Monitoring Vineyard Canopy Management Operations Using UAV-Acquired Photogrammetric Point Clouds
"> Figure 1
<p>Images of the vineyard in Azagra after shoot thinning: (<b>a</b>) shoot thinned vines, (<b>b</b>) control vines.</p> "> Figure 2
<p>Pictures after leaf removal mode experiment in Traibuenas: (<b>a</b>) leaves removed from one side (LR-1s), (<b>b</b>) two sides (LR-2s), (<b>c</b>) control vines.</p> "> Figure 3
<p>Pictures after leaf removal intensity experiment in Ausejo: (<b>a</b>) low intensity leaf removal (LR-LI), (<b>b</b>) high intensity leaf removal (LR-HI), (<b>c</b>) control vines.</p> "> Figure 4
<p>Pictures after the shoot trimming detection experiment in Ausejo: (<b>a</b>) Shoot trimmed vines, (<b>b</b>) control vines.</p> "> Figure 5
<p>Pictures after shoot trimming intensity experiment in Ausejo: (<b>a</b>) low intensity shoot trimming (ST-LI), (<b>b</b>) high intensity shoot (ST-HI), (<b>c</b>) control vines.</p> "> Figure 6
<p>Graphical summary of the main steps of the Object Based Image Analysis (OBIA) algorithm for vineyard characterization. (<b>a</b>) Side view of the point cloud of one segment of vine row. The height threshold for vineyard classification is showed. (<b>b</b>) Boxes showing the slicing applied to the vine row. (<b>c</b>) Front view of one of the vine slices from 6b. (<b>d</b>) Division of the previous slice in voxels.</p> "> Figure 7
<p>Vine width at different heights after the shoot thinning experiment at Azagra (error bars represent the standard deviation). For each height, different letters indicate significant differences among treatments at <span class="html-italic">p</span> = 0.05 by a Student’s <span class="html-italic">T</span>-test.</p> "> Figure 8
<p>Vine width at different heights after the leaf removal experiment at Traibuenas (error bars represent the standard deviation). For each height, different letters indicate significant differences among treatments at <span class="html-italic">p</span> = 0.05 by a Student’s <span class="html-italic">T</span>-test.</p> "> Figure 9
<p>Vine width at different heights after the second leaf removal and trimming experiment at Ausejo-1 vineyard (error bars represent the standard deviation). For each height, different letters indicate significant differences among treatments at <span class="html-italic">p</span> = 0.05 by a Student’s <span class="html-italic">T</span>-test.</p> "> Figure 10
<p>Vine width at different heights after the shoot trimming experiment at the Ausejo-2 vineyard (error bars represent the standard deviation). For each height, different letters indicate significant differences among treatments at <span class="html-italic">p</span> = 0.05 by a Student’s <span class="html-italic">T</span>-test.</p> "> Figure 11
<p>Vine width at different heights after the shoot trimming experiment at the Ausejo-1 vineyard (error bars represent the standard deviation). For each height, different letters indicate significant differences among treatments at <span class="html-italic">p</span> = 0.05 by a Student’s <span class="html-italic">T</span>-test.</p> ">
Abstract
:1. Introduction
- Shoot thinning: this consists of the selective removal of shoots in spring and, somehow, complements the winter pruning. At this operation, shoots are removed or not depending on their position in the spur or cane, and on their fruitfulness. The objectives of this task are yield adjustment and bunch microclimate improvement. This operation is necessarily done by hand operators.
- Shoot trimming: this is the cutting of the shoot upper part, and it is carried out during the summer. Its main goals are to ease machinery traffic along the lanes, to increase bunch exposure to sunlight and to phytochemical treatments and, sometimes, to improve fruit set. This operation is mostly performed with specific farming implements.
- Leaf removal: this is the detachment of leaves from the fruit zone, and can be executed at any time between fruit set and harvest. The main goal of this operation is to increase bunch exposition to sunlight and phytochemical treatments, as well as improving aeration of the bunch area to diminish fungal pathogen incidence. This practice, together with shoot trimming, is being studied as a technique to delay ripeness and compensate the consequences of global warming on fruit sugar concentration [1,2,3].
2. Materials and Methods
2.1. Study Sites
2.2. UAV Flights and Image Acquisition
2.3. Experiment Description
2.3.1. Shoot Thinning
2.3.2. Leaf Removal
- Leaf removal mode (1 vs. 2 sides)
- Leaf removal intensity
2.3.3. Shoot Trimming
- Shoot trimming detection
- Shoot trimming intensity
2.4. Point Cloud Generation
2.5. OBIA Algorithm
- Digital terrain model (DTM) generation: the point cloud is segmented using a chessboard pattern with a 2 m side. The average height of the points belonging to the 15th lowest percentile in each square, which are assumed to belong to the soil, is stored in an image layer (Figure 6a) that will be used as DTM. This methodology for DTM creation has been validated in fruit orchards with no understory vegetation [5,33], and it has been used in these vineyards since they only have some spontaneous low vigor herbaceous cover (Table 1). The use of a DTM allows taking into account the slope of the fields (Table 1) when measuring the height of the vines.
