Satellite-Based Observations Reveal Effects of Weather Variation on Rice Phenology
"> Figure 1
<p>Proportion of years with rice cultivation detected with the satellite data-based estimate for counties with most rice producing areas in California between 2002 and 2017.</p> "> Figure 2
<p>Satellite data-based estimate of rice area versus the area reported by the United States Department of Agriculture for California from 2002 to 2017 at the (<b>a</b>) state level and (<b>b</b>) county level. Each dot represents a year. Black lines are regression lines and red dashed lines are <span class="html-italic">y = x</span>.</p> "> Figure 3
<p>Satellite-data based estimates versus USDA reported (<b>a</b>) planting, (<b>b</b>) heading, and (<b>c</b>) harvest time expressed as day of year (doy; the number of days since 31 December of the previous year) for rice in California. Black lines are regression lines, and red dashed lines are <span class="html-italic">y = x</span>.</p> "> Figure 4
<p>Average (<b>a</b>) planting, (<b>b</b>) heading and (<b>c</b>) harvest dates, growing length of (<b>d</b>) pre-heading period, (<b>e</b>) post-heading period and (<b>f</b>) whole growing season of rice in the Sacramento Valley of California estimated with MODIS data and PhenoRice between 2002 and 2017.</p> "> Figure 5
<p>The relationship between (<b>a</b>) satellite-observed planting date and the pre-season precipitation, (<b>b</b>) satellite-observed planting date and the average mean temperature of pre-season, (<b>c</b>) satellite-observed heading date and the average mean temperature of pre-heading season, and (<b>d</b>) satellite-observed harvest date and the average mean temperature of post-heading season.</p> "> Figure 6
<p>The relationship between (<b>a</b>) the length of the pre-heading period derived from satellite observations and the average mean temperature of pre-heading season, (<b>b</b>) post-heading season length derived from satellite observations and the average mean temperature of the post-heading season, (<b>c</b>) total growing season length derived from satellite observations and the average mean temperature of the rice growth season, for rice in California.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Estimation of Rice Area and Phenology Using Satellite Data
2.2.1. Satellite Data Processing
2.2.2. Model Parameter Description and Calibration
2.3. Comparison of Satellite Data-Based Estimates with Reference Data
2.4. Effect of Weather Variation on Phenological Information
2.5. Comparison of Satellite Predictions with Phenology Model
3. Results
3.1. Spatio-Temporal Distribution of Areas under Rice and Comparison with Official Statistics
3.2. Rice Phenology Estimates
3.3. Phenology in Relation to Temperature and Precipitation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Chmielewski, F.-M.; Müller, A.; Bruns, E. Climate changes and trends in phenology of fruit trees and field crops in Germany, 1961–2000. Agric. For. Meteorol. 2004, 121, 69–78. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Prueger, J.H. Temperature extremes: Effect on plant growth and development. Weather Clim. Extrem. 2015, 10, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Chen, Q.; Ge, Q.; Dai, J.; Qin, Y.; Dai, L.; Zou, X.; Chen, J. Modelling the impacts of climate change and crop management on phenological trends of spring and winter wheat in China. Agric. For. Meteorol. 2018, 248, 518–526. [Google Scholar] [CrossRef]
- Anwar, M.R.; Liu, D.L.; Farquharson, R.J.; Macadam, I.; Abadi, A.; Finlayson, J.; Wang, B.; Ramilan, T. Climate change impacts on phenology and yields of five broadacre crops at four climatologically distinct locations in Australia. Agric. Syst. 2015, 132, 133–144. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.E.; De Beurs, K.M.; Marshall, M. Global phenological response to climate change in crop areas using satellite remote sensing of vegetation, humidity and temperature over 26years. Remote Sens. Environ. 2012, 126, 174–183. [Google Scholar] [CrossRef]
