A Self-Adaptive Mean Shift Tree-Segmentation Method Using UAV LiDAR Data
"> Figure 1
<p>An example of 8 angular sectors.</p> "> Figure 2
<p>(<b>a</b>) Points belong to sector θ<sub>j</sub>; (<b>b</b>) a vertical profile; (<b>c</b>) light detection and ranging (LiDAR) surface points.</p> "> Figure 3
<p>Sample plots: (<b>a</b>) simple plot; (<b>b</b>) complex plot.</p> "> Figure 4
<p>Results of the self-adaptive mean shift tree segmentation for seven plots: (<b>a</b>) Plot 1, (<b>b</b>) Plot 2, (<b>c</b>) Plot 3, (<b>d</b>) Plot 4, (<b>e</b>) Plot 5, (<b>f</b>) Plot 6, and (<b>g</b>) Plot 7.</p> "> Figure 4 Cont.
<p>Results of the self-adaptive mean shift tree segmentation for seven plots: (<b>a</b>) Plot 1, (<b>b</b>) Plot 2, (<b>c</b>) Plot 3, (<b>d</b>) Plot 4, (<b>e</b>) Plot 5, (<b>f</b>) Plot 6, and (<b>g</b>) Plot 7.</p> "> Figure 5
<p>Results of different tree segmentation methods for seven plots: (1) marker-controlled watershed segmentation, (2) Fixed bandwidth mean shift, (3) Yan’s in [<a href="#B37-remotesensing-12-00515" class="html-bibr">37</a>], and (4) Self-adaptive bandwidth mean shift.</p> "> Figure 5 Cont.
<p>Results of different tree segmentation methods for seven plots: (1) marker-controlled watershed segmentation, (2) Fixed bandwidth mean shift, (3) Yan’s in [<a href="#B37-remotesensing-12-00515" class="html-bibr">37</a>], and (4) Self-adaptive bandwidth mean shift.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Self-Adaptive Kernel Bandwidth Determination
- 3D space division, which locates the global maximum point in a point cloud as the center point to divide the point cloud into a set of angular sectors at multiple directions.
- Crown surface generation, which generates a vertical profile for each sector and extracts LiDAR canopy surface points to simulate a crown surface.
- Kernel bandwidth determination, which, from the generated crown surface, a crown boundary is delineated to automatically determine the kernel bandwidth according to the between-tree gap and height variation.
2.1.1. 3D Space Division
2.1.2. Crown Surface Simulation
2.1.3. Kernel Bandwidth Determination
2.2. Mean Shift-Based Individual Tree Segmentation
3. Experimental Results and Discussion
3.1. Datasets
3.2. Individual Tree Segmentation
3.2.1. Parameter Analysis
3.2.2. Sensitivity Analysis of Point Density on Individual Tree Segmentation
3.2.3. Overall Performance
3.3. Comparative Tests
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
UAV | unmanned aerial vehicle |
LiDAR | light detection and ranging |
3D | three-dimensional |
CHM | canopy height model |
CSF | cloth simulation |
DTM | digital terrain model |
DBH | diameter at breast height |
AGB | aboveground biomass |
LM | local maxima |
GPS | global positioning system |
IMU | inertial measurement unit |
RTK | real-time kinematic |
DET | segmentation accuracy |
OM | omission error |
COM | commission error |
de | the number of trees correctly detected |
ref | the number of reference trees |
om | the number of undetected trees |
com | the number of trees falsely detected |
References
- Zhang, C.; Zhou, Y.; Qiu, F. Individual Tree Segmentation from LiDAR Point Clouds for Urban Forest Inventory. Remote Sens. 2015, 7, 7892–7913. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Hyyppä, J.; Litkey, P.; Kaartinen, H.; Vastaranta, M.; Holopainen, M. Single-Sensor Solution to Tree Species Classification Using Multispectral Airborne Laser Scanning. Remote Sens. 2017, 9, 108. [Google Scholar] [CrossRef] [Green Version]
- Hamraz, H.; Contreras, M.A.; Zhang, J. A robust approach for tree segmentation in deciduous forests using small-footprint airborne LiDAR data. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 532–541. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Shen, X.; Cao, L.; Wang, G.; Cao, F. Estimating forest structural attributes using UAV-LiDAR data in Ginkgo plantations. ISPRS J. Photogramm. Remote Sens. 2018, 146, 465–482. [Google Scholar] [CrossRef]