- Vineyard classification: the point cloud is segmented using a chessboard pattern with 0.1 m side. All the squares containing points whose height over the DTM was higher than 0.5 m are classified as vineyard (Figure 6a). The points inside the areas classified as vineyard, and with a height over the DTM higher than 0.5 m are stored in a temporal point cloud.
- Point cloud slicing: the new point cloud is divided in slices parallel to the DTM with 0.1 m height. Considering that the point cloud was previously divided in 0.1 m squares, it results that the vine point cloud is divided in 3D pixels (voxels) of 0.1 m side. Phattaralerphong et al. [35] reported that the optimal voxel sizes for crown volume estimates ranged from 0.1 to 0.4 m. The size of the voxel is linked with the accuracy of the crown volume estimate [36,37,38] and large voxel sizes are related with greater estimation accuracies. However, choosing an excessively large voxel side leads to the generation of few voxels, which results in too coarse description of the canopy. Thus, taking into account the size of the vine rows, 0.1 m was selected as the optimal voxel size. A set of image layers is created with a resolution of 0.1 m, storing in every pixel of each layer the number of voxels containing points belonging to the vine that had the same x,y coordinates than the pixel.
- Vine row detection and segmentation: for the vineyard to be characterized, the vine rows must be detected and segmented, as the absolute and relative coordinates of these segments are used to refer to the data extracted by the algorithm. Once all the vines are classified, their orientation is automatically calculated and it is used to rotate the image. By doing this, the image shows the rows horizontally, which eases the following processes. The first one is the creation of an upper level of analysis, segmented in horizontal strips with a width of 0.5 m. Then, the algorithm looks for the strip with the highest percentage of vine at the lowest level and classifies it as “vine row.” Next, taking into account the distance between rows, the algorithm searches for the remaining lines with high percentage of vine at the lowest level, and classifies them as “vine rows.” Finally, the “vine rows” are divided in segments with a user-defined length, which was 0.1 m (Figure 6b) in this case.
- Vine segments characterization: the maximum height of every segment is calculated by comparing the point height with the DTM height (Figure 6c). The segment area is extracted from the classification performed in the second step of the algorithm. For every one of the vine segments and knowing the voxel volume (0.1 × 0.1 × 0.1 m3), the volume is calculated taking into account the number of voxels including vine points that are under the vine segment for all the slices created in step 3 (Figure 5d). The maximum width of the segment at 0.1 m-height intervals is extracted from the slices created in step 3. For both the width and volume calculation, the space between the sides of the vine is supposed to be full of vegetation (Figure 5d). The data for each segment are associated with its coordinates and relative position inside the vine row.
2.6. Data Analysis
3. Results
3.1. Vine Dimensions after the Canopy Operation Experiments
3.1.1. Shoot Thinning
3.1.2. Leaf Removal
- Leaf removal mode
- Leaf removal intensity
3.1.3. Shoot Trimming Intensity
3.2. Vine Dimensions after the Experiments
3.2.1. Shoot Thinning
3.2.2. Leaf Removal
- Leaf removal mode
- Leaf removal intensity
3.2.3. Shoot Trimming
- Shoot trimming detection
- Shoot trimming intensity
