A Soft Computing Approach for Selecting and Combining Spectral Bands
<p>Genetic-Programming-based vegetation indices (GPVI) learning process and posterior classification framework for pixelwise discrimination. The labeled training set is represented by the set defined by part “A”. This ground truth is then used in the GP-based index discovery process in part “B”—see <a href="#sec3dot1-remotesensing-12-02267" class="html-sec">Section 3.1</a> and <a href="#sec3dot2-remotesensing-12-02267" class="html-sec">Section 3.2</a>. Classification is performed based on the best GP individual (GPVI) found—part “C”. This individual is used to define a score for unlabeled samples and to define the index distributions per class. Finally, unlabeled samples are assigned to the class whose distribution is the closest—part “E”.</p> "> Figure 2
<p>Genotype (<b>left</b>) and phenotype (<b>right</b>) of a mathematical formula.</p> "> Figure 3
<p>The general genetic programming process.</p> "> Figure 4
<p>Syntax tree representing the NDVI.</p> "> Figure 5
<p>Geographical distribution of the areas considered in Tropical South America, corresponding to the data collected for training and validation. Imported form [<a href="#B38-remotesensing-12-02267" class="html-bibr">38</a>].</p> "> Figure 6
<p>Confidence vs. accuracy in each area (Landsat).</p> "> Figure 7
<p>Confidence vs. accuracy in each area (MODIS).</p> "> Figure 8
<p>Time series for forest/savanna discrimination (Landsat). Shaded areas indicate the standard deviation of the index scores among all the data points for a given timestamp.</p> "> Figure 9
<p>Time series for forest/savanna discrimination (MODIS). Shaded areas indicate the standard deviation of the index scores among all of the data points for a given timestamp.</p> "> Figure 10
<p>Time series for evergreen forest/semi-deciduous forest discrimination (Landsat).</p> "> Figure 11
<p>Time series for evergreen forest/semi-deciduous forest discrimination (MODIS).</p> "> Figure 12
<p>Time series for typical savanna/forested savanna discrimination (Landsat).</p> "> Figure 13
<p>Time series for typical savanna/forested savanna discrimination (MODIS).</p> "> Figure 14
<p>Distribution of the frequencies of the spectral bands of the learned indices for forest/savanna discrimination.</p> "> Figure 15
<p>Distribution of the frequencies of the spectral bands of the learned indices for evergreen forest/semi-deciduous forest discrimination.</p> "> Figure 16
<p>Distribution of the frequencies of the spectral bands of the learned indices for typical savanna/forested savanna discrimination.</p> ">
Abstract
:1. Introduction
- Q1.
- Are GP-based indices more effective than traditional indices in biome type classification tasks?
- Q2.
- Would GP-based indices yield effective results when used in more complex classification problems such as those related to the discrimination of different vegetation types within the same biome?
- Q3.
- Are GP-based indices suitable for time-series-based classification tasks?
- Q4.
- What are the most frequently selected bands by using the GP-based discovery process?
2. Related Work
3. Learning Indices Based on Genetic Programming for Classification Tasks
3.1. Background on Genetic Programming
Algorithm 1: Typical Genetic Programming algorithm. |
3.2. Gp-Based Index Discovery Process
3.2.1. Problem Definition
3.2.2. Individual Representation
3.2.3. Discovery Process
3.2.4. Fitness Computation
Algorithm 2: Fitness function |
3.2.5. Selection Strategy
Algorithm 3: Tournament selection |
3.3. Using Gp-Based Indices in Classification Tasks
Algorithm 4: Nearest Centroid Classifier |
3.4. Computational Complexity
