Cirrus Detection Based on RPCA and Fractal Dictionary Learning in Infrared imagery
"> Figure 1
<p>Description of the composition of the proposed infrared image. The data is decomposed into low rank components and sparse components, which include false alarm sources and noise. The three parts are described separately, i.e., learning low rank components and sparse components, in which <span class="html-italic">D<sub>s</sub></span> is a fractal dictionary constructed from random fractal image.</p> "> Figure 2
<p>(<b>a</b>) Original infrared image; (<b>b</b>) sparse image of <math display="inline"><semantics> <mrow> <mi>λ</mi> </mrow> </semantics></math> = 0.01; (<b>c</b>) sparse image of <math display="inline"><semantics> <mrow> <mi>λ</mi> </mrow> </semantics></math> = 0.03.</p> "> Figure 3
<p>Generation process of random fractal images.</p> "> Figure 4
<p>(<b>a</b>) random image generated when n = 4 (resolution 17 × 17) (<b>b</b>) random fractal image generated when n = 6 (resolution 65 × 65) (<b>c</b>) random fractal image generated when n = 9 (resolution 513 × 513).</p> "> Figure 5
<p>Process of constructing fractal dictionary based on random fractal image.</p> "> Figure 6
<p>(<b>a</b>) Fractal dictionary; (<b>b</b>) fractal dictionary represented by image blocks; (<b>c</b>) learned dictionary.</p> "> Figure 7
<p>Cirrus images of nine scenes. (<b>a</b>) Slender cirrus; (<b>b</b>) wispy and curly cirrus; (<b>c</b>)pointy cirrus; (<b>d</b>) strip and cluster cirrus; (<b>e</b>) cluster cirrus; (<b>f</b>) cluster cirrus; (<b>g</b>) pointy cirrus; (<b>h</b>) densely distributed punctate cirrus; (<b>i</b>) sparse distribution of large and small cirrus.</p> "> Figure 8
<p>(<b>a</b>) Groundtruth image; (<b>b</b>) predicted image.</p> "> Figure 9
<p>ROC curves of six images under different s values.</p> "> Figure 9 Cont.
<p>ROC curves of six images under different s values.</p> "> Figure 10
<p>PR curves of 6 images under different s values.</p> "> Figure 10 Cont.
<p>PR curves of 6 images under different s values.</p> "> Figure 11
<p>Detecting results. (<b>a</b>) Sparse images obtained by RPCA. (<b>b</b>) Sparse representation image reconstructed by KSVD algorithm. (<b>c</b>) The image after threshold segmentation.</p> "> Figure 11 Cont.
<p>Detecting results. (<b>a</b>) Sparse images obtained by RPCA. (<b>b</b>) Sparse representation image reconstructed by KSVD algorithm. (<b>c</b>) The image after threshold segmentation.</p> "> Figure 12
<p>ROC curves of different test images. The ROC curve of (<b>a</b>–<b>i</b>) in the figure respectively corresponds to the detection effect of (<b>a</b>–<b>i</b>) image in <a href="#remotesensing-12-00142-f007" class="html-fig">Figure 7</a>. The closer a curve is to the top-left corner, the better the corresponding method is.</p> "> Figure 12 Cont.
<p>ROC curves of different test images. The ROC curve of (<b>a</b>–<b>i</b>) in the figure respectively corresponds to the detection effect of (<b>a</b>–<b>i</b>) image in <a href="#remotesensing-12-00142-f007" class="html-fig">Figure 7</a>. The closer a curve is to the top-left corner, the better the corresponding method is.</p> "> Figure 13
<p>PR curves of different test images. The PR curve of (<b>a</b>–<b>i</b>) in the figure respectively corresponds to the detection effect of (<b>a</b>–<b>i</b>) image in <a href="#remotesensing-12-00142-f007" class="html-fig">Figure 7</a>. The closer a curve is to the top-right corner, the better the corresponding method is.</p> "> Figure 13 Cont.