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Martínez de Toda, F.; Sancha, J.C.; Zheng, W.; Balda, P. Leaf area reduction by trimming, a growing technique to restore the anthocyanins: Sugars ratio decoupled by the warming climate. Vitis. J. Grapevine Res. 2014, 53, 189–192. [Google Scholar]
- Palliotti, A.; Tombesi, S.; Silvestroni, O.; Lanari, V.; Gatti, M.; Poni, S. Changes in vineyard establishment and canopy management urged by earlier climate-related grape ripening: A review. Sci. Hortic. 2014, 178, 43–54. [Google Scholar] [CrossRef]
- Santesteban, L.G.; Miranda, C.; Urrestarazu, J.; Loidi, M.; Royo, J.B. Severe trimming and enhanced competition of laterals as a tool to delay ripening in Tempranillo vineyards under semiarid conditions. Oeno One 2017, 51, 191–203. [Google Scholar] [CrossRef] [Green Version]
- León, L.; Díaz-Varela, R.A.; Zarco-Tejada, P.J.; de la Rosa, R. Tree crown parameters assessment using 3D photo reconstruction as a tool for selection in olive breeding programs. ACTA Hortic. 2017, 1–4. [Google Scholar] [CrossRef]
- Torres-Sánchez, J.; de Castro, A.I.; Peña, J.M.; Jiménez-Brenes, F.M.; Arquero, O.; Lovera, M.; López-Granados, F. Mapping the 3D structure of almond trees using UAV acquired photogrammetric point clouds and object-based image analysis. Biosyst. Eng. 2018, 176, 172–184. [Google Scholar] [CrossRef]
- Colaço, A.F.; Molin, J.P.; Rosell-Polo, J.R.; Escolà, A. Spatial variability in commercial orange groves. Part 1: Canopy volume and height. Precis. Agric. 2018, 20, 788–804. [Google Scholar]
- Jiang, Y.; Li, C.; Takeda, F.; Kramer, E.A.; Ashrafi, H.; Hunter, J. 3D point cloud data to quantitatively characterize size and shape of shrub crops. Hortic. Res. 2019, 6, 43. [Google Scholar] [CrossRef] [Green Version]
- Hu, K.; Fu, Z. Research on the Performance of the Ultrasonic Measurement System of the Tree Canopy Volume. Intell. Autom. Soft Comput. 2012, 18, 591–600. [Google Scholar] [CrossRef]
- Maghsoudi, H.; Minaei, S.; Ghobadian, B.; Masoudi, H. Ultrasonic sensing of pistachio canopy for low-volume precision spraying. Comput. Electron. Agric. 2015, 112, 149–160. [Google Scholar] [CrossRef]
- Andújar, D.; Fernández-Quintanilla, C.; Dorado, J. Matching the best viewing angle in depth cameras for biomass estimation based on poplar seedling geometry. Sensors 2015, 15, 12999–13011. [Google Scholar] [CrossRef] [Green Version]
- Hämmerle, M.; Höfle, B. Mobile low-cost 3D camera maize crop height measurements under field conditions. Precis. Agric. 2018, 19, 630–647. [Google Scholar] [CrossRef]
- Andújar, D.; Moreno, H.; Bengochea-Guevara, J.M.; de Castro, A.; Ribeiro, A. Aerial imagery or on-ground detection? An economic analysis for vineyard crops. Comput. Electron. Agric. 2019, 157, 351–358. [Google Scholar] [CrossRef]
- Caruso, G.; Tozzini, L.; Rallo, G.; Primicerio, J.; Moriondo, M.; Palai, G.; Gucci, R. Estimating biophysical and geometrical parameters of grapevine canopies (‘Sangiovese’) by an unmanned aerial vehicle (UAV) and VIS-NIR cameras. Vitis. J. Grapevine Res. 2017, 56, 63–70. [Google Scholar]
- de Castro, A.I.; Jiménez-Brenes, F.M.; Torres-Sánchez, J.; Peña, J.M.; Borra-Serrano, I.; López-Granados, F. 3-D characterization of vineyards using a novel UAV imagery-based OBIA procedure for precision viticulture applications. Remote Sens. 2018, 10, 584. [Google Scholar] [CrossRef] [Green Version]
- Matese, A.; Gennaro, S.F.D.; Berton, A. Assessment of a canopy height model (CHM) in a vineyard using UAV-based multispectral imaging. Int. J. Remote Sens. 2016, 38, 2150–2160. [Google Scholar] [CrossRef]