4. Experiments and Results
4.1. Gpvi for Broad-Scale Biome Classification
4.1.1. Data Acquisition and Pre-Processing
4.1.2. Baselines
4.1.3. GP Configuration
4.1.4. Evaluation Protocol
4.1.5. Results
4.2. Gpvi for Finer-Scale Vegetation Type Classification
4.3. Gpvi for Time-Series Analysis And Classification
4.3.1. Experimental Protocol
4.3.2. Time Series Analysis by Visual Assessment
4.3.3. Time Series Classification Performance
4.4. Study on the Structure of the GPVIs
4.4.1. Experimental Protocol
4.4.2. Results
Band Relevance
Subexpression Relevance
5. Discussion
6. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sims, D.A.; Gamon, J.A. Estimation of vegetation water content and photosynthetic tissue area from spectral reflectance: A comparison of indices based on liquid water and chlorophyll absorption features. Remote Sens. Environ. 2003, 84, 526–537. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef] [Green Version]
- Ceccato, P.; Gobron, N.; Flasse, S.; Pinty, B.; Tarantola, S. Designing a spectral index to estimate vegetation water content from remote sensing data: Part 1. Remote Sens. Environ. 2002, 82, 188–197. [Google Scholar] [CrossRef]
- Zhang, G.; Xiao, X.; Dong, J.; Kou, W.; Jin, C.; Qin, Y.; Zhou, Y.; Wang, J.; Menarguez, M.A.; Biradar, C. Mapping paddy rice planting areas through time series analysis of MODIS land surface temperature and vegetation index data. ISPRS J. Photogramm. Remote Sens. 2015, 106, 157–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, B. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Schultz, M.; Clevers, J.G.; Carter, S.; Verbesselt, J.; Avitabile, V.; Quang, H.V.; Herold, M. Performance of vegetation indices from Landsat time series in deforestation monitoring. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 318–327. [Google Scholar] [CrossRef]
- Verstraete, M.M.; Pinty, B. Designing optimal spectral indexes for remote sensing applications. IEEE Trans. Geosci. Remote Sens. 1996, 34, 1254–1265. [Google Scholar] [CrossRef]
- Gobron, N.; Pinty, B.; Verstraete, M.M.; Widlowski, J.L. Advanced vegetation indices optimized for up-coming sensors: Design, performance, and applications. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2489–2505. [Google Scholar] [CrossRef]
- Lu, D.; Weng, Q. A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 2007, 28, 823–870. [Google Scholar] [CrossRef]
- Koza, J.R. Genetic Programming: On the Programming of Computers by Means of Natural Selection; MIT Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Taleby Ahvanooey, M.; Li, Q.; Wu, M.; Wang, S. A Survey of Genetic Programming and Its Applications. KSII Trans. Internet Inf. Syst. 2019, 13, 1765–1793. [Google Scholar] [CrossRef]
- Espejo, P.G.; Ventura, S.; Herrera, F. A Survey on the Application of Genetic Programming to Classification. IEEE Trans. Syst. Man, Cybern. Part C (Appl. Rev.) 2010, 40, 121–144. [Google Scholar] [CrossRef]
- Nguyen, S.; Mei, Y.; Zhang, M. Genetic programming for production scheduling: A survey with a unified framework. Complex Intell. Syst. 2017, 3, 41–66. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Qureshi, A.S.; Wahab, N.; Hussain, M.; Hamza, M.Y. A Recent Survey on the Applications of Genetic Programming in Image Processing. arXiv 2019, arXiv:1901.07387. [Google Scholar]
- Lan Woodward, F.; Lomas, M.; Lee, S. Predicting the Future Productivity and Distribution of Global Terrestrial Vegetation. Terr. Glob. Prod. 2001, 521–541. [Google Scholar] [CrossRef]
- Woodward, S. Introduction to Biomes; Greenwood guides to biomes of the world; Greenwood Press: Westport, CT, USA, 2009. [Google Scholar]
