Water Balance Analysis Based on a Quantitative Evapotranspiration Inversion in the Nukus Irrigation Area, Lower Amu River Basin
"> Figure 1
<p>Schematic diagram of the Nukus irrigation area.</p> "> Figure 2
<p>The information about the acquisition time of Landsat images, including 42 TM images, 59 ETM+ images, and 43 OLI images.</p> "> Figure 3
<p>Comparison of ET modeled by SEBAL (ET<sub>SEBAL</sub>) between ET<sub>observation</sub> using evaporating pan (<b>a</b>). (<b>b</b>–<b>i</b>) represent the validation of rice, wheat, cotton, bare land’s SEBAL modeled daily ET<sub>a</sub> contrast with ET<sub>c</sub>.</p> "> Figure 4
<p>The correlation analysis results of ET<sub>sebal</sub> chronological sequence and ET<sub>c</sub> chronological sequence of all sampling points.</p> "> Figure 5
<p>The monthly ETsebal for rice, wheat, and cotton was available for comparison for ETc in 2018.</p> "> Figure 6
<p>Spatial distribution of monthly ET<sub>a</sub> variability based on the SEBAL model (Take 2012 and 2018 as examples).</p> "> Figure 7
<p>The ET<sub>a</sub> performance modeled by SEBAL of each month in the growing season of 1992–2018.</p> "> Figure 8
<p>The ET<sub>a</sub> estimated by SEBAL in the growing season from 1992 to 2018 (<b>a</b>–<b>h</b>).</p> "> Figure 9
<p>The average daily ET<sub>a</sub> variation of cultivated land, forest land and bare land from 1992 to 2015.</p> "> Figure 10
<p>The change of total ETa modeled by SEBAL in irrigated areas from 1992 to 2018 (May to September).</p> "> Figure 11
<p>(<b>a</b>) The changes of surface inflow and variation of underground water volume in the Nukus irrigation area, 1999–2015. (<b>b</b>) Variations of ET, surface inflow, groundwater and precipitation of Nukus irrigation area in the growing season of 2000, 2005, 2010 and 2012.</p> "> Figure 12
<p>Trends of cultivated land area, total ET and total ET of cultivated land.</p> "> Figure 13
<p>The lag cross-correlation analysis of the Nukus inflow volume to the Nukus irrigation area (<b>a</b>), groundwater lever (<b>b</b>), annual precipitation (<b>c</b>) and annual average temperature (<b>d</b>) with the area of south Aral Sea.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Availability
2.3. Methods
2.3.1. SEBAL Model
2.3.2. The FAO Penman-Monteith Equation
2.3.3. Statistical Evaluation
2.3.4. Water Balance Analysis
2.3.5. Lag Correlation Analysis
3. Results Analysis
3.1. Accuracy Assessment of the SEBAL Model
3.2. Spatiotemporal Variation of Evapotranspiration
3.2.1. Annual Variations of the Simulated Evapotranspiration
3.2.2. Interannual Variations of the Simulated Evapotranspiration
3.3. Water Balance Analysis
4. Discussion
4.1. Evaluation the Accuracy of the ET Products Modeled by SEBAL
4.2. The Impact of LUCC on ET Variations
4.3. Exploring the Influences of the Nukus Water Balance on the Aral Sea
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bortnik, V.; Chistyaeva, N. Hydrometeorology and Hydrochemistry of the USSR Seas, Vol. VII: The Aral Sea; Gidrometeoizdat: Leningrad, Rissia, 1990; Volume 7, p. 196. [Google Scholar]
- Volftsun, I.B.; Sumarokova, V.V. Long-term dynamics of anthropogenic and natural losses of Amu-Darya and Syr-Darya runoffs. Meteorol. Hydrol. Process. 1985, 2, 98–104. [Google Scholar]