<p>PR curves of different test images. The PR curve of (<b>a</b>–<b>i</b>) in the figure respectively corresponds to the detection effect of (<b>a</b>–<b>i</b>) image in <a href="#remotesensing-12-00142-f007" class="html-fig">Figure 7</a>. The closer a curve is to the top-right corner, the better the corresponding method is.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Robust Principal Component Analysis
2.2. Random Fractal
2.3. Sparse Representation and Dictionary Learning
2.3.1. Orthogonal Matching Pursuit Algorithm
2.3.2. Dictionary Learning Based on KSVD
2.4. Cirrus Detection by RPCA and Fractal Dictionary Learning
3. Results
3.1. Parameter Settings
3.2. Experimental Results and Analysis
3.3. Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, L.; Zhang, R.; Lin, Y.; Xu, S.L. Application in the military of the IR detection technology. Infrared Laser Eng. 2008, 37, 570–574. [Google Scholar]
- Wang, H.; Xiaoliang, S.; Yang, S.; Qifeng, Y. Present State and Perspectives of Small Infrared Targets Detection Technology. Infrared Technol. 2015, 37, 1–10. [Google Scholar]
- Liu, X.; Chen, Y.; Peng, Z.; Wu, J.; Wang, Z. Infrared image super-resolution reconstruction based on quaternion fractional order total variation with Lp quasinorm. Appl. Sci. 2018, 8, 1864. [Google Scholar] [CrossRef] [Green Version]
- Peng, Z.; Zhang, Q.; Wang, J.; Zhang, Q.P. Dim target detection based on nonlinear multi-feature fusion by Karhunen-Loeve transform. Opt. Eng. 2004, 43, 2954–2958. [Google Scholar]
- Zhang, L.; Peng, L.; Zhang, T.; Cao, S.; Peng, Z. Infrared small target detection via non-convex rank approximation minimization joint l2, 1 norm. Remote Sens. 2018, 10, 1821. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Peng, Z. Infrared Small Target Detection Based on Partial Sum of the Tensor Nuclear Norm. Remote Sens. 2019, 11, 382. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Wu, H.; Liu, Y.; Peng, L.; Yang, C.; Peng, Z. Infrared Small Target Detection Based on Non-Convex Optimization with Lp-Norm Constraint. Remote Sens. 2019, 11, 559. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Peng, Z.; Kong, D.; He, Y. Infrared dim and small target detection based on stable multi-subspace learning in heterogeneous scene. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5481–5493. [Google Scholar] [CrossRef]
- Wang, X.; Peng, Z.; Zhang, P.; He, Y. Infrared small target detection via nonnegativity-constrained variational mode decomposition. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1700–1704. [Google Scholar] [CrossRef]
- Wang, X.; Peng, Z.; Kong, D.; Zhang, P. Infrared dim target detection based on total variation regularization and principal component pursuit. Image Vis. Comput. 2017, 63, 1–9. [Google Scholar] [CrossRef]
- Peng, L.; Zhang, T.; Liu, Y.; Li, M.; Peng, Z. Infrared Dim Target Detection using Shearlet’s Kurtosis Maximization Under Non-Uniform Background. Symmetry 2019, 11, 723. [Google Scholar] [CrossRef] [Green Version]
- Foga, S.; Scaramuzza, P.L.; Guo, S.; Zhu, Z.; Dilley, R.D., Jr.; Beckmann, T.; Schmidt, G.L.; Dwyer, J.L.; Hughes, M.J.; Laue, B. Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sens. Environ. 2017, 194, 379–390. [Google Scholar] [CrossRef] [Green Version]