- Wallace, L.; Lucieer, A.; Watson, C.; Turner, D. Development of a UAV-LiDAR System with Application to Forest Inventory. Remote Sens. 2012, 4, 1519–1543. [Google Scholar] [CrossRef] [Green Version]
- Wallace, L.; Lucieer, A.; Watson, C.S. Evaluating Tree Detection and Segmentation Routines on Very High Resolution UAV LiDAR Data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7619–7628. [Google Scholar] [CrossRef]
- Liu, L.; Lim, S.; Shen, X.; Yebra, M. A hybrid method for segmenting individual trees from airborne lidar data. Comput. Electron. Agric. 2019, 163. [Google Scholar] [CrossRef]
- Sankey, T.; Donager, J.; McVay, J.; Sankey, J.B. UAV lidar and hyperspectral fusion for forest monitoring in the southwestern USA. Remote Sens. Environ. 2017, 195, 30–43. [Google Scholar] [CrossRef]
- Tian, J.; Wang, L.; Li, X.; Gong, H.; Shi, C.; Zhong, R.; Liu, X. Comparison of UAV and WorldView-2 imagery for mapping leaf area index of mangrove forest. Int. J. Appl. Earth Obs. Geoinf. 2017, 61, 22–31. [Google Scholar] [CrossRef]
- Torresan, C.; Berton, A.; Carotenuto, F.; Gennaro, S.F.D.; Gioli, B.; Matese, A.; Miglietta, F.; Vagnoli, C.; Zaldei, A.; Wallace, L. Forestry applications of UAVs in Europe: A review. Int. J. Remote Sens. 2017, 38, 2427–2447. [Google Scholar] [CrossRef]
- Cao, L.; Coops, N.C.; Innes, J.L.; Sheppard, S.R.J.; Fu, L.; Ruan, H.; She, G. Estimation of forest biomass dynamics in subtropical forests using multi-temporal airborne LiDAR data. Remote Sens. Environ. 2016, 178, 158–171. [Google Scholar] [CrossRef]
- Matasci, G.; Hermosilla, T.; Wulder, M.A.; White, J.C.; Coops, N.C.; Hobart, G.W.; Zald, H.S.J. Large-area mapping of Canadian boreal forest cover, height, biomass and other structural attributes using Landsat composites and lidar plots. Remote Sens. Environ. 2018, 209, 90–106. [Google Scholar] [CrossRef]
- Allouis, T.; Durrieu, S.; Vega, C.; Couteron, P. Stem Volume and Above-Ground Biomass Estimation of Individual Pine Trees From LiDAR Data: Contribution of Full-Waveform Signals. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2013, 6, 924–934. [Google Scholar] [CrossRef]
- Wang, D.; Xin, X.; Shao, Q.; Brolly, M.; Zhu, Z.; Chen, J. Modeling Aboveground Biomass in Hulunber Grassland Ecosystem by Using Unmanned Aerial Vehicle Discrete Lidar. Sensors 2017, 17, 180. [Google Scholar] [CrossRef] [Green Version]
- Zhen, Z.; Quackenbush, L.J.; Zhang, L. Trends in Automatic Individual Tree Crown Detection and Delineation—Evolution of LiDAR Data. Remote Sens. 2016, 8, 333. [Google Scholar] [CrossRef] [Green Version]
- Hyyppä, J.; Yu, X.; Hyyppä, H.; Vastaranta, M.; Holopainen, M.; Kukko, A.; Kaartinen, H.; Jaakkola, A.; Vaaja, M.; Koskinen, J.; et al. Advances in Forest Inventory Using Airborne Laser Scanning. Remote Sens. 2012, 4, 1190–1207. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Baldocchi, D.; Gong, P.; Kelly, M. Isolating Individual Trees in a Savanna Woodland Using Small Footprint Lidar Data. Photogramm. Eng. Remote Sens. 2006, 72, 923–932. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Slatton, K.C.; Roth, B.E.; Cropper, W.P. Adaptive clustering of airborne LiDAR data to segment individual tree crowns in managed pine forests. Int. J. Remote Sens. 2010, 31, 117–139. [Google Scholar] [CrossRef]
- Solberg, S.; Naesset, E.; Bollandsas, O.M. Single Tree Segmentation Using Airborne Laser Scanner Data in a Structurally Heterogeneous Spruce Forest. Photogramm. Eng. Remote Sens. 2006, 72, 1369–1378. [Google Scholar] [CrossRef]
- Popescu, S.C. Estimating biomass of individual pine trees using airborne lidar. Biomass Bioenergy 2007, 31, 646–655. [Google Scholar] [CrossRef]
- Falkowski, M.J.; Smith, A.M.S.; Gessler, P.E.; Hudak, A.T.; Vierling, L.A.; Evans, J.S. The influence of conifer forest canopy cover on the accuracy of two individual tree measurement algorithms using lidar data. Can. J. Remote Sens. 2008, 34, S338–S350. [Google Scholar] [CrossRef]