- Pádua, L.; Marques, P.; Hruška, J.; Adão, T.; Peres, E.; Morais, R.; Sousa, J.J. Multi-temporal vineyard monitoring through UAV-based RGB imagery. Remote Sens. 2018, 10, 1907. [Google Scholar] [CrossRef] [Green Version]
- Comba, L.; Biglia, A.; Ricauda Aimonino, D.; Gay, P. Unsupervised detection of vineyards by 3D point-cloud UAV photogrammetry for precision agriculture. Comput. Electron. Agric. 2018, 155, 84–95. [Google Scholar] [CrossRef]
- Weiss, M.; Baret, F. Using 3D point clouds derived from UAV RGB imagery to describe vineyard 3D macro-structure. Remote Sens. 2017, 9, 111. [Google Scholar] [CrossRef] [Green Version]
- Mesas-Carrascosa, F.-J.; de Castro, A.I.; Torres-Sánchez, J.; Triviño-Tarradas, P.; Jiménez-Brenes, F.M.; García-Ferrer, A.; López-Granados, F. Classification of 3D point clouds using color vegetation indices for precision viticulture and digitizing applications. Remote Sens. 2020, 12, 317. [Google Scholar] [CrossRef] [Green Version]
- del-Campo-Sanchez, A.; Ballesteros, R.; Hernandez-Lopez, D.; Ortega, J.F.; Moreno, M.A.; Group, on behalf of A. and C.P.R. Quantifying the effect of Jacobiasca lybica pest on vineyards with UAVs by combining geometric and computer vision techniques. PLoS ONE 2019, 14, e0215521. [Google Scholar] [CrossRef] [Green Version]
- Shamshiri, R.; Weltzien, C.; Hameed, I.A.J.; Yule, I.E.; Grift, T.; Balasundram, S.K.; Pitonakova, L.; Ahmad, D.; Chowdhary, G. Research and development in agricultural robotics: A perspective of digital farming. Int. J. Agric. Biol. Eng. 2018, 11, 1–14. [Google Scholar] [CrossRef]
- Escolà, A.; Martínez-Casasnovas, J.A.; Rufat, J.; Arnó, J.; Arbonés, A.; Sebé, F.; Pascual, M.; Gregorio, E.; Rosell-Polo, J.R. Mobile terrestrial laser scanner applications in precision fruticulture/horticulture and tools to extract information from canopy point clouds. Precis. Agric. 2017, 18, 111–132. [Google Scholar] [CrossRef] [Green Version]
- Blaschke, T.; Hay, G.J.; Kelly, M.; Lang, S.; Hofmann, P.; Addink, E.; Queiroz Feitosa, R.; van der Meer, F.; van der Werff, H.; van Coillie, F.; et al. Geographic object-based image analysis—Towards a new paradigm. ISPRS J. Photogramm. Remote Sens. 2014, 87, 180–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johansen, K.; Raharjo, T.; McCabe, M.F. Using multi-spectral UAV imagery to extract tree crop structural properties and assess pruning effects. Remote Sens. 2018, 10, 854. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Brenes, F.M.; López-Granados, F.; de Castro, A.I.; Torres-Sánchez, J.; Serrano, N.; Peña, J.M. Quantifying pruning impacts on olive tree architecture and annual canopy growth by using UAV-based 3D modelling. Plant Methods 2017, 13, 55. [Google Scholar] [CrossRef] [Green Version]
- Sohn, G.; Dowman, I. Data fusion of high-resolution satellite imagery and LiDAR data for automatic building extraction. ISPRS J. Photogramm. Remote Sens. 2007, 62, 43–63. [Google Scholar] [CrossRef]
- Tomljenovic, I.; Tiede, D.; Blaschke, T. A building extraction approach for Airborne Laser Scanner data utilizing the Object Based Image Analysis paradigm. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 137–148. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Cheng, G.; Ge, X. Earthquake-collapsed building extraction from LiDAR and aerophotograph based on OBIA. In Proceedings of the 2nd International Conference on Information Science and Engineering, Hangzhou, China, 3–5 December 2010; pp. 2034–2037. [Google Scholar]
- Jakubowski, M.K.; Li, W.; Guo, Q.; Kelly, M. Delineating Individual Trees from Lidar Data: A Comparison of Vector- and Raster-based Segmentation Approaches. Remote Sens. 2013, 5, 4163–4186. [Google Scholar] [CrossRef] [Green Version]
