 0.060 | 0.5 km | Clouds, Fire, Ice/cloud discrimination |
S6 | 2.225 | 0.050 | 0.5 km | Clouds, Fire |
S7 | 3.700 | 0.380 | 1.0 km | Night-time dual-view SST, Fire |
S8 | 10.850 | 0.900 | 1.0 km | Dual-view SST/LST |
S9 | 12.000 | 1.000 | 1.0 km | Dual-view SST/LST |
S7F | 3.700 | 0.380 | 1.0 km | Fire |
S8F | 12.000 | 0.900 | 1.0 km | Fire |
Spectral Band | Cavity Emissivity |
---|---|
3.7 µm (S7, F1) | 0.99830 ± 0.00012 |
11 µm (S8, F2) | 0.99924 ± 0.00010 |
12 µm (S9) | 0.99915 ± 0.00010 |
Emissivity | |||
---|---|---|---|
3.7 µm | 11 µm | 12 µm | |
Original Values | 0.99899 ± 0.00035 | 0.99847 ± 0.00036 | 0.99871 ± 0.00037 |
ATSR-2/AATSR | 0.99911 ± 0.00055 | 0.99870 ± 0.00040 | 0.99871 ± 0.00032 |
PTB—2012 | 0.99958 ± 0.00015 | 0.99917 ± 0.00030 | 0.99929 ± 0.00025 |
Averages | 0.99923 | 0.99878 | 0.99890 |
Max-Min | 0.00059 | 0.00070 | 0.00058 |
Combined uncertainty (k = 1) | 0.00042 | 0.00041 | 0.00036 |
Source | Uncertainty (mK) at Tscene = 270 K | ||
---|---|---|---|
3.7 µm | 10.8 µm | 12.0 µm | |
Calibration Sources | 17.8 | 18.0 | 18.1 |
Spectral Response | 12.4 | 1.2 | 1.0 |
Non-Linearity Response | 2.4 | 2.2 | 2.1 |
Radiometric Noise * | |||
Combined Standard Uncertainty (k = 1) | 21.8 | 18.2 | 18.2 |
Combined Expanded Uncertainty (k = 3) | 65.5 | 54.5 | 54.7 |
SLSTR-A | SLSTR-B | |||||||
---|---|---|---|---|---|---|---|---|
Nadir | Oblique | Nadir | Oblique | |||||
Tmin | Tmax | Tmin | Tmax | Tmin | Tmax | Tmin | Tmax | |
S7 | 240 * | 307 | 240 * | 307 | 240 | 307 | 240 | 307 |
S8 | 205 | >330 ** | 204 | >330 ** | 206 | >330 ** | 206 | >330 ** |
S9 | 189 | >330 ** | 187 | >330 ** | 205 | >330 ** | 205 | >330 ** |
Model | Channel | Tdet (K) | NEΔT (K) | Calibration Slope (W·m−2·sr−1·µm−1) | Tdet (K) | NEΔT (K) | Calibration Slope (W·m−2·sr−1·µm−1) |
---|---|---|---|---|---|---|---|
SLSTR-A | S7 | 84.3 | 0.046 | 1.9039 × 10−5 | 89.2 | 0.046 | 1.9263 × 10−5 |
S8 | 85.7 | 0.013 | 2.1987 × 10−4 | 90.6 | 0.015 | 2.5789 × 10−4 | |
S9 | 86.3 | 0.020 | 2.7104 × 10−4 | 91.2 | 0.026 | 3.5896 × 10−4 | |
SLSTR-B | S7 | 85.3 | 0.033 | 1.5534 × 10−5 | 92.9 | 0.046 | 1.8036 × 10−5 |
S8 | 85.3 | 0.014 | 2.6192 × 10−4 | 92.7 | 0.021 | 3.0744 × 10−4 | |
S9 | 85.6 | 0.017 | 2.5396 × 10−4 | 92.9 | 0.027 | 3.5049 × 10−4 |
Instrument Model | View | Channel | wstray | Lstray (W·m−2·sr−1·µm−1) | Tstray (K) |
---|---|---|---|---|---|
SLSTR-A | Nadir | S8 | 0.003 | 6.883 | 280 |
S9 | 0.004 | 7.001 | 280 | ||
