Archival Aerial Images Georeferencing: A Geostatistically-Based Approach for Improving Orthophoto Accuracy with Minimal Number of Ground Control Points
"> Figure 1
<p>The study area localized in Southern Italy: (<b>a</b>) division of the area into three longitudinal strips. The red line indicates the edge of the study area; (<b>b</b>) Gravina of Laterza (Taranto, Southern Italy).</p> "> Figure 2
<p>Elevation sections of the study area from northern (<b>a</b>), central (<b>b</b>), and southern (<b>c</b>) zones.</p> "> Figure 2 Cont.
<p>Elevation sections of the study area from northern (<b>a</b>), central (<b>b</b>), and southern (<b>c</b>) zones.</p> "> Figure 3
<p>Methodology workflow. GCP, ground control point; RMSE, root mean square error.</p> "> Figure 4
<p>Experimental and variogram model with corresponding parameters. The total sill (<math display="inline"><semantics> <mrow> <msup> <mi>σ</mi> <mn>2</mn> </msup> </mrow> </semantics></math>) corresponds to the sum of the nugget effect and partial sill (the maximum variability degree of the process); the range (α) can be interpreted as the distance beyond which the spatial correlation becomes negligible [<a href="#B48-remotesensing-12-02232" class="html-bibr">48</a>].</p> "> Figure 5
<p>Cross validation workflow.</p> "> Figure 6
<p>Orthomosaic generated by 67 historical aerial photographs (1954–1955). The black line indicates the study area.</p> "> Figure 7
<p>QQ-plots corresponding to the variables calculated with the 50 GCP dataset: (<b>a</b>) error X; (<b>b</b>) error Y.</p> "> Figure 8
<p>Experimental variogram and fitted variogram model with the 50 GCP dataset: (<b>a</b>) error X; (<b>b</b>) error Y.</p> "> Figure 9
<p>Error maps along the two axes. (<b>a</b>) Error X; (<b>b</b>) error Y. The black points indicate the 50 GCP dataset. The size of each point represents the error value; the larger points correspond to higher error values.</p> "> Figure 10
<p>Error maps along the two axes. (<b>a</b>) Error X; (<b>b</b>) error Y. The black points indicate the 50 GCP dataset, whereas the red triangular points represent the newly introduced GCPs.</p> "> Figure 11
<p>QQ-plots corresponding to variables calculated with the 75 GCP dataset: (<b>a</b>) error X; (<b>b</b>) error Y.</p> "> Figure 12
<p>Bar chart comparing errors along the X (<b>a</b>), Y (<b>b</b>), and Z (<b>c</b>) directions after the first and second steps.</p> "> Figure 12 Cont.
<p>Bar chart comparing errors along the X (<b>a</b>), Y (<b>b</b>), and Z (<b>c</b>) directions after the first and second steps.</p> "> Figure 13
<p>Experimental variogram and fitted variogram model with the 75 GCP dataset: (<b>a</b>) error X; (<b>b</b>) error Y.</p> "> Figure 14
<p>Error maps along the two axes. (<b>a</b>) Error X; (<b>b</b>) error Y. The black points indicate the 75 GCP dataset. The size of each point represents the error value; the larger points correspond to higher error values.</p> "> Figure 15
<p>Variation of mean and standard deviation values after the two steps. (<b>a</b>) Mean values; (<b>b</b>) standard deviation values.</p> ">
Abstract
:1. Introduction
2. Study Area and Data Description
3. Materials and Methods
3.1. Methodology
3.1.1. SfM and Orthomosaic Production
3.1.2. GCP Selection
3.1.3. Variables of Interest
3.1.4. Spatial Analysis
- statistics for checking the spatial auto-correlation with Moran index;
- techniques to analyze and model (variography) the spatial heterogeneity of the variables of interest;
- methods to perform predictions of considered variables over the study area (kriging) [46].