- Zavialov, P.O.; Ni, A.A.; Kudyshkin, T.V.; Kurbaniyazov, A.K.; Dikarev, S.N. Five years of field hydrographic research in the Large Aral Sea (2002–2006). J. Mar. Syst. 2009, 76, 263–271. [Google Scholar] [CrossRef]
- Asarin, A.E.; Kravtsova, V.I.; Mikhailov, V.N. Amudarya and Syrdarya Rivers and Their Deltas; Springer: Heidelberg/Berlin, Germany, 2009. [Google Scholar]
- Ashirbekov, U.Z.I. Aral: The History of Dying Sea; International Fund for Saving the Aral Sea (IFAS): Almaty, Kazakhstan, 2003; p. 82. [Google Scholar]
- Boomer, I.; Aladin, H.; Plotnikov, I.; Whatley, R. The palaeolimnology of the Aral Sea: A review. Quat. Sci. Rev. 2000, 19, 1259–1278. [Google Scholar] [CrossRef]
- Bortnik, V.N. Changes in the water-level and hydrological balance of the Aral Sea. In The Aral Sea Basin; Springer: Berlin/Heidelberg, Germany, 1996; pp. 25–32. [Google Scholar]
- Gaybullaev, B.; Chen, S.C.; Kuo, Y.M.; Gaybullaev, B.; Chen, S.C.; Kuo, Y.M. Large-scale desiccation of the aral sea due to over-exploitation after 1960. J. Mt. Sci. 2012, 9, 538–546. [Google Scholar] [CrossRef]
- Hammer, J. The dying of the dead sea. Smithsonian 2005, 36, 58–70. [Google Scholar]
- Jarsjo, J.; Destouni, G. Groundwater discharge into the Aral Sea after 1960. J. Mar. Syst. 2004, 47, 109–120. [Google Scholar] [CrossRef]
- Nezlin, N.P.; Kostianoy, A.G.; Lebedev, S.A. Interannual variations of the discharge of amu darya and syr darya estimated from global atmospheric precipitation. J. Mar. Syst. 2004, 47, 67–75. [Google Scholar] [CrossRef]
- Philip, M. The future Aral Sea: Hope and despair. Environ. Earth Sci. 2016, 75, 844. [Google Scholar]
- Singh, A.; Behrangi, A.; Fisher, J.B.; Reager, J.T. On the Desiccation of the South Aral Sea Observed from Spaceborne Missions. Remote Sens. 2018, 10, 793. [Google Scholar] [CrossRef] [Green Version]
- Conrad, C.; Dech, S.W.; Hafeez, M.; Lamers, J.; Martius, C.; Strunz, G. Mapping and assessing water use in a Central Asian irrigation system by utilizing MODIS remote sensing products. Irrig. Drain. Syst. 2007, 21, 197–218. [Google Scholar] [CrossRef] [Green Version]
- Ochege, F.U.; Luo, G.; Obeta, M.C.; Owusu, G.; Duulatov, E.; Cao, L.; Nsengiyumva, J.B. Mapping evapotranspiration variability over a complex oasis-desert ecosystem based on automated calibration of Landsat 7 ETM+ data in SEBAL. GISci. Remote Sens. 2019, 28. [Google Scholar] [CrossRef]
- Rakhmatullaev, S.; Huneau, F.; Celle-Jeanton, H.; Le Coustumer, P.; Motelica-Heino, M.; Bakiev, M. Water reservoirs, irrigation and sedimentation in Central Asia: A first-cut assessment for Uzbekistan. Environ. Earth Sci. 2013, 68, 985–998. [Google Scholar] [CrossRef] [Green Version]
- UNDP (United Nations Development Program). Water, Critical Resource for Uzbekistan’s Future; UNDP: Tashkent, Uzbekistan, 2007. [Google Scholar]
- Gleeson, T.; Wada, Y.; Bierkens, M.F.; Van Beek, L.P. Water balance of global aquifers revealed by groundwater footprint. Nature 2012, 488, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Schettler, G.; Oberhänsli, H.; Stulina, G.; Mavlonov, A.A.; Naumann, R. Hydrochemical water evolution in the Aral Sea Basin. Part II: Confined groundwater of the Amu Darya Delta—Evolution from the headwaters to the delta and SiO2 geothermometry. J. Hydrol. 2013, 495, 285–303. [Google Scholar] [CrossRef]
