Towards a Large-Scale 3D Modeling of the Built Environment—Joint Analysis of TanDEM-X, Sentinel-2 and Open Street Map Data
<p>Schematic view of the Global Urban Footprint 3D (GUF-3D) production workflow.</p> "> Figure 2
<p>TanDEM-X digital elevation model (<b>a</b>) at 12 m resolution, the normalized digital elevation model (nDSM) derived from the TanDEM-X data (<b>b</b>), the nDSM aggregated to 90 m, with vertical vegetation components removed (<b>c</b>), and the final GUF-3D product (<b>d</b>).</p> "> Figure 3
<p>The GUF-3D layer generated for Indianapolis (<b>a</b>) in comparison to the reference data available for this region (<b>b</b>).</p> "> Figure 4
<p>Percentage error per city between the estimated and actual total building area.</p> "> Figure 5
<p>Mean error (ME) and mean absolute error (MAE) of building height (BH) estimation achieved for the seven study cities, given for the two cases of existing Open Street Map (OSM) data and a processing without OSM integration (BH<sub>NoOSM</sub>).</p> "> Figure 6
<p>Mean error (ME) reported in the number of floors by each building mask (BM) for each study city.</p> "> Figure 7
<p>Mean error (ME) reported in the number of floors by each BM for all the studied cities.</p> "> Figure 8
<p>Examples of the GUF-3D layer derived for several globally distributed city regions such as Brasilia (<b>a</b>), Cape Town (<b>b</b>), Tokyo (<b>c</b>), and Mexico City (<b>d</b>).</p> ">
Abstract
:1. Introduction
2. Three-Dimensional Analysis of the Built-Up Area
2.1. Input Data Sources
2.2. Estimation of Building Heights
2.2.1. Generation of a Normalized Digital Surface Model
2.2.2. Identification of Building Structures
2.2.3. Assignment of Building Heights
3. Results
4. Discussion
5. Conclusions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
City | Source | Data Type | Acquisition |
Amsterdam, NL | https://ahn.arcgisonline.nl/ahnviewer/ | DSM, DEM | 2012 |
https://zakelijk.kadaster.nl/bag | Building Footprints | ||
Indianapolis, US | http://opentopo.sdsc.edu/datasetMetadata?otCollectionID=OT.062012.4326.1 | LiDAR point cloud | 2010–2012 |
Kigali, RW | https://zenodo.org/record/3239271#.Xr0IDsBS-Uk | Pleiades Satellite Image | 2015 |
Munich, DE | GeoBasis-DE/BKG [2020]: https://gdz.bkg.bund.de/index.php/default/digitale-geodaten/sonstige-geodaten/3d-gebaudemodelle-lod1-deutschland-lod1-de.html | 3D Building Model (LoD1-DE); CityGML version 1.0.0, encoding standard 08-007r1 | 2013–2018 |
New York, US | https://coast.noaa.gov/htdata/lidar1_z/geoid12b/data/4920/ | LiDAR point cloud | 2014 |
Vienna, AT | https://www.wien.gv.at/ma41datenviewer/public/ | LOD1 Building Footprints | 2007 |
DSM, DEM | 2010–2018 | ||
Washington, US | https://dc-lidar-2015.s3.amazonaws.com/index.html | LiDAR point cloud | 2015 |
References
- United Nations Department of Economic and Social Affairs Population Division. World Population Prospects: The Highlights. 2019. Available online: https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf (accessed on 24 June 2020).
- United Nations Development Programme. Sustainable Urbanization Strategy: UNDP’s Support to Sustainable, Inclusive and Resilient Cities in Developing World; United Nations: New York, NY, USA, 2016; Available online: http://www.undp.org/content/dam/undp/library/Sustainable%20Development/Urbanization/UNDP_Urban-Strategy.pdf (accessed on 24 June 2020).
- d’Amour, C.B.; Reitsma, F.; Baiocchi, G.; Barthel, S.; Güneralp, B.; Erb, K.-H.; Haberl, H.; Creutzig, F.; Seto, K.C. Future urban land expansion and implications for global croplands. Proc. Natl. Acad. Sci. USA 2017, 114, 8939–8944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Global Power Synergy Public Company. Sustainability Report Chatuchak, Bangkok, 2019. Available online: https://www.gpscgroup.com/Uploads/elFinder/sustaibability/sustainability_reporting/20190325-gpsc-sd2018-en.pdf (accessed on 24 June 2020).
