Geolocation Correction for Geostationary Satellite Observations by a Phase-Only Correlation Method Using a Visible Channel
"> Figure 1
<p>Typical example of geolocation error of geostationary satellite HIMAWARI-7 for the multi-functional Transport Satellite-2 (MTSAT-2) visible channel.</p> "> Figure 2
<p>Schematic of HIMAWARI-8/Advanced HIMAWARI Imager (AHI) scanning. Each horizontal band represents a scanning swath. Scanning direction is west to east.</p> "> Figure 3
<p>Schematic of the 4 × 4 kernel. Gray points <span class="html-italic">S</span> indicate the centers of sampling by actual detectors and black point <span class="html-italic">P</span> is the center of a resampled pixel. Thus, pixel value <span class="html-italic">P</span> is a resample constructed from the 4 × 4 <span class="html-italic">S</span> kernel.</p> "> Figure 4
<p>Example of calculation of phase-only correlation (POC) for <span class="html-italic">r</span>(<span class="html-italic">x</span>, <span class="html-italic">y</span>). The correlation values are clear and the POC method provides a clear solution in a single calculation without iterative retrieval.</p> "> Figure 5
<p>Reference from Shuffle Radar Topography Mission (SRTM) data. (<b>a</b>,<b>c</b>) Coastline based on elevation data only. (<b>b</b>,<b>d</b>) Coastline using the elevation with water and ocean mask. Elevation data alone often makes coastlines inaccurate. Top: Yellow Sea region. Bottom: Vietnam region.</p> "> Figure 5 Cont.
<p>Reference from Shuffle Radar Topography Mission (SRTM) data. (<b>a</b>,<b>c</b>) Coastline based on elevation data only. (<b>b</b>,<b>d</b>) Coastline using the elevation with water and ocean mask. Elevation data alone often makes coastlines inaccurate. Top: Yellow Sea region. Bottom: Vietnam region.</p> "> Figure 6
<p>Reference data from projected SRTM 1-s data. Normalized geostationary SRTM data were projected and converted into a normalized geostationary projection for use with satellite observation disk images.</p> "> Figure 7
<p>Target points in the reference data (22,709 points). Lines formed by high-density target points indicate coastlines.</p> "> Figure 8
<p>Gridded reflectivity of HIMAWARI-8/AHI Channel No. 3 (60°N to 60°S and 85°E to 155°W).</p> "> Figure 9
<p>Typical correction results for HIMAWARI-8. Left side: raw data. Right side: corrected data. (<b>a</b>) 00:20 UTC, May 01, 2016, (<b>b</b>) 00:50 UTC, May 03, 2016, (<b>c</b>) 23:40 UTC, May 03, 2016, and (<b>d</b>) 02:00 UTC, May 07, 2016.</p> "> Figure 9 Cont.
<p>Typical correction results for HIMAWARI-8. Left side: raw data. Right side: corrected data. (<b>a</b>) 00:20 UTC, May 01, 2016, (<b>b</b>) 00:50 UTC, May 03, 2016, (<b>c</b>) 23:40 UTC, May 03, 2016, and (<b>d</b>) 02:00 UTC, May 07, 2016.</p> "> Figure 10
<p>Monthly maximum error value statistics in (<b>a</b>,<b>c</b>) <span class="html-italic">COFF</span> and (<b>b</b>,<b>d</b>) <span class="html-italic">LOFF</span> for 10-min observations. The <span class="html-italic">x</span>-axis is the meridian direction line number of the <span class="html-italic">COFF</span> or <span class="html-italic">LOFF</span> and the <span class="html-italic">y</span>-axis is the local time (Japan Standard Time; JST). (<b>a</b>,<b>b</b>) December 2015 and (<b>c</b>,<b>d</b>) January 2016.</p> "> Figure 11
<p>Monthly maximum error value statistics in <span class="html-italic">COFF</span> and <span class="html-italic">LOFF</span> (December 2015). The <span class="html-italic">x</span>-axis is the meridian direction of the <span class="html-italic">COFF</span> and <span class="html-italic">LOFF</span> line number and the <span class="html-italic">y</span>-axis is the local time (Japan Standard Time; JST). (<b>a</b>) Absolute maximum error value of <span class="html-italic">COFF</span>. Maximum error value in the (<b>b</b>) east direction and (<b>c</b>) west direction. (<b>d</b>) Absolute maximum error value of <span class="html-italic">LOFF</span>. Maximum error value in the (<b>e</b>) north direction and (<b>f</b>) south direction.</p> "> Figure 12
<p>Monthly maximum error value statistics in <span class="html-italic">COFF</span> and <span class="html-italic">LOFF</span> (January 2016). The <span class="html-italic">x</span>-axis is the meridian direction of the <span class="html-italic">COFF</span> and <span class="html-italic">LOFF</span> line number and the <span class="html-italic">y</span>-axis is the local time (Japan Standard Time; JST). (<b>a</b>) Absolute maximum error value of <span class="html-italic">COFF</span>. Maximum error value in the (<b>b</b>) east direction and (<b>c</b>) west direction. (<b>d</b>) Absolute maximum error value of <span class="html-italic">LOFF</span>. Maximum error value in the (<b>e</b>) north direction and (<b>f</b>) south direction.</p> "> Figure 12 Cont.