- Rosenberg, N.J.; Blad, B.L.; Verma, S.B. Microclimate: The Biological Environment of Plants; John Wiley & Sons: New York, NY, USA, 1983. [Google Scholar]
- L’vovich, M.I.; White, G.F.; Belyaev, A.V.; Kindler, J.; Koronkevic, N.I.; Lee, T.R.; Voropaev, G.V. Use and Transformation of Terrestrial Water Systems; Cambridge University: Cambridge, UK, 1990; pp. 235–252. [Google Scholar]
- Rango, A.; Shalaby, A.I. Operational applications of remote sensing in hydrology: Success, prospects and problems. Hydrol. Sci. J. J. Des. Sci. Hydrol. 1998, 43, 947–968. [Google Scholar] [CrossRef]
- Raupach, M.R. Combination theory and equilibrium evaporation. Q. J. R. Meteorol. Soc. 2001, 127, 1149–1181. [Google Scholar] [CrossRef]
- Kizer, M.A.; Elliott, R.L. Eddy correlation systems for measuring evaporatranspiration. Trans. ASAE 1991, 34, 387–392. [Google Scholar] [CrossRef]
- Nagler, P.L.; Scott, R.L.; Westenburg, C.; Cleverly, J.R.; Glenn, E.P.; Huete, A.R. Evapotranspiration on western US rivers estimated using the Enhanced Vegetation Index from MODIS and data from eddy covariance and Bowen ratio flux towers. Remote Sens. Environ. 2005, 97, 337–351. [Google Scholar] [CrossRef]
- Leuning, R.; Sands, P. Theory and practice of a portable photosynthesis instrument. Plant Cell Environ. 1989, 12, 669–678. [Google Scholar] [CrossRef]
- Wright, J.L. Using weighing lysimeters to develop evapotranspiration Crop Coefficients. In Lysimeters for Evapotranspiration & Environmental Measurements; ASCE: Reston, VA, USA, 1991. [Google Scholar]
- Small, E.E.; Sloan, L.C.; Hostetler, S.; Giorgi, F. Simulating the water balance of the Aral Sea with a coupled regional climate-lake model. J. Geophys. Res. 1999, 104, 6583. [Google Scholar] [CrossRef]
- Crétaux, J.F.; Kouraev, A.V.; Papa, F.; Bergé-Nguyen, M.; Cazenave, A.; Aladin, N.; Plotnikov, I.S. Evolution of sea level of the big Aral Sea from satellite altimetry and its implications for water balance. J. Great Lakes Res. 2005, 31, 520–534. [Google Scholar]
- Khan, M.S.; Liaqat, U.W.; Baik, J.; Choi, M. Stand-alone uncertainty characterization of GLEAM, GLDAS and MOD16 evapotranspiration products using an extended triple collocation approach. Agric. For. Meteorol. 2018, 252, 256–268. [Google Scholar] [CrossRef]
- Kostianoy, A.G.; Kosarev, A.N. The Aral Sea Environment; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Bastiaanssen, W.G.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A remote sensing surface energy balance algorithm for land (SEBAL)—1. Formulation. J. Hydrol. 1998a, 212, 198–212. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.; Pelgrum, H.; Wang, J.; Ma, Y.; Moreno, J.F.; Roerink, G.J.; Van der Wal, T. A remote sensing surface energy balance algorithm for land (SEBAL)—2. Validation. J. Hydrol. 1998b, 212, 213–229. [Google Scholar] [CrossRef]
- Bhattarai, N.; Quackenbush, L.J.; Im, J.; Shaw, S.B. A new optimized algorithm for automating endmember pixel selection in the SEBAL and METRIC models. Remote Sens. Environ. 2017, 196, 178–192. [Google Scholar] [CrossRef]