- Johansen, K.; Arroyo, L.A.; Armston, J.; Phinn, S.; Witte, C. Mapping riparian condition indicators in a sub-tropical savanna environment from discrete return LiDAR data using object-based image analysis. Ecol. Indic. 2010, 10, 796–807. [Google Scholar] [CrossRef]
- Lopatin, J.; Galleguillos, M.; Fassnacht, F.E.; Ceballos, A.; Hernández, J. Using a multistructural object-based LiDAR approach to estimate vascular plant richness in mediterranean forests with complex structure. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1008–1012. [Google Scholar] [CrossRef]
- Machala, M.; Zejdová, L. Forest mapping through object-based image analysis of multispectral and LiDAR aerial data. Eur. J. Remote Sens. 2014, 47, 117–131. [Google Scholar] [CrossRef]
- de Castro, A.I.; Rallo, P.; Suárez, M.P.; Torres-Sánchez, J.; Casanova, L.; Jiménez-Brenes, F.M.; Morales-Sillero, A.; Jiménez, M.R.; López-Granados, F. High-throughput system for the early quantification of major architectural traits in olive breeding trials using UAV images and OBIA techniques. Front. Plant Sci. 2019, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miranda, C.; Santesteban, L.G.; Escalona, J.M.; Herralde, F.D.; Aranda, X.; Nadal, M.; Intrigliolo, D.S.; Castel, J.R.; Royo, J.B.; Medrano, H. Allometric relationships for estimating vegetative and reproductive biomass in grapevine (Vitis vinifera L.). Aust. J. Grape Wine Res. 2017, 23, 441–451. [Google Scholar] [CrossRef]
- Phattaralerphong, J.; Sinoquet, H. A method for 3D reconstruction of tree crown volume from photographs: Assessment with 3D-digitized plants. Tree Physiol. 2005, 25, 1229–1242. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Hu, B.; Noland, T.L. Classification of tree species based on structural features derived from high density LiDAR data. Agric. Meteorol. 2013, 171–172, 104–114. [Google Scholar] [CrossRef]
- Park, H.; Lim, S.; Trinder, J.C.; Turner, R. Voxel-based volume modelling of individual trees using terrestrial laser scanners. In Proceedings of the 15th Australasian Remote Sensing & Photogrammetry Conference (ARSPC), Alice Springs, Australia, 13–17 September 2010. [Google Scholar]
- Zhang, Z.; Cao, L.; She, G. Estimating forest structural parameters using canopy metrics derived from airborne LiDAR data in subtropical forests. Remote Sens. 2017, 9, 940. [Google Scholar] [CrossRef] [Green Version]
- Arnó, J.; Escolà, A.; Vallès, J.M.; Llorens, J.; Sanz, R.; Masip, J.; Palacín, J.; Rosell-Polo, J.R. Leaf area index estimation in vineyards using a ground-based LiDAR scanner. Precis. Agric. 2012, 14, 290–306. [Google Scholar] [CrossRef] [Green Version]
- Arnó, J.; Escolà, A.; Rosell-Polo, J.R. Setting the optimal length to be scanned in rows of vines by using mobile terrestrial laser scanners. Precis. Agric. 2017, 18, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: Berlin, Germany, 2016. [Google Scholar]
- Smart, R.E. Aspects of Water Relations of the Grapevine (Vitis Vinifera). Am. J. Enol. Vitic. 1974, 25, 84–91. [Google Scholar]
- López-Granados, F.; Torres-Sánchez, J.; Serrano-Pérez, A.; de Castro, A.I.; Mesas-Carrascosa, F.-J.; Peña, J.-M. Early season weed mapping in sunflower using UAV technology: Variability of herbicide treatment maps against weed thresholds. Precis. Agric. 2016, 17, 183–199. [Google Scholar] [CrossRef]
- Mesas-Carrascosa, F.-J.; Torres-Sánchez, J.; Clavero-Rumbao, I.; García-Ferrer, A.; Peña, J.-M.; Borra-Serrano, I.; López-Granados, F. Assessing optimal flight parameters for generating accurate multispectral orthomosaicks by UAV to support site-specific crop management. Remote Sens. 2015, 7, 12793–12814. [Google Scholar] [CrossRef] [Green Version]