- Qiu, S.; He, B.; Zhu, Z.; Liao, Z.; Quan, X. Improving Fmask cloud and cloud shadow detection in mountainous area for Landsats 4–8 images. Remote Sens. Environ. 2017, 199, 107–119. [Google Scholar] [CrossRef]
- Xiaolin, Z.; Helmer, E.H. An automatic method for screening clouds and cloud shadows in optical satellite image time series in cloudy regions. Remote Sens. Environ. 2018, 214, 135–153. [Google Scholar]
- Chen, Q.; Wu, Y.; Ye, J.; Xie, D. Cloud Detection Method for Remote Sensing Image in Urban Area. Remote Sens. Inf. 2018, 33, 57–61. [Google Scholar]
- Hughes, M.; Daniel, H. Automated Detection of Cloud and Cloud Shadow in Single-Date Landsat Imagery Using Neural Networks and Spatial Post-Processing. Remote Sens. 2014, 6, 4907–4926. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.; Wang, S.; Shi, T.; Lu, Y.; Clothiaux, E.E.; Yu, B. Multiple-kernel learning-based unmixing algorithm for estimation of cloud fractions with MODIS and CloudSat data. In Proceedings of the Geoscience & Remote Sensing Symposium, Munich, Germany, 22–27 July 2012. [Google Scholar]
- Meng, S.; Huang, L.T.; Wang, W.Q. Tensor Decomposition and PCA Jointed Algorithm for Hyperspectral Image Denoising. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1–5. [Google Scholar] [CrossRef]
- Feldman, D.; Schmidt, M.; Sohler, C. Turning big data into tiny data: Constant-size coresets for k-means, pca and projective clustering. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 6–8 January 2013; pp. 1434–1453. [Google Scholar]
- Huizinga, W.; Poot, D.H.; Guyader, J.M.; Klaassen, R.; Coolen, B.F.; van Kranenburg, M.; Van Geuns, R.J.; Uitterdijk, A.; Polfliet, M.; Vandemeulebroucke, J.; et al. PCA-based groupwise image registration for quantitative MRI. Med. Image Anal. 2016, 29, 65–78. [Google Scholar] [CrossRef]
- Wright, J.; Ganesh, A.; Rao, S.; Peng, Y.; Ma, Y. Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization. In Proceedings of the Advances in neural information processing systems, Vancouver, BC, Canada, 7–10 December 2009; pp. 2080–2088. [Google Scholar]
- Wang, L.; Cheng, H. Robust principal component analysis for sparse face recognition Intelligent Control and Information Processing (ICICIP). In Proceedings of the 2013 Fourth International Conference on, Beijing, China, 9–11 June 2013. [Google Scholar]
- Ebadi, S.E.; Izquierdo, E. Foreground segmentation via dynamic tree-structured sparse RPCA. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2016; pp. 314–329. [Google Scholar]
- Yang, B.; Zou, L. Robust foreground detection using block-based RPCA. Opt. Int. J. Light Electron Opt. 2015, 126, 4586–4590. [Google Scholar] [CrossRef]
- Yang, D.; Liao, G.; Zhu, S.; Yang, X. RPCA based moving target detection in strong clutter background. In Proceedings of the 2015 IEEE Radar Conference (RadarCon), Arlington, VA, USA, 10–15 May 2015. [Google Scholar]