- Lützkendorf, T.; Balouktsi, M. Assessing a sustainable urban development: Typology of indicators and sources of information. Proced. Environ. Sci. 2017, 38, 546–553. [Google Scholar] [CrossRef]
- Mahendra, A.; Seto, K.C. Upward and Outward Growth: Managing Urban Expansion for More Equitable Cities in the Global South; World Resources Report: Washington, DC, USA, 2019. [Google Scholar]
- Esch, T.; Marconcini, M.; Felbier, A.; Roth, A.; Heldens, W.; Huber, M.; Schwinger, M.; Taubenböck, H.; Müller, A.; Dech, S. Urban footprint processor—Fully automated processing chain generating settlement masks from global data of the TanDEM-X mission. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1617–1621. [Google Scholar] [CrossRef] [Green Version]
- Pesaresi, M.; Ehrlich, D.; Ferri, S.; Florczyk, A.; Freire, S.; Halkia, M.; Julea, A.; Kemper, T.; Soille, P.; Syrris, V. Operating Procedure for the Production of the Global Human Settlement Layer from Landsat Data of the Epochs 1975, 1990, 2000 and 2014; Publications Office of the European Union: Brussels, Belgium, 2016; pp. 1–62. [Google Scholar] [CrossRef]
- Tiecke, T.G.; Liu, X.; Zhang, A.; Gros, A.; Li, N.; Yetman, G.; Kilic, T.; Murray, S.; Blankespoor, B.; Prydz, E.B.; et al. Mapping the world population one building at a time. arXiv 2020, arXiv:1712.05839. [Google Scholar]
- Román, M.O.; Wang, Z.; Sun, Q.; Kalb, V.; Miller, S.D.; Molthan, A.; Schultz, L.; Bell, J.; Stokes, E.C.; Pandey, B. NASA’s Black Marble nighttime lights product suite. Remote Sens. Environ. 2018, 210, 113–143. [Google Scholar] [CrossRef]
- Florczyk, A.J.; Melchiorri, M.; Zeidler, J.; Corbane, C.; Schiavina, M.; Freire, S.; Sabo, F.; Politis, P.; Esch, T.; Pesaresi, M. The Generalised Settlement Area: Mapping the Earth surface in the vicinity of built-up areas. Int. J. Digit. Earth 2020, 13, 45–60. [Google Scholar] [CrossRef]
- Marconcini, M.; Metz-Marconcini, A.; Üreyen, S.; Palacios-Lopez, D.; Hanke, W.; Bachofer, F.; Zeidler, J.; Esch, T.; Gorelick, N.; Kakarla, A. Outlining where humans live—The World Settlement Footprint 2015. arXiv 2019, arXiv:1910.12707. [Google Scholar]
- Brown De Colstoun, E.C.; Huang, C.; Wang, P.; Tilton, J.C.; Tan, B.; Phillips, J.; Niemczura, S.; Ling, P.-Y.; Wolfe, R. Documentation for the Global Man-Made Impervious Surface (GMIS) Dataset from Landsat. NASA Socioecon. Data Appl. Cent. Palisade 2017. [Google Scholar] [CrossRef]
- Esch, T.; Bachofer, F.; Heldens, W.; Hirner, A.; Marconcini, M.; Palacios-Lopez, D.; Roth, A.; Üreyen, S.; Zeidler, J.; Dech, S. Where we live—A summary of the achievements and planned evolution of the global urban footprint. Remote Sens. 2018, 10, 895. [Google Scholar] [CrossRef] [Green Version]
- Palacios-Lopez, D.; Bachofer, F.; Esch, T.; Heldens, W.; Hirner, A.; Marconcini, M.; Sorichetta, A.; Zeidler, J.; Kuenzer, C.; Dech, S.; et al. New Perspectives for Mapping Global Population Distribution Using World Settlement Footprint Products. Sustainability 2019, 11, 6056. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, C.T.; Chamberlain, H.; Kerr, D.; Yetman, G.; Pistolesi, L.; Stevens, F.R.; Gaughan, A.E.; Nieves, J.J.; Hornby, G.; MacManus, K. Global spatio-temporally harmonised datasets for producing high-resolution gridded population distribution datasets. Big Earth Data 2019, 3, 108–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lafarge, F.; Descombes, X.; Zerubia, J.; Pierrot-Deseilligny, M. Structural approach for building reconstruction from a single DSM. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 32, 135–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, J.; Fang, C.; Wang, Y.; Li, G.; Wang, S. Evaluation of three-dimensional urban expansion: A case study of Yangzhou City, Jiangsu Province, China. Chin. Geogr. Sci. 2015, 25, 224–236. [Google Scholar] [CrossRef]
- Zhang, W.; Li, W.; Zhang, C.; Ouimet, W.B. Detecting horizontal and vertical urban growth from medium resolution imagery and its relationships with major socioeconomic factors. Int. J. Remote Sens. 2017, 38, 3704–3734. [Google Scholar] [CrossRef]