- Campos, J.; Llop, J.; Gallart, M.; García-Ruiz, F.; Gras, A.; Salcedo, R.; Gil, E. Development of canopy vigour maps using UAV for site-specific management during vineyard spraying process. Precis. Agric. 2019, 20, 1136–1156. [Google Scholar] [CrossRef] [Green Version]
- Di Gennaro, S.F.; Matese, A. Evaluation of novel precision viticulture tool for canopy biomass estimation and missing plant detection based on 2.5D and 3D approaches using RGB images acquired by UAV platform. Plant Methods 2020, 16, 91. [Google Scholar] [CrossRef] [PubMed]
- Velázquez-Martí, B.; Fernández-González, E.; López-Cortés, I.; Salazar-Hernández, D.M. Quantification of the residual biomass obtained from pruning of vineyards in Mediterranean area. Biomass Bioenergy 2011, 35, 3453–3464. [Google Scholar] [CrossRef]
- Spinelli, R.; Magagnotti, N.; Nati, C. Harvesting vineyard pruning residues for energy use. Biosyst. Eng. 2010, 105, 316–322. [Google Scholar] [CrossRef]
- Spinelli, R.; Nati, C.; Pari, L.; Mescalchin, E.; Magagnotti, N. Production and quality of biomass fuels from mechanized collection and processing of vineyard pruning residues. Appl. Energy 2012, 89, 374–379. [Google Scholar] [CrossRef]
- Karaoğlu, M.H.; Zor, Ş.; Uğurlu, M. Biosorption of Cr(III) from solutions using vineyard pruning waste. Chem. Eng. J. 2010, 159, 98–106. [Google Scholar] [CrossRef]
- Vecino, X.; Devesa-Rey, R.; Moldes, A.B.; Cruz, J.M. Formulation of an alginate-vineyard pruning waste composite as a new eco-friendly adsorbent to remove micronutrients from agroindustrial effluents. Chemosphere 2014, 111, 24–31. [Google Scholar] [CrossRef]
Field Name | Location | Planting Distance | Slope Along the Vine Rows (%) | Soil Management | Canopy Management Practices Evaluated 1 |
---|---|---|---|---|---|
Az | Azagra (NA, Spain) | 3.0 × 1.3 m | 2.62 | Bare soil, mechanical tillage (A) + herbicide (U) | Shoot thinning |
Tr | Traibuenas (NA, Spain) | 3.0 × 1.0 m | 4.95 | Spontaneous low vigour cover crop (A) + herbicide (U) | Leaf removal mode (1 vs 2 sides) |
Au-1 | Ausejo (LO, Spain) | 2.4 × 1.0 m | 5.54 | Spontaneous low vigour uneven cover crop (A) + herbicide (U) | Leaf removal intensity Shoot trimming intensity |
Au-2 | Ausejo (LO, Spain) | 2.4 × 1.0 m | 4.14 | Spontaneous low vigour uneven cover crop (A) + herbicide (U) | Shoot trimming |
Canopy Management Operation | Factor Evaluated | Location | Treatments and Abbreviation | No. 1 M-Long Row Sections | Treatment and Flight Date | Flights (Before and After Canopy Operation) | |
---|---|---|---|---|---|---|---|
Before | After | ||||||
Shoot thinning (STh) | STh detection | Azagra (Az) Navarra | Thinned (Th) Control (C) | 20 20 | 05–17–2018 | X | X |
Leaf removal (LR) | LR mode | Traibuenas (Tr) Navarra | 1 side (LR-1s) 2 sides (LR-2s) Control (C) | 108 108 108 | 08–01–2018 | X | X |
LR intensity | Ausejo (Au-1) La Rioja | Low intensity (LR-LI) High intensity (LR-HI) Control | 12 12 | 06–20–2018 | X | X | |
Shoot trimming (ST) | ST detection | Ausejo (Au-2) La Rioja | Shoot trimming (ST) Control (C) | 160 160 | Treatment: 06–12–2018 Flight: 06–20–2018 | X | |
ST intensity | Ausejo (Au-1) La Rioja | Low intensity (ST-LI) High intensity (ST-HI) Control | 12 12 | 06–20–2018 | X | X |
Variable | Control | Shoot-Thinned | |||
---|---|---|---|---|---|
Change in vine dimensions | Volume (m3) | 0.00 ± 0.02 | 0.03 ± 0.03 | * | |
Height (m) | −0.01 ± 0.06 | 0.03 ± 0.07 | |||
Area (m2) | 0.00 ± 0.03 | 0.06 ± 0.05 | * | ||
Max width (m) | 0.00 ± 0.04 | 0.04 ± 0.06 | * | ||
Change in width (m), at height interval | 0.5–0.6 | −0.03 ± 0.12 | 0.05 ± 0.10 | * | |