- Oveis, A.H.; Sebt, M.A. Dictionary-Based Principal Component Analysis for Ground Moving Target Indication by Synthetic Aperture Radar. IEEE Geosci. Remote Sens. Lett. 2017, 99, 1–5. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Xie, X.; Li, Y. Salient Object Detection via Recursive Sparse Representation. Remote Sens. 2018, 10, 652. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Gao, J.; Zhang, N.; Yang, Y.; Liu, X.; Zheng, H.; Liang, D. An improved statistical iterative algorithm for sparse-view and limited-angle CT image reconstruction. Sci. Rep. 2017, 7, 10747. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, L.; Bioucas-Dias, J.M. Fast Hyperspectral Image Denoising and Inpainting Based on Low-Rank and Sparse Representations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 99, 1–13. [Google Scholar] [CrossRef]
- Hou, J.; Chau, L.P.; Magnenat-Thalmann, N.; He, Y. SLRMA: Sparse Low-Rank Matrix Approximation for Data Compression. IEEE Trans. Circuits Syst. Video Technol. 2015, 27, 1043–1054. [Google Scholar] [CrossRef]
- Qayyum, A.; Malik, A.S.; Naufal, M.; Saad, M.; Mazher, M.; Abdullah, F.; Abdullah, T.A. Designing of overcomplete dictionaries based on DCT and DWT. In Proceedings of the 2015 IEEE Student Symposium in Biomedical Engineering & Sciences ISSBES, Shah Alam, Malaysia, 4 November 2015. [Google Scholar]
- Aharon, M.; Elad, M.; Bruckstein, A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 2006, 54, 4311–4322. [Google Scholar] [CrossRef]
- Zhai, X.; Zhu, W.; Kang, B. Compressed sensing of images combining KSVD and classified sparse representation. Comput. Eng. Appl. 2015, 51, 193–198. [Google Scholar]
- Yan, X.; Yang, B.; Zhang, W.; Liu, C.; Wang, Y. An Improved Denoising Algorithm of Feather and Down Image Based on KSVD. In Proceedings of the 2016 8th International Conference on Information Technology in Medicine and Education (ITME), IEEE Computer Society, Fuzhou, China, 23–25 December 2016. [Google Scholar]
- Zhang, Y.; Ji, K.; Deng, Z.; Zhou, S.; Zou, H. Clustering-based SAR image denoising by sparse representation with KSVD. In Proceedings of the IGARSS 2016-2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 10–15 July 2016. [Google Scholar]
- Xu, Y.; Yang, X.; Ling, H.; Ji, H. A new texture descriptor using multifractal analysis in multi-orientation wavelet pyramid. In Proceedings of the Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 161–168. [Google Scholar]
- Xu, Y.; Quan, Y.; Ling, H.; Ji, H. Dynamic texture classification using dynamic fractal analysis. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 1219–1226. [Google Scholar]
- Liu, M.; Zhao, Y.; Liang, J.; Lin, C.; Bai, H.; Yao, C. Depth Map Up-sampling with Fractal Dimension and Texture-Depth Boundary Consistencies. Neurocomputing 2017, 257, 185–192. [Google Scholar] [CrossRef]
- Zhang, Y.; Fan, Q.; Bao, F.; Liu, Y.; Zhang, C. Single-Image Super-Resolution Based on Rational Fractal Interpolation. IEEE Trans. Image Process. 2018, 27, 3782–3797. [Google Scholar]
- Zhang, Y.D.; Chen, X.Q.; Zhan, T.M.; Jiao, Z.Q.; Sun, Y.; Chen, Z.M.; Yao, Y.; Fang, L.T.; Lv, Y.D.; Wang, S.H. Fractal Dimension Estimation for Developing Pathological Brain Detection System Based on Minkowski-Bouligand Method. IEEE Access 2017, 4, 5937–5947. [Google Scholar] [CrossRef]