- Zambon, I.; Colantoni, A.; Salvati, L. Horizontal vs vertical growth: Understanding latent patterns of urban expansion in large metropolitan regions. Sci. Total Environ. 2019, 654, 778–785. [Google Scholar] [CrossRef]
- Xu, G.; Dong, T.; Cobbinah, P.B.; Jiao, L.; Sumari, N.S.; Chai, B.; Liu, Y. Urban expansion and form changes across African cities with a global outlook: Spatiotemporal analysis of urban land densities. J. Clean. Prod. 2019, 224, 802–810. [Google Scholar] [CrossRef]
- Shahzad, M.; Zhu, X.X. Detection of buildings in spaceborne tomosar point clouds via hybrid region growing and energy minimization technique. Urb. Remote Sens. Event (JURSE) 2015, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Frolking, S.; Milliman, T.; Seto, K.C.; Friedl, M.A. A global fingerprint of macro-scale changes in urban structure from 1999 to 2009. Environ. Res. Lett. 2013, 8, 024004. [Google Scholar] [CrossRef]
- Mathews, A.J.; Frazier, A.E.; Nghiem, S.V.; Neumann, G.; Zhao, Y. Satellite scatterometer estimation of urban built-up volume: Validation with airborne lidar data. Int. J. Appl. Earth Obs. 2019, 77, 100–107. [Google Scholar] [CrossRef]
- Marconcini, M.; Marmanis, D.; Esch, T.; Felbier, A. A novel method for building height estmation using TanDEM-X data. IEEE Geosci. Remote Sens. Symp. 2014, 4804–4807. [Google Scholar]
- Clinton, N.; Stuhlmacher, M.; Miles, A.; Uludere Aragon, N.; Wagner, M.; Georgescu, M.; Herwig, C.; Gong, P. A global geospatial ecosystem services estimate of urban agriculture. Earth’s Future 2018, 6, 40–60. [Google Scholar] [CrossRef]
- Geiß, C.; Leichtle, T.; Wurm, M.; Pelizari, P.A.; Standfuß, I.; Zhu, X.X.; So, E.; Siedentop, S.; Esch, T.; Taubenböck, H. Large-area characterization of urban morphology—Mapping of built-up height and density using TanDEM-X and Sentinel-2 data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2912–2927. [Google Scholar] [CrossRef]
- Li, M.; Koks, E.; Taubenböck, H.; van Vliet, J. Continental-scale mapping and analysis of 3D building structure. Remote Sens. Environ. 2020, 245, 111859. [Google Scholar] [CrossRef]
- Esch, T.; Heldens, W.; Hirner, A.; Keil, M.; Marconcini, M.; Roth, A.; Zeidler, J.; Dech, S.; Strano, E. Breaking new ground in mapping human settlements from space—The Global Urban Footprint. ISPRS J. Photogramm. Remote Sens. 2017, 134, 30–42. [Google Scholar] [CrossRef] [Green Version]
- Esch, T.; Üreyen, S.; Zeidler, J.; Metz-Marconcini, A.; Hirner, A.; Asamer, H.; Tum, M.; Böttcher, M.; Kuchar, S.; Svaton, V. Exploiting big earth data from space—First experiences with the timescan processing chain. Big Earth Data 2018, 2, 36–55. [Google Scholar] [CrossRef] [Green Version]
- Zink, M.; Bachmann, M.; Brautigam, B.; Fritz, T.; Hajnsek, I.; Moreira, A.; Wessel, B.; Krieger, G. TanDEM-X: The new global DEM takes shape. IEEE Trans. Geosci. Remote Sens. 2014, 2, 8–23. [Google Scholar] [CrossRef]
- Wessel, B.; Huber, M.; Wohlfart, C.; Marschalk, U.; Kosmann, D.; Roth, A. Accuracy assessment of the global TanDEM-X Digital Elevation Model with GPS data. ISPRS J. Photogramm. Remote Sens. 2018, 139, 171–182. [Google Scholar] [CrossRef]
- Open Street Map Contributors. Available online: https://www.openstreetmap.org (accessed on 24 June 2020).
- Wendleder, A.; Wessel, B.; Roth, A.; Breunig, M.; Martin, K.; Wagenbrenner, S. TanDEM-X water indication mask: Generation and first evaluation results. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 6, 171–179. [Google Scholar] [CrossRef] [Green Version]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- De Reu, J.; Bourgeois, J.; Bats, M.; Zwertvaegher, A.; Gelorini, V.; De Smedt, P.; Chu, W.; Antrop, M.; De Maeyer, P.; Finke, P. Application of the topographic position index to heterogeneous landscapes. Geomorphology 2013, 186, 39–49. [Google Scholar] [CrossRef]
- Esch, T.; Schenk, A.; Ullmann, T.; Thiel, M.; Roth, A.; Dech, S. Characterization of land cover types in TerraSAR-X images by combined analysis of speckle statistics and intensity information. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1911–1925. [Google Scholar] [CrossRef]
- GDAL/OGR Contributors. GDAL/OGR Geospatial Data Abstraction Software Library. Available online: https://gdal.org (accessed on 24 June 2020).