3.1.5. GCP Increasing Strategy
- -
- the areas surrounding the worst local errors for error X and error Y maps are delineated;
- -
- each area is multiplied by the ratio between the initial number of GCPs and the study area size to obtain the number of GCPs to be introduced (0.1 for the case at hand);
- -
- these new GCPs are located with priority within the weak areas where man-made structures are recognizable, otherwise they are placed in the closest allowed positions.
4. Results
4.1. Stage 1: 50 GCPs
4.1.1. Basic Statistics
4.1.2. Spatial Analysis
4.2. Stage 2: 75 GCPs
4.2.1. Basic Statistics
4.2.2. Stage 1 vs. Stage 2
4.2.3. Spatial Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Vuorela, N.K.; Alho, P.; Kalliola, R. Systematic Assessment of Maps as Source Information in Landscape-change Research. Landsc. Res. 2002, 27, 141–166. [Google Scholar] [CrossRef]
- Redweik, P.; Roque, D.; Marques, A.; Matildes, R.; Marques, F. Triangulating the Past—Recovering Portugal’s Aerial Images Repository. Photogramm. Eng. Remote Sens. 2010, 76, 1007–1018. [Google Scholar] [CrossRef]
- Mojses, M.; Petrovič, F. Land use changes of historical structures in the agricultural landscape at the local level—Hriňová case study. Ekologia 2013, 32, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Frankl, A.; Seghers, V.; Stal, C.; de Maeyer, P.; Petrie, G.; Nyssen, J. Using image-based modelling (SfM–MVS) to produce a 1935 ortho-mosaic of the Ethiopian highlands. Int. J. Digit. Earth 2014, 8, 421–430. [Google Scholar] [CrossRef] [Green Version]
- Lallias-Tacon, S.; Liébault, F.; Piégay, H. Use of airborne LiDAR and historical aerial photos for characterising the history of braided river floodplain morphology and vegetation responses. Catena 2017, 149, 742–759. [Google Scholar] [CrossRef]
- San-Antonio-Gómez, C.; Velilla, C.; Manzano-Agugliaro, F. Urban and landscape changes through historical maps: The Real Sitio of Aranjuez (1775–2005), a case study. Comput. Environ. Urban Syst. 2014, 44, 47–58. [Google Scholar] [CrossRef]
- Mölg, N.; Bolch, T. Structure-from-Motion Using Historical Aerial Images to Analyse Changes in Glacier Surface Elevation. Remote Sens. 2017, 9, 1021. [Google Scholar] [CrossRef] [Green Version]
- del Soldato, M.; Riquelme, A.; Bianchini, S.; Tomas, R.; di Martire, D.; de Vita, P.; Moretti, S.; Calcaterra, D. Multisource data integration to investigate one century of evolution for the Agnone landslide (Molise, southern Italy). Landslides 2018, 15, 2113–2128. [Google Scholar] [CrossRef] [Green Version]
- Cencetti, C.; di Matteo, L.; Romeo, S. Analysis of Costantino Landslide Dam Evolution (Southern Italy) by Means of Satellite Images, Aerial Photos, and Climate Data. Geosciences 2017, 7, 30. [Google Scholar] [CrossRef] [Green Version]
- Notti, D.; Galve, J.P.; Mateos, R.M.; Monserrat, O.; Lamas-Fernández, F.; Fernández-Chacón, F.; Roldán-García, F.J.; Pérez-Peña, J.V.; Crosetto, M.; Azañón, J.M. Human-induced coastal landslide reactivation. Monitoring by PSInSAR techniques and urban damage survey (SE Spain). Landslides 2015, 12, 1007–1014. [Google Scholar] [CrossRef]
- Ma, R.; Broadbent, M.; Zhao, X. Historical Photograph Orthorectification Using SfM for Land Cover Change Analysis. J. Indian Soc. Remote Sens. 2019, 48, 341–351. [Google Scholar] [CrossRef]