- Sacks, W.J.; Kucharik, C.J. Crop management and phenology trends in the U.S. Corn Belt: Impacts on yields, evapotranspiration and energy balance. Agric. For. Meteorol. 2011, 151, 882–894. [Google Scholar] [CrossRef]
- Barlow, K.; Christy, B.; O’Leary, G.; Riffkin, P.; Nuttall, J. Simulating the impact of extreme heat and frost events on wheat crop production: A review. Field Crop. Res. 2015, 171, 109–119. [Google Scholar] [CrossRef] [Green Version]
- Challinor, A.J.; Wheeler, T.; Craufurd, P.; Slingo, J. Simulation of the impact of high temperature stress on annual crop yields. Agric. For. Meteorol. 2005, 135, 180–189. [Google Scholar] [CrossRef] [Green Version]
- Fitchett, J.M.; Grab, S.; Thompson, D.I. Plant phenology and climate change. Prog. Phys. Geogr. Earth Environ. 2015, 39, 460–482. [Google Scholar] [CrossRef]
- Tao, F.; Yokozawa, M.; Xu, Y.; Hayashi, Y.; Zhang, Z. Climate changes and trends in phenology and yields of field crops in China, 1981–2000. Agric. For. Meteorol. 2006, 138, 82–92. [Google Scholar] [CrossRef]
- Cleland, E.E.; Chuine, I.; Menzel, A.; Mooney, H.A.; Schwartz, M. Shifting plant phenology in response to global change. Trends Ecol. Evol. 2007, 22, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Menzel, A.; von Vopelius, J.; Estrella, N.; Schleip, C.; Dose, V. Farmers’ annual activities are not tracking the speed of climate change. Clim. Res. 2006, 32, 201–207. [Google Scholar]
- Wang, J.; Wang, E.; Feng, L.; Yin, H.; Yu, W. Phenological trends of winter wheat in response to varietal and temperature changes in the North China Plain. Field Crop. Res. 2013, 144, 135–144. [Google Scholar] [CrossRef]
- Oteros, J.; Garcia-Mozo, H.; Botey, R.; Mestre, A.; Galán, C. Variations in cereal crop phenology in Spain over the last twenty-six years (1986–2012). Clim. Chang. 2015, 130, 545–558. [Google Scholar] [CrossRef]
- Rezaei, E.E.; Siebert, S.; Hüging, H.; Ewert, F. Climate change effect on wheat phenology depends on cultivar change. Sci. Rep. 2018, 8, 4891. [Google Scholar] [CrossRef] [Green Version]
- Hussain, J.; Khaliq, T.; Ahmad, A.; Akhtar, J. Performance of four crop model for simulations of wheat phenology, leaf growth, biomass and yield across planting dates. PLoS ONE 2018, 13, e0197546. [Google Scholar] [CrossRef]
- Counce, P.A.; Siebenmorgen, T.J.; Ambardekar, A.A. Rice reproductive development stage thermal time and calendar day intervals for six US rice cultivars in the Grand Prairie, Arkansas, over 4 years. Ann. Appl. Boil. 2015, 167, 262–276. [Google Scholar] [CrossRef]
- Sharifi, H.; Hijmans, R.J.; Hill, J.E.; Linquist, B.A. Using Stage-Dependent Temperature Parameters to Improve Phenological Model Prediction Accuracy in Rice Models. Crop. Sci. 2016, 57, 444–453. [Google Scholar] [CrossRef] [Green Version]
- Keating, B.; Carberry, P.; Hammer, G.L.; Probert, M.; Robertson, M.; Holzworth, D.; Huth, N.; Hargreaves, J.; Meinke, H.; Hochman, Z.; et al. An overview of APSIM, a model designed for farming systems simulation. Eur. J. Agron. 2003, 18, 267–288. [Google Scholar] [CrossRef] [Green Version]
- Bouman, B.; Van Laar, H. Description and evaluation of the rice growth model ORYZA2000 under nitrogen-limited conditions. Agric. Syst. 2006, 87, 249–273. [Google Scholar] [CrossRef]
- Wallach, D.; Palosuo, T.; Thorburn, P.; Seidel, S.J.; Gourdain, E.; Asseng, S.; Basso, B.; Buis, S.; Crout, N.M.J.; Dibari, C.; et al. How well do crop models predict phenology, with emphasis on the effect of calibration? BioRxiv 2019, 708578. [Google Scholar] [CrossRef] [Green Version]
- Asseng, S.; Ewert, F.; Martre, P.; Rotter, R.; Lobell, D.B.; Cammarano, D.; Kimball, B.A.; Ottman, M.J.; Wall, G.W.; White, J.W.; et al. Rising temperatures reduce global wheat production. Nat. Clim. Chang. 2014, 5, 143–147. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Z.; Tao, F.; Palosuo, T.; Rotter, R.; Rötter, R.P. Impacts of heat stress on leaf area index and growth duration of winter wheat in the North China Plain. Field Crop. Res. 2018, 222, 230–237. [Google Scholar] [CrossRef] [Green Version]