Oblique | S8 | 0.010 | 6.196 | 272 | |
S9 | 0.012 | 5.983 | 273 | ||
SLSTR-B | Nadir | S8 | 0.000 | 4.358 | - |
S9 | −0.000 | 3.681 | 246 | ||
Oblique | S8 | 0.002 | 5.750 | 269 | |
S9 | 0.002 | 5.996 | 273 |
Instrument Model | View | Channel | wstray,scene | wstray,bb1/bb2 | ρblack |
---|---|---|---|---|---|
SLSTR-A | Nadir | S8 | 0.0110 | 0.0095 | 5% |
S9 | 0.0120 | 0.0090 | |||
Oblique | S8 | 0.0120 | 0.0350 | 10% | |
S9 | 0.0158 | 0.0500 | |||
SLSTR-B | Nadir | S8 | 0.0044 | 0.0014 | 2% |
S9 | 0.0060 | 0.0025 | |||
Oblique | S8 | 0.0048 | 0.0038 | 5% | |
S9 | 0.0079 | 0.0045 |
SLSTR-A | SLSTR-B | |||||
---|---|---|---|---|---|---|
εreported | Δε | εcorrected | εreported | Δε | εcorrected | |
+YBB | 0.99830 ± 0.00012 | −0.0020 ± 0.0020 | 0.9963 ± 0.0020 | 0.99830 ± 0.00012 | −0.0025 ± 0.0020 | 0.9958 ± 0.0020 |
−YBB | 0.99830 ± 0.00012 | −0.0045 ± 0.0020 | 0.9938 ± 0.0020 | 0.99830 ± 0.00012 | −0.0030 ± 0.0020 | 0.9953 ± 0.0020 |
NEΔT at 270 K | Tint = 70 µs | Tint = 50 µs | Tint = 38 µs | EOL Req. Goal/Threshold |
---|---|---|---|---|
S7 | 40 mK | 50 mK | 60 mK | 50 mK/80 mK |
S8 | 18 mK | 19 mK | 20 mK | 30 mK/50 mK |
S9 | 20 mK | 25 mK | 30 mK | 30 mK/50 mK |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smith, D.; Barillot, M.; Bianchi, S.; Brandani, F.; Coppo, P.; Etxaluze, M.; Frerick, J.; Kirschstein, S.; Lee, A.; Maddison, B.; et al. Sentinel-3A/B SLSTR Pre-Launch Calibration of the Thermal InfraRed Channels. Remote Sens. 2020, 12, 2510. https://doi.org/10.3390/rs12162510
Smith D, Barillot M, Bianchi S, Brandani F, Coppo P, Etxaluze M, Frerick J, Kirschstein S, Lee A, Maddison B, et al. Sentinel-3A/B SLSTR Pre-Launch Calibration of the Thermal InfraRed Channels. Remote Sensing. 2020; 12(16):2510. https://doi.org/10.3390/rs12162510
Chicago/Turabian StyleSmith, Dave, Marc Barillot, Stephane Bianchi, Fabio Brandani, Peter Coppo, Mireya Etxaluze, Johannes Frerick, Steffen Kirschstein, Arrow Lee, Brian Maddison, and et al. 2020. "Sentinel-3A/B SLSTR Pre-Launch Calibration of the Thermal InfraRed Channels" Remote Sensing 12, no. 16: 2510. https://doi.org/10.3390/rs12162510
APA StyleSmith, D., Barillot, M., Bianchi, S., Brandani, F., Coppo, P., Etxaluze, M., Frerick, J., Kirschstein, S., Lee, A., Maddison, B., Newman, E., Nightingale, T., Peters, D., & Polehampton, E. (2020). Sentinel-3A/B SLSTR Pre-Launch Calibration of the Thermal InfraRed Channels. Remote Sensing, 12(16), 2510. https://doi.org/10.3390/rs12162510