- Ratnam, J.; Bond, W.J.; Fensham, R.J.; Hoffmann, W.A.; Archibald, S.; Lehmann, C.E.R.; Anderson, M.T.; Higgins, S.I.; Sankaran, M. When is a ‘forest’ a savanna, and why does it matter? Glob. Ecol. Biogeogr. 2011, 20, 653–660. [Google Scholar] [CrossRef]
- Su, H.; Cai, Y.; Du, Q. Firefly-Algorithm-Inspired Framework With Band Selection and Extreme Learning Machine for Hyperspectral Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 309–320. [Google Scholar] [CrossRef]
- Papa, J.P.; Papa, L.P.; Pereira, D.R.; Pisani, R.J. A Hyperheuristic Approach for Unsupervised Land-Cover Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2333–2342. [Google Scholar] [CrossRef]
- Fonlupt, C.W.B.; Robilliard, D. Genetic Programming with Dynamic Fitness for a Remote Sensing Application. In International Conference on Parallel Problem Solving from Nature; Springer: Berlin/Heidelberg, Germany, 2000; Volume 1917, pp. 191–200. [Google Scholar]
- Chion, C.; Landry, J.A.; Da Costa, L. A genetic-programming-based method for hyperspectral data information extraction: Agricultural applications. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2446–2457. [Google Scholar] [CrossRef]
- Puente, C.; Olague, G.; Smith, S.V.; Bullock, S.H.; Hinojosa-corona, A.; González-botello, M.A. A Genetic Programming Approach to Estimate Vegetation Cover in the Context of Soil Erosion Assessment. Photogramm. Eng. Remote Sens. 2011, 77, 363–376. [Google Scholar] [CrossRef] [Green Version]
- Gerstmann, H.; Möller, M.; Gläßer, C. Optimization of spectral indices and long-term separability analysis for classification of cereal crops using multi-spectral RapidEye imagery. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 115–125. [Google Scholar] [CrossRef]
- Liu, Z.; Wimberly, M.C.; Dwomoh, F.K. Vegetation Dynamics in the Upper Guinean Forest Region of West Africa from 2001 to 2015. Remote Sens. 2017, 9, 5. [Google Scholar] [CrossRef] [Green Version]
- Costăchioiu, T.; Datcu, M. Land cover dynamics classification using multi-temporal spectral indices from satellite image time series. In Proceedings of the 2010 8th International Conference on Communications, Bucharest, Romania, 10–12 June 2010; pp. 157–160. [Google Scholar]
- Löw, F.; Knöfel, P.; Conrad, C. Analysis of uncertainty in multi-temporal object-based classification. ISPRS J. Photogramm. Remote Sens. 2015, 105, 91–106. [Google Scholar] [CrossRef]
- Prishchepov, A.; Radeloff, V.; Dubinin, M.; Alcantara, C. The effect of Landsat ETM/ETM+ image acquisition dates on the detection of agricultural land abandonment in Eastern Europe. Remote Sens. Environ. 2012, 126, 195–209. [Google Scholar] [CrossRef]
- Balzarolo, M.; Vicca, S.; Nguy-Robertson, A.; Bonal, D.; Elbers, J.; Fu, Y.; Grünwald, T.; Horemans, J.; Papale, D.; Peñuelas, J.; et al. Matching the phenology of Net Ecosystem Exchange and vegetation indices estimated with MODIS and FLUXNET in-situ observations. Remote Sens. Environ. 2016, 174, 290–300. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Chen, J.; Wu, J.; Tang, Y.; Shi, P.; Black, T.A.; Zhu, K. A snow-free vegetation index for improved monitoring of vegetation spring green-up date in deciduous ecosystems. Remote Sens. Environ. 2017, 196, 1–12. [Google Scholar] [CrossRef]
- Ross, B.J.; Gualtieri, A.G.; Fueten, F.; Budkewitsch, P. Hyperspectral image analysis using genetic programming. Appl. Soft Comput. 2005, 5, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Rauss, P.J.; Daida, J.M.; Chaudhary, S. Classification of spectral imagery using genetic programming. In Proceedings of the 2nd Annual Conference on Genetic and Evolutionary Computation; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 2000; pp. 726–733. [Google Scholar]