<p>Monthly maximum error value statistics in <span class="html-italic">COFF</span> and <span class="html-italic">LOFF</span> (January 2016). The <span class="html-italic">x</span>-axis is the meridian direction of the <span class="html-italic">COFF</span> and <span class="html-italic">LOFF</span> line number and the <span class="html-italic">y</span>-axis is the local time (Japan Standard Time; JST). (<b>a</b>) Absolute maximum error value of <span class="html-italic">COFF</span>. Maximum error value in the (<b>b</b>) east direction and (<b>c</b>) west direction. (<b>d</b>) Absolute maximum error value of <span class="html-italic">LOFF</span>. Maximum error value in the (<b>e</b>) north direction and (<b>f</b>) south direction.</p> "> Figure 13
<p>Schematic of geostationary satellite observation. Gray box indicates an observed pixel. The spatial resolution deteriorates toward the outer edge of the disc.</p> "> Figure 14
<p>Typical example of error at outer edge of the disc image (GOES-16). Around the San Francisco Bay area. (<b>a</b>) Raw data. (<b>b</b>) Corrected data.</p> ">
Abstract
:1. Introduction
2. Third-Generation Geostationary Satellite HIMAWARI
3. Geolocation Correction Method
3.1. POC Method
3.2. Registration and Map Projection
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Manabe, S.; Wetherald, R.T. Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J. Atmos. Sci. 1967, 24, 241–259. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Schneider, S.H. Cloudiness as a global climate feedback mechanism: The effects on the radiation balance and surface temperature of variations in cloudiness. J. Atmos. Sci. 1972, 29, 1413–1422. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Tsushima, Y.; Manabe, S. Influence of cloud feedback on annual variation of global mean surface temperature. J. Geophys. Res. 2001, 106, 22635–22646. [Google Scholar] [CrossRef] [Green Version]
- Tsushima, Y.; Abe-Ouchi, A.; Manabe, S. Radiative damping of annual variation in globalmean surface temperature:comparison between observed and simulated feedback. Clim. Dyn. 2005, 24, 591–597. [Google Scholar] [CrossRef]
- Tsushima, Y.; Brient, F.; Klein, S.A.; Konsta, D.; Nam, C.C.; Qu, X.; Williams, K.D.; Sherwood, S.C.; Suzuki, K.; Zelinka, M.D. The Cloud Feedback Model Intercomparison Project (CFMIP) diagnostic codes catalogue—Metrics, diagnostics and methodologies to evaluate, understand and improve the representation of clouds and cloud feedbacks in climate models. Geosci. Model Dev. 2017, 10, 4285–4305. [Google Scholar] [CrossRef] [Green Version]
- Stephens, G. Cloud Feedbacks in the Climate System: A Critical Review. J. Clim. 2005, 18, 237–273. [Google Scholar] [CrossRef] [Green Version]
- Stephens, G.; Vane, D.; Boain, R.; Mace, G.; Sassen, K.; Wang, Z.; Illingworth, A.; O’Connor, E.; Rossow, W.; Durden, S.; et al. The cloudsat mission and the a-train. Bull. Am. Meteorol. Soc. 2002, 83, 1771–1790. [Google Scholar] [CrossRef] [Green Version]
- Stephens, G.; Vane, D.; Tanelli, S.; Im, E.; Durden, S.; Rokey, M.; Reinke, D.; Partain, P.; Mace, G.; Austin, R.; et al. CloudSat mission: Performance and early science after the first year of operation. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Stephens, G.; Christensen, M.; Andrews, T.; Haywood, J.; Malavelle, F.; Suzuki, K.; Jing, X.; Lebsock, M.; Li, J.; Takahashi, H.; et al. Cloud physics from space. Q. J. R. Meteorol. Soc. 2019, 432, 2854–2875. [Google Scholar] [CrossRef]