- Firozjaei, M.K.; Kiavarz, M.; Nematollahi, O.; Karimpour Reihan, M.; Alavipanah, S.K. An evaluation of energy balance parameters, and the relations between topographical and biophysical characteristics using the mountainous surface energy balance algorithm for land (SEBAL). Int. J. Remote Sens. 2019, 40, 5230–5260. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M. SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. J. Hydrol. 2000, 229, 87–100. [Google Scholar] [CrossRef]
- Allen, R.; Tasumi, M.; Trezza, R.S.; Bastiaanssen, W. Surface Energy Balance Algorithm for Land: Advanced Training and Users Manual; University of Idaho: Moscow, ID, USA, 2002; pp. 1–98. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper 56; Food and Agriculture Organization: Rome, Italy, 1998. [Google Scholar]
- Al Zayed, I.S.; Elagib, N.A.; Ribbe, L.; Heinrich, J. Satellite-based evapotranspiration over Gezira Irrigation Scheme, Sudan: A comparative study. Agric. Water Manag. 2016, 177, 66–76. [Google Scholar] [CrossRef]
- Cuenca, R.H.; Ciotti, S.P.; Hagimoto, Y. Application of Landsat to Evaluate Effects of Irrigation Forbearance. Remote Sens. 2013, 5, 3776–3802. [Google Scholar] [CrossRef] [Green Version]
- Liang, S.L. Narrowband to broadband conversions of land surface albedo I Algorithms. Remote Sens. Environ. 2001, 76, 213–238. [Google Scholar] [CrossRef]
- Xu, H. Retrieval of the reflectance and land surface temperature of the newly-launched landsat 8 satellite. Chin. J. Geophys. Chin. Ed. 2015, 58, 741–747. [Google Scholar]
- Sentelhas, P.C.; Gillespie, T.J.; Santos, E.A. Evaluation of fao penman–monteith and alternative methods for estimating reference evapotranspiration with missing data in southern Ontario, Canada. Agric. Water Manag. 2010, 97, 635–644. [Google Scholar] [CrossRef]
- Rahimzadegan, M.; Janani, A.S. Estimating evapotranspiration of pistachio crop based on sebal algorithm using landsat 8 satellite imagery. Agric. Water Manag. 2019, 217, 383–390. [Google Scholar] [CrossRef]
- Bala, A.; Rawat, K.S.; Misra, A.K.; Srivastava, A. Assessment and validation of evapotranspiration using SEBAL algorithm and Lysimeter data of IARI agricultural farm, India. Geocarto Int. 2016, 31, 739–764. [Google Scholar] [CrossRef]
- Tasumi, M. Estimating evapotranspiration using METRIC model and Landsat data for better understandings of regional hydrology in the western Urmia Lake Basin. Agric. Water Manag. 2019, 226, 105805. [Google Scholar] [CrossRef]
- Samuel, A.; Girma, A.; Zenebe, A.; Ghebreyohannes, T. Spatio-temporal variability of evapotranspiration and crop water requirement from space. J. Hydrol. 2018, 567, 732–742. [Google Scholar] [CrossRef]
- Schieder, T.M. Analysis of water use and allocation for the Khorezm region in Uzbekistan using an integrated economic-hydrological mode. Phys. Status Solidi. 2011, 86, 671–678. [Google Scholar]
- Ayenew, T. Evapotranspiration estimation using thematic mapper spectral satellite data in the Ethiopian rift and adjacent highlands. J. Hydrol. 2003, 279, 83–93. [Google Scholar] [CrossRef]
- Allen, R.; Irmak, A.; Trezza, R.; Hendrickx, J.M.; Bastiaanssen, W.; Kjaersgaard, J. Satellite-based ET estimation in agriculture using SEBAL and METRIC. Hydrol. Process. 2011, 25, 4011–4027. [Google Scholar] [CrossRef]
- Suleiman, A.A.; Ritchie, J.T. Modeling soil water redistribution during second-stage evaporation. Soil Sci. Soc. Am. J. 2003, 67, 377–386. [Google Scholar] [CrossRef]