0.6–0.7 | −0.01 ± 0.07 | 0.04 ± 0.08 | * | ||
0.7–0.8 | 0.00 ± 0.05 | 0.05 ± 0.07 | * | ||
0.8–0.9 | 0.00 ± 0.04 | 0.05 ± 0.07 | * | ||
0.9–1.0 | 0.02 ± 0.05 | 0.05 ± 0.07 | * | ||
1.0–1.1 | −0.03 ± 0.08 | 0.07 ± 0.09 | * | ||
1.1–1.2 | 0.04 ± 0.13 | 0.06 ± 0.08 | * | ||
1.2–1.3 | 0.01 ± 0.08 | 0.02 ± 0.08 |
Variable | Control | One Side (LR–1s) | Two Sides (LR–2s) | |||
---|---|---|---|---|---|---|
Change in vine dimensions | Volume (m3) | 0.09 ± 0.09 | 0.13 ± 0.09 | * | 0.16 ± 0.09 | * |
Height (m) | 0.04 ± 0.06 | 0.04 ± 0.06 | * | 0.05 ± 0.08 | * | |
Area (m2) | 0.02 ± 0.05 | 0.05 ± 0.05 | * | 0.06 ± 0.05 | * | |
Max width (m) | 0.04 ± 0.08 | 0.06 ± 0.08 | * | 0.06 ± 0.09 | * | |
Change in width (m), at height interval | 0.5–0.6 | 0.05 ± 0.16 | 0.09 ± 0.20 | * | 0.08 ± 0.21 | * |
0.6–0.7 | 0.08 ± 0.17 | 0.15 ± 0.19 | * | 0.18 ± 0.19 | * | |
0.7–0.8 | 0.08 ± 0.20 | 0.16 ± 0.19 | * | 0.25 ± 0.20 | * | |
0.8–0.9 | 0.08 ± 0.23 | 0.17 ± 0.21 | * | 0.27 ± 0.24 | * | |
0.9–1.0 | 0.08 ± 0.24 | 0.16 ± 0.21 | * | 0.24 ± 0.21 | * | |
1.0–1.1 | 0.03 ± 0.14 | 0.12 ± 0.18 | * | 0.15 ± 0.22 | * | |
1.1–1.2 | 0.04 ± 0.10 | 0.09 ± 0.15 | * | 0.08 ± 0.14 | * | |
1.2–1.3 | 0.03 ± 0.09 | 0.05 ± 0.10 | * | 0.04 ± 0.09 | * | |
1.3–1.4 | 0.03 ± 0.09 | 0.04 ± 0.08 | * | 0.05 ± 0.09 | * | |
1.4–1.5 | 0.05 ± 0.11 | 0.04 ± 0.09 | * | 0.06 ± 0.09 | * | |
1.5–1.6 | 0.07 ± 0.12 | 0.06 ± 0.15 | * | 0.09 ± 0.15 | * | |
1.6–1.7 | 0.08 ± 0.15 | 0.09 ± 0.16 | * | 0.09 ± 0.17 | * | |
1.7–1.8 | 0.09 ± 0.16 | 0.09 ± 0.17 | * | 0.12 ± 0.21 | * | |
1.8–1.9 | 0.05 ± 0.13 | 0.10 ± 0.20 | * | 0.09 ± 0.19 | * | |
1.9–2.0 | 0.04 ± 0.13 | 0.03 ± 0.10 | * | 0.03 ± 0.12 | * | |
2.0–2.1 | 0.01 ± 0.04 | 0.01 ± 0.04 | * | 0.01 ± 0.09 |
Variable | Control | Low Intensity Leaf Removal (LR-LI) | High Intensity Leaf Removal (LR-HI) | ||||
---|---|---|---|---|---|---|---|
Change in vine dimensions | Volume (m3) | 0.02 ± 0.09 | 0.13 ± 0.12 | * | 0.16 ± 0.10 | * | |
Height (m) | 0.01 ± 0.13 | 0.03 ± 0.17 | 0.11 ± 0.19 | * | |||
Area (m2) | 0.05 ± 0.08 | * | 0.10 ± 0.05 | * | 0.17 ± 0.05 | * | |
Max width (m) | 0.07 ± 0.12 | * | 0.09 ± 0.10 | * | 0.19 ± 0.08 | * | |
Change in width (m), at height interval | 0.5–0.6 | −0.01 ± 0.18 | −0.09 ± 0.13 | * | 0.04 ± 0.11 | ||
0.6–0.7 | 0.03 ± 0.20 | −0.11 ± 0.13 | * | −0.02 ± 0.19 | |||
0.7–0.8 | −0.01 ± 0.18 | −0.06 ± 0.18 | −0.03 ± 0.25 | ||||
0.8–0.9 | 0.18 ± 0.29 | * | 0.04 ± 0.22 | 0.02 ± 0.26 | |||
0.9–1.0 | −0.01 ± 0.14 | 0.18 ± 0.17 | * | 0.15 ± 0.14 | * | ||
1.0–1.1 | 0.02 ± 0.21 | 0.19 ± 0.18 | * | 0.21 ± 0.14 | * | ||
1.1–1.2 | −0.01 ± 0.27 | 0.17 ± 0.16 | * | 0.24 ± 0.14 | * | ||
1.2–1.3 | 0.04 ± 0.20 | 0.13 ± 0.15 | * | 0.23 ± 0.16 | * | ||
1.3–1.4 | 0.06 ± 0.15 | 0.13 ± 0.07 | * | 0.17 ± 0.09 | * | ||
1.4–1.5 | 0.10 ± 0.10 | * | 0.12 ± 0.09 | * | 0.16 ± 0.09 | * | |
1.5–1.6 | 0.04 ± 0.10 | 0.09 ± 0.12 | * | 0.11 ± 0.10 | * | ||
1.6–1.7 | 0.07 ± 0.10 | * | 0.06 ± 0.12 | 0.14 ± 0.08 | * | ||
1.7–1.8 | 0.06 ± 0.12 | 0.11 ± 0.16 | * | 0.16 ± 0.10 | * | ||
1.8–1.9 | 0.11 ± 0.13 | * | 0.10 ± 0.11 | * | 0.14 ± 0.11 | * | |
1.9–2.0 | 0.05 ± 0.23 | 0.08 ± 0.20 | 0.15 ± 0.16 | * | |||
2.0–2.1 | 0.09 ± 0.21 | 0.03 ± 0.24 | 0.12 ± 0.22 | * | |||
2.1–2.2 | 0.01 ± 0.16 | 0.07 ± 0.21 | 0.12 ± 0.16 | * |
Variable | Control | Low Intensity Shoot Trimming (Au-1-LIST) | High Intensity Shoot Trimming (Au-1-HIST) | ||||
---|---|---|---|---|---|---|---|
Change in vine dimensions | Volume (m3) | 0.02 ± 0.09 | 0.20 ± 0.12 | * | 0.26 ± 0.07 | * | |
Height (m) | 0.01 ± 0.13 | 0.49 ± 0.16 | * | 0.60 ± 0.18 | * | ||
Area (m2) | 0.05 ± 0.08 | * | 0.14 ± 0.08 | * | 0.23 ± 0.16 | * | |
Max width (m) | 0.07 ± 0.12 | * | 0.17 ± 0.18 | * | 0.23 ± 0.18 | * | |