- Almeida, A.E.; Torres, R.D.S. Remote Sensing Image Classification Using Genetic-Programming-Based Time Series Similarity Functions. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1499–1503. [Google Scholar] [CrossRef]
- Menini, N.; Almeida, A.E.; Lamparelli, R.; le Maire, G.; dos Santos, J.A.; Pedrini, H.; Hirota, M.; Torres, R.D.S. A Soft Computing Framework for Image Classification Based on Recurrence Plots. IEEE Geosci. Remote Sens. Lett. 2019, 16, 320–324. [Google Scholar] [CrossRef]
- Calumby, R.T.; da Silva Torres, R.; Gonçalves, M.A. Multimodal retrieval with relevance feedback based on genetic programming. Multimed. Tools Appl. 2014, 69, 991–1019. [Google Scholar] [CrossRef]
- Saraiva, P.C.; Cavalcanti, J.M.; Gonçalves, M.A.; dos Santos, K.C.L.; de Moura, E.S.; Torres, R.d.S. Evaluation of parameters for combining multiple textual sources of evidence for Web image retrieval using genetic programming. J. Braz. Comput. Soc. 2013, 19, 147–160. [Google Scholar] [CrossRef] [Green Version]
- Hernández, J.; dos Santos, J.A.; Torres, R.D.S. Learning to Combine Spectral Indices with Genetic Programming. In Proceedings of the 29th Conference on Graphics, Patterns and Images (SIBGRAPI), Sao Paulo, Brazil, 4–7 October 2016; pp. 408–415. [Google Scholar]
- Manning, C.D.; Raghavan, P.; Schütze, H. Introduction to Information Retrieval; Cambridge University Press: New York, NY, USA, 2008. [Google Scholar]
- Dantas, V.L.; Hirota, M.; Oliveira, R.S.; Pausas, J.G. Disturbance maintains alternative biome states. Ecol. Lett. 2016, 19, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Freitas, R.M.; Arai, E.; Adami, M.; Ferreira, A.S.; Sato, O.Y.; Shimabukuro, Y.E.; Rosa, R.R.; Anderson, L.O.; Friedrich, B.; Rudorff, T. Virtual laboratory of remote sensing time series: Visualization of MODIS EVI2 data set over South America. J. Comput. Interdiscip. Sci. 2011, 2, 57–68. [Google Scholar] [CrossRef]
- Kovalskyy, V.; Roy, D. The global availability of Landsat 5 TM and Landsat 7 ETM+ land surface observations and implications for global 30m Landsat data product generation. Remote Sens. Environ. 2013, 130, 280–293. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Viña, A.; Gitelson, A.A.; Nguy-Robertson, A.L.; Peng, Y. Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sens. Environ. 2011, 115, 3468–3478. [Google Scholar] [CrossRef]
- Rouse, J.W., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with Erts. NASA Goddard Space Flight Cent. 3d ERTS-1 Symp. 1974, 351, 309. [Google Scholar]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning; Springer Series in Statistics; Springer New York Inc.: New York, NY, USA, 2001. [Google Scholar]
- Berndt, D.J.; Clifford, J. Using Dynamic Time Warping to Find Patterns in Time Series. In AAAIWS’94, Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining; AAAI Press: New York, NY, USA, 1994; pp. 359–370. [Google Scholar]
- Demšar, J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7, 1–30. [Google Scholar]
- Dietterich, T.G. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput. 1998, 10, 1895–1923. [Google Scholar] [CrossRef] [Green Version]
- Alberton, B.; Almeida, J.; Helm, R.; Torres, R.D.S.; Menzel, A.; Morellato, L.P.C. Using phenological cameras to track the green up in a cerrado savanna and its on-the-ground validation. Ecol. Inform. 2014, 19, 62–70. [Google Scholar] [CrossRef]
- Almeida, J.; dos Santos, J.A.; Alberton, B.; Torres, R.D.S.; Morellato, L.P.C. Applying machine learning based on multiscale classifiers to detect remote phenology patterns in Cerrado savanna trees. Ecol. Inform. 2014, 23, 49–61. [Google Scholar] [CrossRef]