- Tasumi, M. Progress in Operational Estimation of Regional Evapotranspiration Using Satellite Imagery; University of Idaho: Moscow, ID, USA, 2003. [Google Scholar]
- Wang, K.; Liang, S. Global atmospheric downward longwave radiation over land surface under all-sky conditions from 1973 to 2008. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land surface temperature retrieval from LANDSAT TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Sòria, G.; Romaguera, M.; Guanter, L.; Moreno, J.; Plaza, A.; Martínez, P. Land surface emissivity retrieval from different VNIR and TIR sensors. IEEE Trans. Geosci. Remote Sens. 2008, 46, 316–327. [Google Scholar] [CrossRef]
- Li, L.; Luo, G.; Chen, X.; Li, Y.; Xu, G.; Xu, H.; Bai, J. Modelling evapotranspiration in a Central Asian desert ecosystem. Ecol. Modell. 2011, 222, 3680–3691. [Google Scholar] [CrossRef]
- Létolle, R.; Aladin, N.; Filipov, I.; Boroffka, N.G.O. The future chemical evolution of the aral sea from 2000 to the years 2050. Mitig. Adapt. Strateg. Glob. Chang. 2005, 10, 51–70. [Google Scholar] [CrossRef]
- Li, J. The Impact of Climate CHANGE on Natural Resources and Environment in Central Asia; China Meteorological Press: Beijing, China, 2017. [Google Scholar]
- Rakhmatullaev, S.; Marache, A.; Huneau, F.; Le Coustumer, P.; Bakiev, M.; Motelica-Heino, M. Geostatistical approach for the assessment of the water reservoir capacity in arid regions: A case study of the Akdarya reservoir, Uzbekistan. Environ. Earth Sci. 2011, 63, 447–460. [Google Scholar] [CrossRef] [Green Version]
- Olsson, O.; Gassmann, M.; Wegerich, K.; Bauer, M. Identification of the effective water availability from streamflows in the Zerafshan river basin, Central Asia. J. Hydrol. 2010, 390, 190–197. [Google Scholar] [CrossRef]
- Xiaolei, W.; Lin, S.; Yiqing, Z.Y.L. Runoff generation in the headwater of Amu Darya, Central Asia. Prog. Geogr. 2015, 34, 364–372. [Google Scholar]
- Savitskiy, A.G.; Schlüter, M.; Taryannikova, R.V.; Agaltseva, N.A.; Chub, V.E. Current and Future Impacts of Climate Change on River Runoff in the Central Asian River Basins; Springer: Berlin/Hedelberg, Germany, 2008. [Google Scholar]
Data Category | Data Sources | Spatial Resolution | Temporal Resolution |
---|---|---|---|
TM | The United States Geological Survey | 30 m | 16 d |
ETM | The United States Geological Survey | 30 m | 16 d |
OLI | The United States Geological Survey | 30 m | 16 d |
Meteorological data | National Oceanic and Atmospheric Administration | Weather station data | Daily |
DEM | http://www.gscloud.cn | 90 m | — — |
LUCC | European Space Agency | 300 m | Yearly |
LUCC (statistical data) | Xinjiang Institute of Ecology and Geography | Statistical data | Yearly |
Irrigation water data | The Ministry of Agriculture and Water Resources (MAWR) of Uzbekistan | Statistical data | Monthly |
Groundwater level data | The Ministry of Agriculture and Water Resources (MAWR) of Uzbekistan | Statistical data | Monthly |
The Aral Sea area data | Key Laboratory of GIS & RS Application Xinjiang Uygur Autonomous Region, China | Statistical data (from remote sensing interpretation) | Yearly |
Plantation structure | Field research sampling | Vector data | Yearly |
Evaporation pan | Karapakstan Branch of the Institute of Water Problem, Uzbekistan | Statistical data | Daily |