- Jin, X.; Qi, D.; Wu, H.; Yu, L.; Zhang, P. Log x-ray image edge detection based on fractal-morphology analysis. In Proceedings of the Chinese Control and Decision Conference, Xuzhou, China, 26–28 May 2010; pp. 2862–2866. [Google Scholar]
- Liu, D.; Li, Z.; Liu, B.; Chen, W.; Liu, T.; Cao, L. Infrared Small Target Detection in Heavy Sky Scene Clutter Based on Sparse Representation. Infrared Phys. Technol. 2017, 85, 13–31. [Google Scholar] [CrossRef]
- Rian, I.M.; Asayama, S. Computational Design of a nature-inspired architectural structure using the concepts of self-similar and random fractals. Autom. Constr. 2016, 66, 43–58. [Google Scholar] [CrossRef]
- Toh, K.C.; Yun, S. An Accelerated Proximal Gradient Algorithm for Nuclear Norm Regularized Least Squares Problems. Pac. J. Optim. 2010, 6, 615–640. [Google Scholar]
- Fan, R.Y.; Wang, H.X.; Zhang, H. A New Analysis of the Iterative Threshold Algorithm for RPCA by Primal-Dual Method. Adv. Mater. Res. 2014, 989–994, 2462–2466. [Google Scholar] [CrossRef]
- Lin, Z.; Chen, M.; Ma, Y. The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices. arXiv 2010, arXiv:1009.5055. [Google Scholar]
- Cai, T.T.; Wang, L. Orthogonal Matching Pursuit for Sparse Signal Recovery with Noise. IEEE Trans. Inf. Theory 2011, 57, 4680–4688. [Google Scholar] [CrossRef]
- Ju, W.; Lam, S.N. An improved algorithm for computing local fractal dimension using the triangular prism method. Comput. Geosci. 2009, 35, 1224–1233. [Google Scholar] [CrossRef]
- Zhou, Y.; Fung, T.; Leung, Y. Improved triangular prism methods for fractal analysis of remotely sensed images. Comput. Geosci. 2016, 90, 64–77. [Google Scholar] [CrossRef]
- Salat, H.; Murcio, R.; Arcaute, E. Multifractal methodology. Phys. A Stat. Mech. Appl. 2017, 473, 467–487. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, Q.; Yang, X. Extended target detection in complex background based on fractal theory. Proc. SPIE Int. Soc. Opt. Eng. 2009, 7283, 728331. [Google Scholar]
Nomenclature | |||
---|---|---|---|
PCA | principal component analysis | DA | the sparse representation image |
RPCA | robust principal component analysis | E | the error estimation matrix |
KSVD | k-clustering singular value decomposition | E′ | the error estimation matrix after zero removal |
OMP | Orthogonal Matching Pursuit | αi | the ith row in the sparse coefficient matrix |
ROC | the receiver operating characteristic | ||
PR | Precision -Recall | αi′ | the sparse coefficient after zero removal |
AUC | Area Under ROC Curve | ||
AUCpr | Area Under PR Curve | di | the ith atom in the over-complete dictionary |
F-measure | comprehensive evaluation index | ||
IOU | intersection over union | s | the size of atomic sample block for constructing fractal dictionary |
Y | the data matrix | ||
L | the low-rank matrix | the sparse transform basis | |
S | the sparse matrix | T0 | the sparsity |
D | the over-complete dictionary | TPR | true positive rate |
Ds | the fractal dictionary | FPR | false positive rate |
Dl | the learnt dictionary | TP | true positive |
A | the coefficient matrix | FP | false positive |
As | the coefficient matrix of sparse component | TN | true negative |