- Cléri, I.; Pierrot-Deseilligny, M.; Vallet, B. Automatic Georeferencing of a Heritage of old analog aerial Photographs. ISPRS Ann. Photogramm. Remote Sens. 2014, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Nurminen, K.; Litkey, P.; Honkavaara, E.; Vastaranta, M.; Holopainen, M.; Lyytikäinen-Saarenmaa, P.; Kantola, T.; Lyytikäinen, M. Automation Aspects for the Georeferencing of Photogrammetric Aerial Image Archives in Forested Scenes. Remote. Sens. 2015, 7, 1565–1593. [Google Scholar] [CrossRef] [Green Version]
- Nocerino, E.; Menna, F. Multi-temporal analysis of landscapes and urban areas. Int. Arch. Photogramm. 2012, 85–90. [Google Scholar] [CrossRef] [Green Version]
- Necsoiu, M.; Dinwiddie, C.; Walter, G.R.; Larsen, A.; Stothoff, S. Multi-temporal image analysis of historical aerial photographs and recent satellite imagery reveals evolution of water body surface area and polygonal terrain morphology in Kobuk Valley National Park, Alaska. Environ. Res. Lett. 2013, 8, 025007. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, M.A.; Aguilar, F.J.; Fernández, I.; Mills, J.; Torres, M. Ángel A. Accuracy Assessment of Commercial Self-Calibrating Bundle Adjustment Routines Applied to Archival Aerial Photography. Photogramm. Rec. 2012, 28, 96–114. [Google Scholar] [CrossRef]
- Giordano, S.; le Bris, A.; Mallet, C. Toward automatic georeferencing of archival aerial photogrammetric surveys. ISPRS Ann. Photogramm. Remote Sens. 2018, 4, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Carricondo, P.J.M.; Vega, F.A.; Carvajal-Ramirez, F.; Mesas-Carrascosa, F.-J.; García-Ferrer, A.; Pérez-Porras, F.-J. Assessment of UAV-photogrammetric mapping accuracy based on variation of ground control points. Int. J. Appl. Earth Obs. Geoinf. 2018, 72, 1–10. [Google Scholar] [CrossRef]
- Verhoeven, G.; Taelman, D.; Vermeulen, F. Computer vision-based orthophoto mapping of complex archaeological sites: The ancient quarry of Pitaranah (Portugal-Spain). Archaeometry 2012, 54, 1114–1129. [Google Scholar] [CrossRef]
- Bakker, M.; Lane, S.N. Archival photogrammetric analysis of river-floodplain systems using Structure from Motion (SfM) methods. Earth Surf. Process. Landforms 2016, 42, 1274–1286. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, J.A. Automatic orientation and mosaicking of archived aerial photography using structure from motion. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2016, 3, 123–126. [Google Scholar] [CrossRef]
- Willmott, C.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- Willmott, C.J.; Matsuura, K.; Robeson, S.M. Ambiguities inherent in sums-of-squares-based error statistics. Atmosph. Environ. 2009, 43, 749–752. [Google Scholar] [CrossRef]
- Ayoub, F.; Leprince, S.; Avouac, J.-P. Co-registration and correlation of aerial photographs for ground deformation measurements. ISPRS J. Photogramm. Remote Sens. 2009, 64, 551–560. [Google Scholar] [CrossRef]
- Micheletti, N.; Lane, S.N.; Chandler, J. Application of archival aerial photogrammetry to quantify climate forcing of alpine landscapes. Photogramm. Rec. 2015, 30, 143–165. [Google Scholar] [CrossRef]