- Heris, M.P.; Foks, N.; Bagstad, K.; Troy, A. A National Dataset of Rasterized Building Footprints for the U.S.; U.S. Geological Survey Data Release: Sunrise Valley Drive Reston, VA, USA, 2020. [Google Scholar] [CrossRef]
- Bachofer, F.; Braun, A.; Adamietz, F.; Murray, S.; d’Angelo, P.; Kyazze, E.; Mumuhire, A.P.; Bower, J. Building stock and building typology of Kigali, Rwanda. Data 2019, 4, 105. [Google Scholar] [CrossRef] [Green Version]
- Bhardwaj, G.; Esch, T.; Lall, S.V.; Marconcini, M.; Soppelsa, M.E.; Wahba, S. Cities, Crowding, and the Coronavirus: Predicting Contagion Risk Hotspots. Available online: https://blogs.worldbank.org/sustainablecities/cities-crowding-and-coronavirus-predicting-contagion-risk-hotspots (accessed on 24 June 2020).
- Esch, T.; Asamer, H.; Bachofer, F.; Balhar, J.; Böttcher, M.; Boissier, E.; D’Angelo, P.; Gevaert, C.; Hirner, A.; Jupova, K.; et al. Digital World meets Urban Planet—New Prospects for Evidence-based Urban Studies Arising from Joint Exploitation of Big Earth Data, Information Technology and Shared Knowledge. Int. J. Digit. Earth 2018, 13, 136–157. [Google Scholar] [CrossRef]
Criterion | Rule |
---|---|
EC1 | sLOSM = 1 |
EC2 | pLDEM1 < 0.1 |
EC3 | sLAMP = 1 AND pLDEM1 ≥ −1.5 |
EC4 | sLOSM-AMP ≥ 0.6 AND ((pLDEM2 ≥ 0.8 AND pLDEM3 ≥ 0.96) OR pLDEM4 ≥ 1.0 OR pLDEM3 ≥ 1.0) |
IC1 | pLDEM3 ≥ 0.93 |
IC2 | pLDEM3 ≥ 0.96 AND pLDEM1 < −5.0 |
IC3 | pLDEM4 ≥ 0.96 |
City | BM | BMNoOSM | ||||
---|---|---|---|---|---|---|
OA [%] | PA [%] | UA [%] | OA [%] | PA [%] | UA [%] | |
Amsterdam | 96.78 | 100 | 83.60 | 81.38 | 72.95 | 45.74 |
Indianapolis | 84.12 | 58.16 | 59.92 | 82.48 | 62.41 | 54.79 |
Kigali | 76.95 | 54.01 | 53.28 | 75.53 | 57.34 | 50.39 |
Munich | 95.43 | 100 | 78.22 | 75.90 | 72.53 | 37.09 |
New York | 96.30 | 100 | 88.87 | 70.28 | 71.37 | 49.80 |
Vienna | 96.49 | 100 | 82.54 | 78.82 | 72.46 | 41.98 |
Washington | 96.60 | 100 | 86.16 | 75.96 | 70.32 | 45.62 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esch, T.; Zeidler, J.; Palacios-Lopez, D.; Marconcini, M.; Roth, A.; Mönks, M.; Leutner, B.; Brzoska, E.; Metz-Marconcini, A.; Bachofer, F.; et al. Towards a Large-Scale 3D Modeling of the Built Environment—Joint Analysis of TanDEM-X, Sentinel-2 and Open Street Map Data. Remote Sens. 2020, 12, 2391. https://doi.org/10.3390/rs12152391
Esch T, Zeidler J, Palacios-Lopez D, Marconcini M, Roth A, Mönks M, Leutner B, Brzoska E, Metz-Marconcini A, Bachofer F, et al. Towards a Large-Scale 3D Modeling of the Built Environment—Joint Analysis of TanDEM-X, Sentinel-2 and Open Street Map Data. Remote Sensing. 2020; 12(15):2391. https://doi.org/10.3390/rs12152391
Chicago/Turabian StyleEsch, Thomas, Julian Zeidler, Daniela Palacios-Lopez, Mattia Marconcini, Achim Roth, Milena Mönks, Benjamin Leutner, Elisabeth Brzoska, Annekatrin Metz-Marconcini, Felix Bachofer, and et al. 2020. "Towards a Large-Scale 3D Modeling of the Built Environment—Joint Analysis of TanDEM-X, Sentinel-2 and Open Street Map Data" Remote Sensing 12, no. 15: 2391. https://doi.org/10.3390/rs12152391