- Takenaka, H.; Nakajima, T.Y.; Higurashi, A.; Higuchi, A.; Takamura, T.; Pinker, R.T.; Nakajima, T. Estimation of solar radiation using a neural network based on radiative transfer. J. Geophys. Res. Atmos. 2011, 116, 1–26. [Google Scholar] [CrossRef]
- Kotsuki, S.; Takenaka, H.; Tanaka, K.; Higuchi, A.; Miyoshi, T. 1-km-resolution land surface analysis over Japan: Impact of satellite-derived solar radiation. Hydrol. Res. Lett. 2015, 9, 14–19. [Google Scholar] [CrossRef] [Green Version]
- Wasa, Y.; Hatanaka, T.; Fujita, M.; Takenaka, H. Game Theoretic Receding Horizon Cooperative Network Formation for Distributed Microgrids: Variability Reduction of Photovoltaics. SICE J. Control Meas. Syst. Integr. 2013, 6, 281–289. [Google Scholar] [CrossRef]
- Kawano, S.; Fujimori, Y.; Wakao, S.; Hayashi, Y.; Takenaka, H.; Irie, H.; Nakajima, T.Y. Voltage Control Method Utilizing Solar Radiation Data in Highly Efficient Spatial Resolution for Service Restoration in Distribution Networks with PV. J. Energy Eng. 2016, 143, F4016003. [Google Scholar] [CrossRef]
- Watanabe, F.; Kawaguchi, T.; Ishizaki, T.; Takenaka, H.; Nakajima, T.Y.; Imura, J. Machine Learning Approach to Day-Ahead Scheduling for Multiperiod Energy Markets under Renewable Energy Generation Uncertainty. In Proceedings of the 2018 IEEE Conference on Decision and Control, Miami Beach, FL, USA, 17–19 December 2018. [Google Scholar] [CrossRef]
- Damiani, A.; Irie, H.; Horio, T.; Takamura, T.; Khatri, P.; Takenaka, H.; Nagao, T.; Nakajima, T.Y.; Cordero, R.R. Evaluation of Himawari-8 surface downwelling solar radiation by SKYNET observations. Atmos. Meas. Tech. 2018, 11, 2501–2521. [Google Scholar] [CrossRef] [Green Version]
- Menzel, W.P.; Purdom, J.F.W. Introducing GOES-I: The first of a new generation of geostationary operational environmental satellites. Bull. Am. Meteorol. Soc. 1994, 75, 757–781. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Date, K. Correction of HRIT Image Displacement. Meteorol. Satell. Center Tech. Note 2008, 50, 31–50. [Google Scholar]
- Fonseca, L.M.G.; Manjunath, B.S. Registration Techniques for Multisensor Remotely Sensed Imagery. J. Photogramm. Eng. Remote Sens. 1996, 62, 1049–1056. [Google Scholar]
- Moigne, J.L.; Campbell, W.J.; Cromp, R.F. An automated parallel image registration technique based on the correlation of wavelet features. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1849–1864. [Google Scholar] [CrossRef]
- Dan, Z.; Lidan, W.; Boyang, C.; Wei, S. Slope-restricted multi-scale feature matching for geostationary satellite remote sensing images. Remote Sens. 2017, 9, 576. [Google Scholar] [CrossRef] [Green Version]
- Hou, S.Y.; Qin, Z.Y.; Niu, L.; Zhang, W.G.; Ai, W.T. A Landmark Matching Algorithm for the Geostationary Satellite Images Based on Multi-Level Grids. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 42, 569–574. [Google Scholar] [CrossRef] [Green Version]
- Kuglin, C.D.; Hines, D.C. The Phase Correlation Image Alignment Method. Proc. IEEE Int. Conf. Cybern. Soc. 1975, N.Y., 163–165. [Google Scholar]
- Chen, Q.; Defrise, M.; Deconinck, F. Symmetric phase-only matched filtering of Fourier-Mellin transforms for im-age registration and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 1994, 16, 1156–1168. [Google Scholar] [CrossRef]