- Giordano, S.; le Bris, A.; Mallet, C. Fully automatic analysis of archival aerial images status and challenges. In Proceedings of the 2017 Joint Urban Remote Sensing Event (JURSE), Dubai, UAE, 6–8 March 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Oniga, V.-E.; Breaban, A.-I.; Pfeifer, N.; Chirila, C. Determining the Suitable Number of Ground Control Points for UAS Images Georeferencing by Varying Number and Spatial Distribution. Remote. Sens. 2020, 12, 876. [Google Scholar] [CrossRef] [Green Version]
- Matheron, G. Principles of geostatistics. Econ. Geol. 1963, 58, 1246–1266. [Google Scholar] [CrossRef]
- Barca, E.; Castrignanò, A.; Ruggieri, S.; Rinaldi, M. A new supervised classifier exploiting spectral-spatial information in the Bayesian framework. Int. J. Appl. Earth Obs. Geoinf. 2020, 86, 101990. [Google Scholar] [CrossRef]
- Tobler, T.A. Computer Movie Siulating Urban Growth in the Detroit Region. Econ. Geogr. 1970, 46, 234–240. [Google Scholar] [CrossRef]
- Barca, E.; de Benedetto, D.; Stellacci, A.M. Contribution of EMI and GPR proximal sensing data in soil water content assessment by using linear mixed effects models and geostatistical approaches. Geoderma 2019, 343, 280–293. [Google Scholar] [CrossRef]
- Siqueira, H.L.; Marcato, J.; Matsubara, E.T.; Eltner, A.; Colares, R.A.; Santos, F.M.; Junior, J.M. The Impact of Ground Control Point Quantity on Area and Volume Measurements with UAV SFM Photogrammetry Applied in Open Pit Mines. In Proceedings of the IGARSS 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2019; pp. 9093–9096. [Google Scholar]
- Greco, R. Frammentazione Delle Comunità Forestali ed eEerogeneità Ambientale: Il Caso del Parco Naturale Regionale Terra delle Gravine. Ph.D. Thesis, University of Bari, Bari, Italy, 2012. [Google Scholar]
- Marchant, B.; Lark, R.M. Optimized Sample Schemes for Geostatistical Surveys. Math. Geol. 2007, 39, 113–134. [Google Scholar] [CrossRef]
- Ullman, S. The interpretation of structure from motion. Proc. R. Soc. Lond. B. 1979, 203, 405–426. [Google Scholar] [CrossRef] [PubMed]
- Robertson, D.P.; Cipolla, R. Structure from motion. In Practical Image Processing and Computer Vision; Varga, M., Ed.; Wiley: New York, NY, USA, 2009. [Google Scholar]
- Westoby, M.J.; Brasington, J.; Glasser, N.; Hambrey, M.; Reynolds, J. ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef] [Green Version]
- Verhoeven, G.; Sevara, C.; Karel, W.; Ressl, C.; Doneus, M.; Briese, C. Undistorting the Past: New Techniques for Orthorectification of Archaeological Aerial Frame Imagery. In The Archaeometallurgy of Copper; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2013; pp. 31–67. [Google Scholar]
- Pix4Dmapper 4.1. User Manual; Pix4D SA: Lausanne, Switzerland, 2017.
- Broadbent, M. Reconstructing the Past in 3D Using Historical Aerial Imagery. Ph.D. Thesis, University of Redlands, Redlands, CA, USA, 2017. [Google Scholar]
- Daponte, P.; de Vito, L.; Mazzilli, G.; Picariello, F.; Rapuano, S. A height measurement uncertainty model for archaeological surveys by aerial photogrammetry. Measurement 2017, 98, 192–198. [Google Scholar] [CrossRef]
- Watson, G.S.; Journel, A.G.; Huijbregts, C.J. Mining Geostatistics. J. Am. Stat. Assoc. 1980, 75, 245. [Google Scholar] [CrossRef]