Crops | April | May | June | July | August | September | October |
---|---|---|---|---|---|---|---|
Rice/Kc | - | 1.05 | 1.13 | 1.2 | 1.2 | 0.95 | - |
Wheat/Kc | 1.15 | 0.97 | 0.4 | - | - | - | - |
Cotton/Kc | 0.35 | 0.4 | 0.87 | 1.2 | 1.2 | 0.99 | 0.71 |
Bare land | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
Crops | Location | Number of the Sampling Point | The Correlation | Percent of Pass (>0.6) | MAE | PBIAS | ||
---|---|---|---|---|---|---|---|---|
>0.8 | 0.6~0.8 | <0.6 | ||||||
rice | Nukus | 92 | 68 | 5 | 18 | 0.79 | 0.54 | 8.27% |
Cungrad | 21 | 12 | 7 | 2 | 0.90 | 0.39 | 5.09% | |
Chimboy | 8 | 3 | 0 | 5 | 0.38 | 0.59 | 7.71% | |
wheat | Nukus | 75 | 59 | 11 | 5 | 0.93 | 0.35 | 5.53% |
Cungrad | 87 | 79 | 8 | 0 | 1 | 0.88 | 8.93% | |
cotton | Nukus | 52 | 19 | 17 | 16 | 0.69 | 1.43 | 11.42% |
Cungrad | 109 | 52 | 33 | 24 | 0.78 | 1.26 | 10.36% |
Year | 2000 | 2005 | 2010 | 2012 |
---|---|---|---|---|
Underground water leaving/109 m3 | 6.74 | 1.56 | 0.84 | −2.36 |
Name | Time | Methods | Location | Evapotranspiration Range |
---|---|---|---|---|
Conrad et al. [14] | 2004 | SEBAL | Other irrigated areas in the Amu Darya delta | 0 mm~1500 mm |
Ochege et al. [15] | 2012 | SEBAL | Irrigated areas in the north of the Aral Sea | 0 mm~1135 mm |
Li et al. [56] | 2004 | Evaporation pan | The oasis irrigated area in central Asia | Over 1546 mm |
Bortnik [7] | 1911–1989 | Water balance | The Aral Sea | 900 mm~1100 mm |
Small et al. [28] | 1990 | Observed evaporation | The Aral Sea | Over 1220 mm |
Létolle et al. [57] | 2000–2050 | Mathematical method prediction | The Aral Sea | Could be over 1500 mm |
Land-Use Type | 1990 | 2000 | 2010 | 2015 |
---|---|---|---|---|
Cultivated land | 7386.17 km2 | 7050.66 km2 | 5851.82 km2 | 6631.97 km2 |
Grassland | 4342.24 km2 | 3419.15 km2 | 3235.01 km2 | 3528.69 km2 |
Scrub forest | 639.21 km2 | 691.23 km2 | 1712.34 km2 | 747.26 km2 |
Bare land | 2505.97 km2 | 2159.63 km2 | 1711.51 km2 | 2162.95 km2 |
Waterbody | 203.63 km2 | 101.19 km2 | 453.38 km2 | 334.53 km2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Huang, Y.; Liu, T.; Li, J.; Xing, W.; Akmalov, S.; Peng, J.; Pan, X.; Guo, C.; Duan, Y. Water Balance Analysis Based on a Quantitative Evapotranspiration Inversion in the Nukus Irrigation Area, Lower Amu River Basin. Remote Sens. 2020, 12, 2317. https://doi.org/10.3390/rs12142317
Liu Z, Huang Y, Liu T, Li J, Xing W, Akmalov S, Peng J, Pan X, Guo C, Duan Y. Water Balance Analysis Based on a Quantitative Evapotranspiration Inversion in the Nukus Irrigation Area, Lower Amu River Basin. Remote Sensing. 2020; 12(14):2317. https://doi.org/10.3390/rs12142317
Chicago/Turabian StyleLiu, Zhibin, Yue Huang, Tie Liu, Junli Li, Wei Xing, Shamshodbek Akmalov, Jiabin Peng, Xiaohui Pan, Chenyu Guo, and Yongchao Duan. 2020. "Water Balance Analysis Based on a Quantitative Evapotranspiration Inversion in the Nukus Irrigation Area, Lower Amu River Basin" Remote Sensing 12, no. 14: 2317. https://doi.org/10.3390/rs12142317
APA StyleLiu, Z., Huang, Y., Liu, T., Li, J., Xing, W., Akmalov, S., Peng, J., Pan, X., Guo, C., & Duan, Y. (2020). Water Balance Analysis Based on a Quantitative Evapotranspiration Inversion in the Nukus Irrigation Area, Lower Amu River Basin. Remote Sensing, 12(14), 2317. https://doi.org/10.3390/rs12142317