- Bueno, M.L.; Dexter, K.G.; Pennington, R.T.; Pontara, V.; Neves, D.M.; Ratter, J.A.; de Oliveira-Filho, A.T. The environmental triangle of the Cerrado Domain: Ecological factors driving shifts in tree species composition between forests and savannas. J. Ecol. 2018, 106, 2109–2120. [Google Scholar] [CrossRef] [Green Version]
- Zemp, D.C.; Schleussner, C.F.; Barbosa, H.M.; Hirota, M.; Montade, V.; Sampaio, G.; Staal, A.; Wang-Erlandsson, L.; Rammig, A. Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks. Nat. Commun. 2017, 8, 14681. [Google Scholar] [CrossRef]
- Hernández, J.; Ferreira, E.; dos Santos, J.A.; Torres, R.D.S. Fusion of genetic-programming-based indices in hyperspectral image classification tasks. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017. [Google Scholar]
- Nag, K.; Pal, N.R. A Multiobjective Genetic Programming-Based Ensemble for Simultaneous Feature Selection and Classification. IEEE Trans. Cybern. 2016, 46, 499–510. [Google Scholar] [CrossRef]
- Liddle, T.; Johnston, M.; Zhang, M. Multi-objective genetic programming for object detection. In Proceedings of the IEEE Congress on Evolutionary Computation, Barcelona, Spain, 18–23 July 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1–8. [Google Scholar]
- Bleuler, S.; Brack, M.; Thiele, L.; Zitzler, E. Multiobjective genetic programming: Reducing bloat using SPEA2. In Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546), Seoul, Korea, 27–30 May 2001; IEEE: Piscataway, NJ, USA, 2001; Volume 1, pp. 536–543. [Google Scholar]
- Shao, L.; Liu, L.; Li, X. Feature learning for image classification via multiobjective genetic programming. IEEE Trans. Neural Netw. Learn. Syst. 2013, 25, 1359–1371. [Google Scholar] [CrossRef]
- Rodriguez-Vazquez, K.; Fonseca, C.M.; Fleming, P.J. ’Identifying the structure of nonlinear dynamic systems using multiobjective genetic programming. IEEE Trans. Syst. Man Cybern.-Part A Syst. Hum. 2004, 34, 531–545. [Google Scholar] [CrossRef]
- Tay, J.C.; Ho, N.B. Evolving dispatching rules using genetic programming for solving multi-objective flexible job-shop problems. Comput. Ind. Eng. 2008, 54, 453–473. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Zhang, M.; Browne, W.N. Figure-ground image segmentation using feature-based multi-objective genetic programming techniques. Neural Comput. Appl. 2019, 31, 3075–3094. [Google Scholar] [CrossRef]
Landsat | MODIS | |||
---|---|---|---|---|
Name | λ (μm) | λ (μm) | ||
Blue | B1 | 0.45–0.52 | B3 | 0.46–0.48 |
Green | B2 | 0.52–0.60 | B4 | 0.55–0.57 |
Red | B3 | 0.63–0.69 | B1 | 0.62–0.67 |
NIR | B4 | 0.76–0.90 | B2 | 0.84–0.88 |
NIR 2 | - | - | B5 | 1.23–1.25 |
SWIR | B5 | 1.55–1.75 | B6 | 1.63–1.65 |
SWIR 2 | B7 | 2.08–2.35 | B7 | 2.11–2.16 |
Parameter | Value |
---|---|
Population size | 100 |
Generations | 200 |
Operators (intern nodes) | {+, -, *, %, srt(), rlog()} |
Parameters (laves) | |
Maximum initial tree depth | 6 |
Selection method | Tournament |
Crossover rate | |
Mutation rate |
Landsat | MODIS | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Forest | Savanna | Forest | Savanna | |||||||
Prod. | User | Prod. | User | Acc. | Prod. | User | Prod. | User | Acc. | |
NDVI | 89.28 | 86.60 | 90.49 | 92.44 | 89.89 | 78.71 | 80.19 | 86.44 | 85.37 | 82.58 |
EVI | 87.75 | 85.64 | 89.88 | 91.42 | 88.81 | 80.90 | 83.79 | 89.10 | 86.98 | 85.00 |
EVI2 | 87.34 | 85.14 | 89.48 | 91.10 | 88.41 | 78.24 | 81.90 | 87.93 | 85.27 | 83.09 |
GPVI | 96.38 | 93.59 | 95.46 | 97.46 | 95.92 | 88.30 | 86.16 | 91.09 | 91.08 | 89.69 |
Landsat | MODIS | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
EGF | SDF | EGF | SDF | |||||||