- Korpela, I.; Tuomola, T.; Välimäki, E. Mapping Forest Plots: An Efficient Method Combining Photogrammetry and Field Triangulation. Silva. Fenn. 2007, 41, 457–469. [Google Scholar] [CrossRef] [Green Version]
- Lähivaara, T.; Seppänen, A.; Kaipio, J.P.; Vauhkonen, J.; Korhonen, L.; Tokola, T.; Maltamo, M. Bayesian Approach to Tree Detection Based on Airborne Laser Scanning Data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2690–2699. [Google Scholar] [CrossRef]
- Paris, C.; Valduga, D.; Bruzzone, L. A Hierarchical Approach to Three-Dimensional Segmentation of LiDAR Data at Single-Tree Level in a Multilayered Forest. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4190–4203. [Google Scholar] [CrossRef]
- Hengl, T. Finding the right pixel size. Comput. Geosci. 2006, 32, 1283–1298. [Google Scholar] [CrossRef]
- Vauhkonen, J.; Ene, L.; Gupta, S.; Heinzel, J.; Holmgren, J.; Pitkanen, J.; Solberg, S.; Wang, Y.; Weinacker, H.; Hauglin, K.M.; et al. Comparative testing of single-tree detection algorithms under different types of forest. Forestry 2011, 85, 27–40. [Google Scholar] [CrossRef] [Green Version]
- Harikumar, A.; Bovolo, F.; Bruzzone, L. Subdominant Tree Detection in Multi-Layered Forests by a Local Projection of Airborne LiDAR Data; IGARSS: Fortworth, TX, USA, 2017. [Google Scholar]
- Polewski, P.; Yao, W.; Heurich, M.; Krzystek, P.; Stilla, U. Detection of fallen trees in ALS point clouds using a Normalized Cut approach trained by simulation. ISPRS J. Photogramm. Remote Sens. 2015, 105, 252–271. [Google Scholar] [CrossRef]
- Hu, X.; Wei, C.; Xu, W. Adaptive Mean Shift-Based Identification of Individual Trees Using Airborne LiDAR Data. Remote Sens. 2017, 9, 148. [Google Scholar] [CrossRef] [Green Version]
- Ferraz, A.; Bretar, F.; Jacquemoud, S.; Gonçalves, G.; Pereira, L.; Tomé, M.; Soares, P. 3-D mapping of a multi-layer ed Mediterranean forest using ALS data. Remote Sens. Environ. 2012, 121, 210–223. [Google Scholar] [CrossRef]
- Vega, C.; Hamrouni, A.; El Mokhtari, S.; Morel, J.; Bock, J.; Renaud, J.P.; Bouvier, M.; Durrieu, S. PTrees: A point-based approach to forest tree extraction from lidar data. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 98–108. [Google Scholar] [CrossRef]
- Sačkov, I.; Hlásny, T.; Bucha, T.; Juriš, M. Integration of tree allometry rules to treetops detection and tree crowns delineation using airborne lidar data. iForest 2017, 10, 459–467. [Google Scholar] [CrossRef] [Green Version]
- Dai, W.; Yang, B.; Dong, Z.; Shaker, A. A new method for 3D individual tree extraction using multispectral airborne LiDAR point clouds. ISPRS J. Photogramm. Remote Sens. 2018, 144, 400–411. [Google Scholar] [CrossRef]
- Chen, W.; Hu, X.; Chen, W.; Hong, Y.; Yang, M. Airborne LiDAR Remote Sensing for Individual Tree Forest Inventory Using Trunk Detection-Aided Mean Shift Clustering Techniques. Remote Sens. 2018, 10, 1078. [Google Scholar] [CrossRef] [Green Version]
- Hamraz, H.; Contreras, M.A.; Zhang, J. Vertical stratification of forest canopy for segmentation of understory trees within small-footprint airborne LiDAR point clouds. ISPRS J. Photogramm. Remote Sens. 2017, 130, 385–392. [Google Scholar] [CrossRef] [Green Version]
- Ferraz, A.; Saatchi, S.; Mallet, C.; Meyer, V. Lidar detection of individual tree size in tropical forests. Remote Sens. Environ. 2016, 183, 318–333. [Google Scholar] [CrossRef]
- Yan, W.; Guan, H.; Cao, L.; Yu, Y.; Gao, S.; Lu, J. An Automated Hierarchical Approach for Three-Dimensional Segmentation of Single Trees Using UAV LiDAR Data. Remote Sens. 2018, 10, 1999. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Qi, J.; Wan, P.; Wang, H.; Xie, D.; Wang, X.; Yan, G. An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation. Remote Sens. 2016, 8, 501. [Google Scholar] [CrossRef]
- BCAL LiDAR Tools; Version bcal_lidar_tools_envi5X for ENVI 5.x, ed; Idaho State University, Department of Geosciences: Pocatello, ID, USA; Boise Center Aerospace Laboratory (BCAL): Boise, ID, USA, 2016.