FN | false negative |
INPUT: Infrared image,,, Hurst exponent OUTPUT: Cirrus detection image |
1. The infrared image Y is decomposed by RPCA, and the appropriate sparse component S is obtained according to 2. According to Hurst exponent, random fractal image is obtained by Diamond–Square algorithm 3. An over-complete dictionary based on random fractal images is constructed (if M × N > k, then Ds has k columns; if M by N is less than k, let k be M by N) 4. Sparse coding and dictionary updating are carried out by using KSVD algorithm: Block column vectorization of sparse component S is used to obtain block matrix of image Obtaining Sparse Coefficient Matrix by OMP Algorithm for i = 1:k do The error estimation matrix is obtained when updating column i of the dictionary SVD is performed after de-zero operation of u end for 5. Sparse Representation Image DA Based on D and A 6. DA was processed by morphological filtering and threshold segmentation 7. The cirrus detection image C is obtained |
groundtruth 1 | groundtruth 0 | |
predicted 1 | TP | FP |
predicted 0 | FN | TN |
Size | blockSize8 | blockSize15 | blockSize20 | blockSize30 | blockSize40 | blockSize45 |
---|---|---|---|---|---|---|
Img1 | 0.9981 | 0.9995 | 0.9862 | 0.9982 | 0.9966 | 0.9956 |
Img2 | 1 | 0.9893 | 0.9737 | 0.9586 | 0.9499 | 0.9477 |
Img3 | 0.9882 | 0.9828 | 0.9743 | 0.9227 | 0.9052 | 0.8956 |
Img4 | 0.9652 | 0.9813 | 0.9689 | 0.9672 | 0.9591 | 0.9578 |
Img5 | 0.9878 | 0.9869 | 0.9806 | 0.9574 | 0.9526 | 0.9507 |
Img6 | 0.9769 | 0.9864 | 0.9844 | 0.9792 | 0.9738 | 0.9689 |
Size | blockSize8 | blockSize15 | blockSize20 | blockSize30 | blockSize40 | blockSize45 |
---|---|---|---|---|---|---|
Img1 | 0.9701 | 0.9226 | 0.8690 | 0.7852 | 0.7207 | 0.6857 |
Img2 | 0.9994 | 0.8771 | 0.7974 | 0.6969 | 0.6296 | 0.5972 |
Img3 | 0.7951 | 0.8349 | 0.8032 | 0.6966 | 0.6403 | 0.6215 |
Img4 | 0.8449 | 0.8469 | 0.7959 | 0.7078 | 0.6443 | 0.6196 |
Img5 | 0.8736 | 0.8776 | 0.8276 | 0.7362 | 0.6861 | 0.6643 |
Img6 | 0.7908 | 0.8136 | 0.7831 | 0.7286 | 0.6820 | 0.6600 |
Methods | DivisorstepTP | EightpixelTP | MaxMedian | areaMeasure | fractaldim | SingularityExponent | Proposed |
---|---|---|---|---|---|---|---|
Time(s) | 13.287 | 13.083 | 4.124 | 22.089 | 15.440 | 51.059 | 12.983 |
Methods | DivisorstepTP | EightpixelTP | MaxMedian | areaMeasure | fractaldim | SingularityExponent | Proposed |
---|---|---|---|---|---|---|---|
Img1 | 0.9520 | 0.5702 | 0.8020 | 0.9572 | 0.8894 | 0.8805 | 1 |
Img2 | 0.7866 | 0.5090 | 0.6603 | 0.8163 | 0.7723 | 0.5954 | 1 |
Img3 | 0.9810 | 0.5212 | 0.9623 | 0.9686 | 0.9670 | 0.8322 | 1 |
Img4 | 0.9216 | 0.9202 | 0.8643 | 0.8495 | 0.9449 | 0.8320 | 1 |
Img5 | 0.9710 | 0.9651 | 0.7689 | 0.9811 | 0.9618 | 0.8741 | 0.9656 |
Img6 | 0.9143 | 0.9105 | 0.6902 | 0.9827 | 0.9176 | 0.7660 | 0.9550 |
Img7 | 0.9644 | 0.4705 | 0.6117 | 0.8111 | 0.9485 | 0.9577 | 0.8505 |
Img8 | 0.8579 | 0.5264 | 0.5997 | 0.7149 | 0.8311 | 0.7200 | 0.8988 |
Img9 | 0.9541 | 0.9481 | 0.7759 | 0.9768 | 0.9458 | 0.8475 | 0.9729 |
Methods | Divisorstep TP | Eightpixel TP | MaxMedian | areaMeasure | fractaldim | SingularityExponent | Proposed |