- Rutter, C.M.; Isaaks, E.H.; Srivastava, R.M. An Introduction to Applied Geostatistics. J. Am. Stat. Assoc. 1991, 86, 548. [Google Scholar] [CrossRef]
- Stein, M.L.; Chilès, J.-P.; Delfiner, P. Geostatistics: Modeling Spatial Uncertainty. J. Am. Stat. Assoc. 2000, 95, 335. [Google Scholar] [CrossRef]
- Wackernagel, H. Multivariate Geostatistics; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Webster, R.; Oliver, M.A. Geostatistics for Environmental Scientists; Wiley: New York, NY, USA, 2007. [Google Scholar]
- de Gruijter, J.J.; Bierkens, M.F.P.; Brus, D.J.; Knotters, M. Sampling for Natural Resource Monitoring; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Barca, E.; Porcu, E.; Bruno, D.; Passarella, G. An automated decision support system for aided assessment of variogram models. Environ. Model. Softw. 2017, 87, 72–83. [Google Scholar] [CrossRef]
- Moran, P.A.P. Notes on Continuous Stochastic Phenomena. Biometrika 1950, 37, 17. [Google Scholar] [CrossRef]
- Rura, M.J.; Griffith, D.A. Spatial Statistics in SAS. In Handbook of Applied Spatial Analysis; Fischer, M., Getis, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Hiemstra, P.H.; Pebesma, E.; Twenhofel, C.J.; Heuvelink, G.B. Real-time automatic interpolation of ambient gamma dose rates from the Dutch radioactivity monitoring network. Comput. Geosci. 2009, 35, 1711–1721. [Google Scholar] [CrossRef]
- Barnhart, H.X.; Haber, M.; Song, J. Overall concordance correlation coefficient for evaluating agreement among multiple observers. Biometrika 2002, 58, 1020–1027. [Google Scholar] [CrossRef] [PubMed]
- Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2008. [Google Scholar]
- RStudio Team. RStudio: Integrated Development for R; RStudio, Inc.: Boston, MA, USA, 2015. [Google Scholar]
- Renard, D.; Bez, N.; Desassis, N.; Beucher, H.; Ors, F.; Laporte, F. RGeostats: The Geostatistical Package; Version 11.0.2; MINES Paris Tech: Paris, France, 2016. [Google Scholar]
- Harrell, F.E., Jr. Package ‘Hmisc’. CRAN. 2019, pp. 235–236. Available online: https://cran.r-project.org/web/packages/Hmisc/Hmisc.pdf (accessed on 6 April 2020).
- Bivand, R.; Piras, G. Comparing Implementations of Estimation Methods for Spatial Econometrics. J. Stat. Softw. 2015, 63. [Google Scholar] [CrossRef] [Green Version]
Variables | Error X | Error Y | Error Z |
---|---|---|---|
RMSE (m)—GCP | 2.82 | 3.29 | 4.84 |
RMSE (m)—CP | 3.56 | 2.50 | 6.31 |
Variables | Minimum | Maximum | Mean | Median | Standard Deviation | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|
(m) | (m) | (m) | (m) | (m) | |||
Error X | −6.23 | 11.35 | 0.21 | −0.21 | 2.84 | 1.09 | 3.94 |
Error Y | −3.84 | 14.74 | 0.69 | 0.41 | 3.25 | 2.52 | 9.21 |
Error Z | −19.19 | 14.57 | −0.22 | −0.22 | 4.88 | −0.93 | 5.10 |
Variables | Correlation | p-Value | ||||
---|---|---|---|---|---|---|
X | Y | Z | X | Y | Z | |
Error X | −0.42 | −0.21 | −0.08 | 0.0024 * | 0.1349 | 0.5837 |
Error Y | −0.41 | 0.22 | 0.20 | 0.0035 * | 0.1201 | 0.1537 |
Error Z | 0.13 | −0.24 | −0.27 | 0.3521 | 0.0989 | 0.0547 |
Variables | Cross Validation | p-Value | Validation | p-Value |
---|---|---|---|---|
Overall Accuracy (Lin) | Overall Accuracy (Lin) | |||
Error X | 0.78 | 0.009 | 0.73 | 0.36 |