- Takita, K.; Aoki, T.; Sasaki, Y.; Higuchi, T.; Kobayashi, K. High-Accuracy Subpixel Image Registration Based on PhaseOnly Correlation. IEICE Trans. Fundam. 2003, 86, 1925–1934. [Google Scholar]
- Hashimoto, T.; Okuyama, A.; Takenaka, H.; Fukuda, S. Calibration of GMS-5/VISSR VIS Band Using Radiative Transfer Calculation. Meteorol. Satell. Center Tech. Note 2008, 50, 61–74. [Google Scholar]
- Kosaka, Y.; Okuyama, A.; Takenaka, H.; Fukuda, S. Development and Improvement of a Vicarious Calibration Technique for the Visible Channel of Geostationary Meteorological Satellites. Meteorol. Satell. Center Tech. Note 2012, 57, 39–55. [Google Scholar]
- Takahashi, M.; Okuyama, A. Introduction to the Global Space-based Inter-Calibration System (GSICS) and Calibration/Validation of the Himawari-8/AHI Visible and Infrared Bands. Meteorol. Satell. Center Tech. Note 2017, 62, 1–18. [Google Scholar]
- Paul, C.G. Advanced Himawari Imager (AHI) Design and Operational Flexibility. In Proceedings of the Sixth Asia/Oceania Meteorological Satellite Users’ Conference, Tokyo, Japan, 10 November 2015. [Google Scholar]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef] [Green Version]
- Cooley, J.W.; Tukey, J.W. An algorithm for the machine calculation of complex Fourier series. Math. Comput. 1965, 19, 297–301. [Google Scholar] [CrossRef]
- CGMS Coordination Group for Meteorological Satellites. LRIT/HRIT Global Specification. CGMS/DOC/12/0017, Issue 2.8. 30 October 2013. Available online: www.cgms-info.org (accessed on 1 August 2020).
Channel No. | Resolution (km) | Nominal Wavelength (μm) | |
---|---|---|---|
VNIR | 1 | 1.0 | 0.47 |
2 | 1.0 | 0.51 | |
3 | 0.5 | 0.64 | |
4 | 1.0 | 0.86 | |
5 | 2.0 | 1.61 | |
6 | 2.0 | 2.26 | |
MWIR | 7 | 2.0 | 3.90 |
8 | 2.0 | 6.18 | |
9 | 2.0 | 6.95 | |
10 | 2.0 | 7.34 | |
11 | 2.0 | 8.50 | |
LWIR | 12 | 2.0 | 9.61 |
13 | 2.0 | 10.35 | |
14 | 2.0 | 11.20 | |
15 | 2.0 | 12.30 | |
16 | 2.0 | 13.30 |
Channels (Wavelength in μm) | Resolution (km) | IFOV (μrad) | Rows | Column | |
---|---|---|---|---|---|
NS | EW | ||||
0.64 | 0.5 | 10.5 | 12.4 | 1460 | 3 |
0.47, 0.51 | 1.0 | 22.9 | 22.9 | 676 | 3 |
0.86 | 1.0 | 22.9 | 22.9 | 676 | 6 |
1.61, 2.26 | 2.0 | 42.0 | 51.5 | 372 | 6 |
3.9, 6.18, 6.95, 7.34, 8.5, 9.61 | 2.0 | 47.7 | 51.5 | 332 | 6 |
10.35, 11.2, 12.3, 13.3 | 2.0 | 38.1 | 34.3 | 408 | 6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takenaka, H.; Sakashita, T.; Higuchi, A.; Nakajima, T. Geolocation Correction for Geostationary Satellite Observations by a Phase-Only Correlation Method Using a Visible Channel. Remote Sens. 2020, 12, 2472. https://doi.org/10.3390/rs12152472
Takenaka H, Sakashita T, Higuchi A, Nakajima T. Geolocation Correction for Geostationary Satellite Observations by a Phase-Only Correlation Method Using a Visible Channel. Remote Sensing. 2020; 12(15):2472. https://doi.org/10.3390/rs12152472
Chicago/Turabian StyleTakenaka, Hideaki, Taiyou Sakashita, Atsushi Higuchi, and Teruyuki Nakajima. 2020. "Geolocation Correction for Geostationary Satellite Observations by a Phase-Only Correlation Method Using a Visible Channel" Remote Sensing 12, no. 15: 2472. https://doi.org/10.3390/rs12152472
APA StyleTakenaka, H., Sakashita, T., Higuchi, A., & Nakajima, T. (2020). Geolocation Correction for Geostationary Satellite Observations by a Phase-Only Correlation Method Using a Visible Channel. Remote Sensing, 12(15), 2472. https://doi.org/10.3390/rs12152472