---|---|---|---|---|---|---|---|
Img1 | 0.0455 | 0.0053 | 0.2048 | 0.2218 | 0.0266 | 0.0597 | 0.8259 |
Img2 | 0.6480 | 0.3772 | 0.6079 | 0.6843 | 0.6095 | 0.4428 | 0.7668 |
Img3 | 0.6487 | 0.0500 | 0.8050 | 0.5956 | 0.4578 | 0.1371 | 0.9993 |
Img4 | 0.2390 | 0.2299 | 0.4871 | 0.4791 | 0.3633 | 0.1676 | 0.9994 |
Img5 | 0.3714 | 0.3180 | 0.3370 | 0.8053 | 0.2928 | 0.1257 | 0.8878 |
Img6 | 0.2132 | 0.2038 | 0.2609 | 0.7875 | 0.2389 | 0.1336 | 0.8075 |
Img7 | 0.3886 | 0.0154 | 0.0760 | 0.3304 | 0.3355 | 0.2511 | 0.6601 |
Img8 | 0.5310 | 0.1898 | 0.3171 | 0.4804 | 0.5023 | 0.3488 | 0.8455 |
Img9 | 0.3385 | 0.2985 | 0.3378 | 0.7672 | 0.2759 | 0.1401 | 0.8782 |
Methods | Divisorstep TP | Eightpixel TP | MaxMedian | areaMeasure | fractaldim | SingularityExponent | Proposed |
---|---|---|---|---|---|---|---|
Img1 | 0.1168 | 0.0127 | 0.4124 | 0.3989 | 0.0717 | 0.1803 | 1 |
Img2 | 0.2951 | 0.0122 | 0.2886 | 0.3171 | 0.3108 | 0.0222 | 0.9275 |
Img3 | 0.6315 | 0.4334 | 0.5450 | 0.5450 | 0.6318 | 0.4750 | 0.9963 |
Img4 | 0.6181 | 0.0824 | 0.7882 | 0.8228 | 0.4831 | 0.1772 | 0.9973 |
Img5 | 0.3782 | 0.3348 | 0.4603 | 0.5261 | 0.3222 | 0.1998 | 0.8287 |
Img6 | 0.4015 | 0.3587 | 0.4844 | 0.5327 | 0.3504 | 0.1822 | 0.8371 |
Img7 | 0.5094 | 0.0274 | 0.1988 | 0.2709 | 0.4661 | 0.3542 | 0.8172 |
Img8 | 0.5229 | 0.2163 | 0.3327 | 0.4339 | 0.5019 | 0.3994 | 0.8661 |
Img9 | 0.3283 | 0.3162 | 0.5214 | 0.6046 | 0.4006 | 0.2476 | 0.9723 |
Methods | DivisorstepTP | EightpixelTP | MaxMedian | areaMeasure | fractaldim | SingularityExponent | Proposed |
---|---|---|---|---|---|---|---|
Img1 | 0.0685 | 0.0097 | 0.2054 | 0.2048 | 0.0543 | 0.1295 | 1 |
Img2 | 0.1676 | 0.0084 | 0.1409 | 0.1535 | 0.1545 | 0.0168 | 0.8722 |
Img3 | 0.5016 | 0.3704 | 0.3722 | 0.3722 | 0.4952 | 0.3704 | 0.9967 |
Img4 | 0.4602 | 0.0493 | 0.5897 | 0.6705 | 0.3538 | 0.1352 | 0.9886 |
Img5 | 0.2472 | 0.2201 | 0.2858 | 0.3744 | 0.2309 | 0.1453 | 0.6627 |
Img6 | 0.2852 | 0.2441 | 0.2953 | 0.3829 | 0.2483 | 0.1260 | 0.6884 |
Img7 | 0.3041 | 0.0212 | 0.0881 | 0.1299 | 0.2876 | 0.2426 | 0.5495 |
Img8 | 0.3801 | 0.1706 | 0.1892 | 0.2394 | 0.3460 | 0.2790 | 0.6411 |
Img9 | 0.2272 | 0.2242 | 0.3477 | 0.4032 | 0.2712 | 0.1571 | 0.9283 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyu, Y.; Peng, L.; Pu, T.; Yang, C.; Wang, J.; Peng, Z. Cirrus Detection Based on RPCA and Fractal Dictionary Learning in Infrared imagery. Remote Sens. 2020, 12, 142. https://doi.org/10.3390/rs12010142
Lyu Y, Peng L, Pu T, Yang C, Wang J, Peng Z. Cirrus Detection Based on RPCA and Fractal Dictionary Learning in Infrared imagery. Remote Sensing. 2020; 12(1):142. https://doi.org/10.3390/rs12010142
Chicago/Turabian StyleLyu, Yuxiao, Lingbing Peng, Tian Pu, Chunping Yang, Jun Wang, and Zhenming Peng. 2020. "Cirrus Detection Based on RPCA and Fractal Dictionary Learning in Infrared imagery" Remote Sensing 12, no. 1: 142. https://doi.org/10.3390/rs12010142
APA StyleLyu, Y., Peng, L., Pu, T., Yang, C., Wang, J., & Peng, Z. (2020). Cirrus Detection Based on RPCA and Fractal Dictionary Learning in Infrared imagery. Remote Sensing, 12(1), 142. https://doi.org/10.3390/rs12010142