- Singh, K.; Chen, G.; Mccarter, J.; Meentemeyer, R. Effects of LiDAR point density and landscape context on estimates of urban forest biomass. ISPRS J. Photogramm. Remote Sens. 2015, 101, 310–322. [Google Scholar] [CrossRef] [Green Version]
Parameters | Value |
---|---|
Weight | 5.8 kg |
Working time | 2.5 h each battery |
Laser scanning system | Velodyne 16E |
Measurement distance range | 100 m |
Vertical field angle | −15 ~+15 degrees |
Data accuracy | <5 cm |
Parameter | Value | DET | OM | COM |
---|---|---|---|---|
ɛ | 0.1 m | 0.87 | 0.13 | 0.13 |
0.2 m | 0.87 | 0.13 | 0.09 | |
0.3 m | 0.80 | 0.20 | 0.08 | |
0.4 m | 0.77 | 0.23 | 0.08 | |
0.5 m | 0.72 | 0.28 | 0.07 | |
n | 2 | 0.84 | 0.16 | 0.04 |
4 | 0.85 | 0.15 | 0.05 | |
6 | 0.85 | 0.15 | 0.06 | |
8 | 0.87 | 0.13 | 0.09 | |
12 | 0.87 | 0.13 | 0.13 |
Density | DET | OM | COM |
---|---|---|---|
100% (40 points/m2) | 0.87 | 0.13 | 0.09 |
50% (20 points/m2) | 0.72 | 0.28 | 0.07 |
25% (10 points/m2) | 0.55 | 0.45 | 0.07 |
10% (4 points/m2) | 0.32 | 0.68 | 0.05 |
Plots | Number | Ref | DET | OM | COM |
---|---|---|---|---|---|
Simple plots | Plot 1-3 | 154 | 0.95 | 0.05 | 0.08 |
Complex plots | Plot 4-7 | 124 | 0.80 | 0.20 | 0.10 |
Method | Parameters | Value |
---|---|---|
Marker-controlled watershed segmentation | Spatial resolution of canopy height model | 0.5 m |
Fixed bandwidth mean shift | Search radius | 2.0 m |
Horizontal bandwidth | 1.5 m | |
Vertical bandwidth | 5.0 m | |
Yan’s in [37] | Voxel size | 0.2 m |
Height compression | 4 | |
Search radius | 2.0 m | |
Horizontal bandwidth | 1.5 m | |
Vertical bandwidth | 5.0 m | |
Minimum distance between clusters | 2.0 m | |
Profile size in x- and y- direction | 0.5 m | |
Maximum horizontal distance | 4.5 m |
Method | DET | OM | COM |
---|---|---|---|
Self-adaptive bandwidth mean shift | 0.87 | 0.13 | 0.09 |
Marker-controlled watershed segmentation | 0.87 | 0.13 | 0.13 |
Fixed bandwidth mean shift | 0.84 | 0.16 | 0.11 |
Yan’s in [37] | 0.90 | 0.10 | 0.11 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, W.; Guan, H.; Cao, L.; Yu, Y.; Li, C.; Lu, J. A Self-Adaptive Mean Shift Tree-Segmentation Method Using UAV LiDAR Data. Remote Sens. 2020, 12, 515. https://doi.org/10.3390/rs12030515
Yan W, Guan H, Cao L, Yu Y, Li C, Lu J. A Self-Adaptive Mean Shift Tree-Segmentation Method Using UAV LiDAR Data. Remote Sensing. 2020; 12(3):515. https://doi.org/10.3390/rs12030515
Chicago/Turabian StyleYan, Wanqian, Haiyan Guan, Lin Cao, Yongtao Yu, Cheng Li, and JianYong Lu. 2020. "A Self-Adaptive Mean Shift Tree-Segmentation Method Using UAV LiDAR Data" Remote Sensing 12, no. 3: 515. https://doi.org/10.3390/rs12030515