Change in width (m), at height interval | 0.5–0.6 | −0.01 ± 0.18 | −0.08 ± 0.17 | −0.10 ± 0.18 | |||
0.6–0.7 | 0.03 ± 0.20 | −0.11 ± 0.16 | −0.09 ± 0.22 | ||||
0.7–0.8 | −0.01 ± 0.18 | 0.01 ± 0.18 | −0.05 ± 0.15 | ||||
0.8–0.9 | 0.18 ± 0.29 | * | −0.01 ± 0.19 | −0.02 ± 0.17 | |||
0.9–1.0 | −0.01 ± 0.14 | −0.04 ± 0.20 | −0.11 ± 0.16 | * | |||
1.0–1.1 | 0.02 ± 0.21 | −0.06 ± 0.16 | 0.01 ± 0.22 | ||||
1.1–1.2 | −0.01 ± 0.27 | −0.06 ± 0.17 | −0.03 ± 0.16 | ||||
1.2–1.3 | 0.04 ± 0.20 | −0.03 ± 0.19 | 0.15 ± 0.16 | * | |||
1.3–1.4 | 0.06 ± 0.15 | 0.04 ± 0.14 | 0.40 ± 0.27 | * | |||
1.4–1.5 | 0.10 ± 0.10 | * | 0.16 ± 0.14 | * | 0.60 ± 0.27 | * | |
1.5–1.6 | 0.04 ± 0.10 | 0.41 ± 0.22 | * | 0.64 ± 0.24 | * | ||
1.6–1.7 | 0.07 ± 0.10 | * | 0.62 ± 0.34 | * | 0.64 ± 0.25 | * | |
1.7–1.8 | 0.06 ± 0.12 | 0.67 ± 0.33 | * | 0.64 ± 0.23 | * | ||
1.8–1.9 | 0.11 ± 0.13 | * | 0.59 ± 0.32 | * | 0.59 ± 0.30 | * | |
1.9–2.0 | 0.05 ± 0.23 | 0.49 ± 0.36 | * | 0.51 ± 0.40 | * | ||
2.0–2.1 | 0.09 ± 0.21 | 0.47 ± 0.40 | * | 0.23 ± 0.23 | * | ||
2.1–2.2 | 0.01 ± 0.16 | 0.38 ± 0.37 | * | 0.12 ± 0.17 | * |
Experiment | Treatment | Volume (m3) | Maximum Height (m) | Area (m2) | Maximum Width (m) |
---|---|---|---|---|---|
Shoot Thinning (Azagra) | Control | 0.21 ± 0.03 A | 1.17 ± 0.08 A | 0.44 ± 0.05 A | 0.61 ± 0.07 A |
Th | 0.16 ± 0.04 B | 1.15 ± 0.07 A | 0.35 ± 0.06 B | 0.55 ± 0.06 B | |
Leaf Removal Mode (Traibuenas) | Control | 0.45 ± 0.12 A | 1.74 ± 0.11 A | 0.70 ± 0.12 A | 0.86 ± 0.12 A |
LR-1S | 0.41 ± 0.13 B | 1.73 ± 0.10 A | 0.68 ± 0.15 A | 0.87 ± 0.14 A | |
LR-2S | 0.41 ± 0.10 B | 1.75 ± 0.13 A | 0.71 ± 0.13 A | 0.89 ± 0.14 A | |
Leaf Removal Intensity (Ausejo-1) | Control | 0.52 ± 0.12 AB | 2.03 ± 0.16 A | 0.68 ± 0.14 A | 0.90 ± 0.20 A |
LR-LI | 0.53 ± 0.07 A | 2.07 ± 0.14 A | 0.63 ± 0.06 AB | 0.80 ± 0.05 AB | |
LR-HI | 0.46 ± 0.05 B | 2.03 ± 0.16 A | 0.55 ± 0.07 B | 0.72 ± 0.10 B | |
Shoot Trimming Detection (Ausejo-2) | Control | 0.65 ± 0.11 A | 2.06 ± 0.15 A | 0.72 ± 0.10 A | 0.92 ± 0.15 A |
ST | 0.33 ± 0.05 B | 1.42 ± 0.11 B | 0.59 ± 0.08 B | 0.74 ± 0.09 B | |
Shoot Trimming Intensity (Ausejo-1) | Control | 0.52 ± 0.12 A | 2.03 ± 0.16 A | 0.68 ± 0.14 A | 0.90 ± 0.20 A |
ST-LI | 0.36 ± 0.08 B | 1.62 ± 0.17 B | 0.59 ± 0.12 B | 0.73 ± 0.16 B | |
ST-HI | 0.26 ± 0.06 C | 1.44 ± 0.19 C | 0.54 ± 0.06 B | 0.71 ± 0.11 B |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Granados, F.; Torres-Sánchez, J.; Jiménez-Brenes, F.M.; Oneka, O.; Marín, D.; Loidi, M.; de Castro, A.I.; Santesteban, L.G. Monitoring Vineyard Canopy Management Operations Using UAV-Acquired Photogrammetric Point Clouds. Remote Sens. 2020, 12, 2331. https://doi.org/10.3390/rs12142331
López-Granados F, Torres-Sánchez J, Jiménez-Brenes FM, Oneka O, Marín D, Loidi M, de Castro AI, Santesteban LG. Monitoring Vineyard Canopy Management Operations Using UAV-Acquired Photogrammetric Point Clouds. Remote Sensing. 2020; 12(14):2331. https://doi.org/10.3390/rs12142331
Chicago/Turabian StyleLópez-Granados, Francisca, Jorge Torres-Sánchez, Francisco M. Jiménez-Brenes, Oihane Oneka, Diana Marín, Maite Loidi, Ana I. de Castro, and L. G. Santesteban. 2020. "Monitoring Vineyard Canopy Management Operations Using UAV-Acquired Photogrammetric Point Clouds" Remote Sensing 12, no. 14: 2331. https://doi.org/10.3390/rs12142331
APA StyleLópez-Granados, F., Torres-Sánchez, J., Jiménez-Brenes, F. M., Oneka, O., Marín, D., Loidi, M., de Castro, A. I., & Santesteban, L. G. (2020). Monitoring Vineyard Canopy Management Operations Using UAV-Acquired Photogrammetric Point Clouds. Remote Sensing, 12(14), 2331. https://doi.org/10.3390/rs12142331