Prod. | User | Prod. | User | Acc. | Prod. | User | Prod. | User | Acc. | |
NDVI | 67.04 | 92.94 | 39.95 | 9.18 | 53.50 | 75.17 | 75.00 | 61.61 | 12.95 | 68.39 |
EVI | 64.50 | 95.21 | 61.38 | 12.72 | 62.94 | 72.19 | 96.73 | 63.39 | 13.02 | 67.79 |
EVI2 | 63.93 | 94.55 | 56.61 | 11.61 | 60.27 | 69.95 | 96.41 | 61.08 | 12.20 | 65.52 |
GPVI | 78.40 | 96.03 | 61.90 | 19.34 | 70.15 | 84.44 | 98.51 | 78.72 | 23.21 | 81.58 |
Landsat | MODIS | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
TS | FS | TS | FS | |||||||
Prod. | User | Prod. | User | Acc. | Prod. | User | Prod. | User | Acc. | |
NDVI | 57.92 | 96.96 | 73.70 | 10.60 | 65.81 | 59.89 | 96.80 | 70.99 | 10.88 | 65.44 |
EVI | 58.37 | 96.17 | 65.61 | 9.72 | 61.99 | 62.91 | 96.03 | 62.28 | 10.33 | 62.60 |
EVI2 | 58.36 | 96.17 | 66.17 | 9.71 | 62.27 | 62.68 | 96.01 | 62.48 | 10.26 | 62.58 |
GPVI | 71.06 | 97.66 | 74.89 | 14.98 | 72.98 | 58.62 | 97.32 | 76.34 | 11.28 | 67.48 |
Forest | Savanna | Total | ||||
---|---|---|---|---|---|---|
Sensor | Index | Producer | User | Producer | User | Accuracy |
Landsat | NDVI | |||||
EVI | ||||||
EVI2 | ||||||
GPVI | ||||||
MODIS | NDVI | |||||
EVI | ||||||
EVI2 | ||||||
GPVI |
Evergreen Forest | Semi-Deciduous Forest | Total | ||||
---|---|---|---|---|---|---|
Sensor | Index | Producer | User | Producer | User | Accuracy |
Landsat | NDVI | |||||
EVI | ||||||
EVI2 | ||||||
GPVI | ||||||
MODIS | NDVI | |||||
EVI | ||||||
EVI2 | ||||||
GPVI |
Typical Savanna | Forested Savanna | Total | ||||
---|---|---|---|---|---|---|
Sensor | Index | Producer | User | Producer | User | Accuracy |
Landsat | NDVI | |||||
EVI | ||||||
EVI2 | ||||||
GPVI | ||||||
MODIS | NDVI | |||||
EVI | ||||||
EVI2 | ||||||
GPVI |
forest/savanna | |||||||||
---|---|---|---|---|---|---|---|---|---|
Landsat | |||||||||
SWIR | NIR | - | % | rlog | srt | NIR%SWIR | * | + | rlog(NIR%SWIR) |
136 | 131 | 127 | 120 | 104 | 92 | 83 | 55 | 29 | 22 |
MODIS | |||||||||
NIR | % | + | SWIR | - | srt | NIR2 | * | NIR%SWIR | Blue |
99 | 96 | 85 | 77 | 63 | 58 | 33 | 33 | 32 | 30 |
forest/semi-deciduous forest | |||||||||
Landsat | |||||||||
% | * | - | rlog | + | srt | Blue | SWIR | SWIR2 | Green |
444 | 344 | 336 | 261 | 249 | 245 | 244 | 218 | 218 | 201 |
MODIS | |||||||||
- | SWIR | % | NIR2 | + | * | srt | SWIR2 | Blue | rlog |
622 | 470 | 436 | 425 | 356 | 279 | 276 | 224 | 189 | 181 |
typical savanna/forested savanna | |||||||||
Landsat | |||||||||
rlog | SWIR | % | * | srt | + | - | Blue | Red | NIR |
551 | 476 | 401 | 353 | 335 | 291 | 246 | 223 | 167 | 95 |
MODIS | |||||||||
srt | Red | * | % | + | - | NIR2 | rlog | srt(Red) | SWIR2 |
628 | 431 | 343 | 333 | 324 | 283 | 252 | 191 | 151 | 143 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albarracín, J.F.H.; Oliveira, R.S.; Hirota, M.; dos Santos, J.A.; Torres, R.d.S. A Soft Computing Approach for Selecting and Combining Spectral Bands. Remote Sens. 2020, 12, 2267. https://doi.org/10.3390/rs12142267
Albarracín JFH, Oliveira RS, Hirota M, dos Santos JA, Torres RdS. A Soft Computing Approach for Selecting and Combining Spectral Bands. Remote Sensing. 2020; 12(14):2267. https://doi.org/10.3390/rs12142267
Chicago/Turabian StyleAlbarracín, Juan F. H., Rafael S. Oliveira, Marina Hirota, Jefersson A. dos Santos, and Ricardo da S. Torres. 2020. "A Soft Computing Approach for Selecting and Combining Spectral Bands" Remote Sensing 12, no. 14: 2267. https://doi.org/10.3390/rs12142267
APA StyleAlbarracín, J. F. H., Oliveira, R. S., Hirota, M., dos Santos, J. A., & Torres, R. d. S. (2020). A Soft Computing Approach for Selecting and Combining Spectral Bands. Remote Sensing, 12(14), 2267. https://doi.org/10.3390/rs12142267