Error Y | 0.90 | 5.47 × 10−5 | 0.90 | 0.84 |
Variables | Error X | Error Y | Error Z |
---|---|---|---|
RMSE (m)—GCP | 2.42 | 2.24 | 3.32 |
RMSE (m)—CP | 3.08 | 2.54 | 4.66 |
Variables | Minimum | Maximum | Mean | Median | Standard Deviation | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|
(m) | (m) | (m) | (m) | (m) | |||
Error X | −5.59 | 5.08 | 0.18 | 0.38 | 2.43 | −0.08 | −0.33 |
Error Y | −3.82 | 9.26 | 0.32 | 0.41 | 2.24 | 0.79 | 2.38 |
Error Z | −7.20 | 8.50 | 0.16 | 0.12 | 3.34 | 0.03 | 0.56 |
Variables | Minimum | Maximum | Mean |
---|---|---|---|
(%) | (%) | (%) | |
Error X | −28.54 | −58.62 | −107.93 |
Error Y | −0.60 | −37.20 | −90.94 |
Error Z | −114.33 | −41.61 | −260.54 |
Variables | GCPs Improved | GCPs Worsened | Improvement Mean | Worsening Mean |
---|---|---|---|---|
n. | n. | (m) | (m) | |
Error X | 22 | 28 | 1.15 | −0.45 |
Error Y | 28 | 22 | 0.95 | −0.50 |
Error Z | 33 | 17 | 1.85 | −1.21 |
Variables | Correlation | p-Value | ||||
---|---|---|---|---|---|---|
X | Y | Z | X | Y | Z | |
Error X | −0.18 | −0.20 | −0.12 | 0.1306 | 0.0846 | 0.2904 |
Error Y | −0.39 | 0.25 | 0.21 | 0.0006 * | 0.0282 * | 0.0682 * |
Error Z | −0.07 | −0.15 | −0.13 | 0.5357 | 0.2097 | 0.2734 |
Variables | Cross Validation | p-Value | Validation | p-Value |
---|---|---|---|---|
Overall Accuracy (Lin) | Overall Accuracy (Lin) | |||
Error X | 0.56 | 0.009 | 0.53 | 0.00 |
Error Y | 0.85 | 7.53 × 10−6 | 0.82 | 0.03 |
Area Surface | Archival Images | GCPs | nGCPs/Km2 | RMSE Mean | |
---|---|---|---|---|---|
(km2) | (n) | (n) | (m) | ||
Present study | 550 | 67 | 50 | 0.09 | 3.65 |
Present study | 550 | 67 | 75 | 0.13 | 2.66 |
[1] Vuorela et al., 2002 | 9 | - | 108 | 12 | 4.80 |
[7] Molg and Bolch, 2017 | 16 | 7 | 24 | 1.5 | 4.88 |
[18] Martínez-Carricondo et al., 2018 | 0.18 | 160 | 20 | 113.38 | 0.048 |
[21] Gonçalves, 2016 | 0.3 | 24 | 8 | 26.67 | 4.7 |
[25] Micheletti, et al., 2015 | 20 | 12 | 169 | 8.45 | 0.34 |
[27] Oniga et al., 2020 | 0.08 | - | 150 | 1.87 | 2.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Persia, M.; Barca, E.; Greco, R.; Marzulli, M.I.; Tartarino, P. Archival Aerial Images Georeferencing: A Geostatistically-Based Approach for Improving Orthophoto Accuracy with Minimal Number of Ground Control Points. Remote Sens. 2020, 12, 2232. https://doi.org/10.3390/rs12142232
Persia M, Barca E, Greco R, Marzulli MI, Tartarino P. Archival Aerial Images Georeferencing: A Geostatistically-Based Approach for Improving Orthophoto Accuracy with Minimal Number of Ground Control Points. Remote Sensing. 2020; 12(14):2232. https://doi.org/10.3390/rs12142232
Chicago/Turabian StylePersia, Manuela, Emanuele Barca, Roberto Greco, Maria Immacolata Marzulli, and Patrizia Tartarino. 2020. "Archival Aerial Images Georeferencing: A Geostatistically-Based Approach for Improving Orthophoto Accuracy with Minimal Number of Ground Control Points" Remote Sensing 12, no. 14: 2232. https://doi.org/10.3390/rs12142232
APA StylePersia, M., Barca, E., Greco, R., Marzulli, M. I., & Tartarino, P. (2020). Archival Aerial Images Georeferencing: A Geostatistically-Based Approach for Improving Orthophoto Accuracy with Minimal Number of Ground Control Points. Remote Sensing, 12(14), 2232. https://doi.org/10.3390/rs12142232