- Lobell, D.B.; Sibley, A.; Ortiz-Monasterio, J.I. Extreme heat effects on wheat senescence in India. Nat. Clim. Chang. 2012, 2, 186–189. [Google Scholar] [CrossRef]
- Zhang, S.; Tao, F. Modeling the response of rice phenology to climate change and variability in different climatic zones: Comparisons of five models. Eur. J. Agron. 2013, 45, 165–176. [Google Scholar] [CrossRef]
- Lobell, D.B.; Ortiz-Monasterio, J.I.; Sibley, A.M.; Sohu, V. Satellite detection of earlier wheat sowing in India and implications for yield trends. Agric. Syst. 2013, 115, 137–143. [Google Scholar] [CrossRef]
- Piao, S.; Fang, J.; Zhou, L.; Ciais, P.; Zhu, B. Variations in satellite-derived phenology in China’s temperate vegetation. Glob. Chang. Biol. 2006, 12, 672–685. [Google Scholar] [CrossRef]
- Piao, S.; Liu, Q.; Chen, A.; Janssens, I.A.; Fu, Y.H.; Dai, J.; Liu, L.; Lian, X.; Shen, M.; Zhu, X. Plant phenology and global climate change: Current progresses and challenges. Glob. Chang. Boil. 2019, 25, 1922–1940. [Google Scholar] [CrossRef]
- Whitcraft, A.K.; Becker-Reshef, I.; Killough, B.; Justice, C. Meeting Earth Observation Requirements for Global Agricultural Monitoring: An Evaluation of the Revisit Capabilities of Current and Planned Moderate Resolution Optical Earth Observing Missions. Remote. Sens. 2015, 7, 1482–1503. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Li, L.; Zhang, J.; Liang, S.; Zhu, X.; Sulla-Menashe, D. Winter wheat area estimation from MODIS-EVI time series data using the Crop Proportion Phenology Index. Remote Sens. Environ. 2012, 119, 232–242. [Google Scholar] [CrossRef]
- Wardlow, B.D.; Egbert, S.L. Large-area crop mapping using time-series MODIS 250 m NDVI data: An assessment for the U.S. Central Great Plains. Remote Sens. Environ. 2008, 112, 1096–1116. [Google Scholar] [CrossRef]
- Xiao, X.; Boles, S.; Liu, J.; Zhuang, D.; Frolking, S.; Li, C.; Salas, W.; Moore, B. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sens. Environ. 2005, 95, 480–492. [Google Scholar] [CrossRef]
- Biradar, C.; Xiao, X. Quantifying the area and spatial distribution of double- and triple-cropping croplands in India with multi-temporal MODIS imagery in 2005. Int. J. Remote Sens. 2011, 32, 367–386. [Google Scholar] [CrossRef]
- Frolking, S.; Qiu, J.; Boles, S.; Xiao, X.; Liu, J.; Zhuang, Y.; Li, C.; Qin, X. Combining remote sensing and ground census data to develop new maps of the distribution of rice agriculture in China. Glob. Biogeochem. Cycles 2002, 16, 38–41. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Friedl, M.; Xin, Q.; Gray, J.; Pan, Y.; Frolking, S. Mapping Crop Cycles in China Using MODIS-EVI Time Series. Remote Sens. 2014, 6, 2473–2493. [Google Scholar] [CrossRef] [Green Version]
- Boschetti, M.; Stroppiana, D.; Brivio, P.A.; Bocchi, S. Multi-year monitoring of rice crop phenology through time series analysis of MODIS images. Int. J. Remote. Sens. 2009, 30, 4643–4662. [Google Scholar] [CrossRef]
- Lu, L.; Wang, C.; Guo, H.; Li, Q. Detecting winter wheat phenology with SPOT-VEGETATION data in the North China Plain. Geocarto Int. 2013, 29, 244–255. [Google Scholar] [CrossRef]
- Sakamoto, T.; Wardlow, B.D.; A Gitelson, A.; Verma, S.; Suyker, A.E.; Arkebauer, T.J. A Two-Step Filtering approach for detecting maize and soybean phenology with time-series MODIS data. Remote. Sens. Environ. 2010, 114, 2146–2159. [Google Scholar] [CrossRef]
- You, X.; Meng, J.; Zhang, M.; Dong, T. Remote Sensing Based Detection of Crop Phenology for Agricultural Zones in China Using a New Threshold Method. Remote. Sens. 2013, 5, 3190–3211. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Xiao, J.; Ni, P.; Zhang, J.; Wang, H.S.; Wang, J.X. Monitoring paddy rice phenology using time series MODIS data over Jiangxi Province, China. Int. J. Agric. Biol. Eng. 2014, 7, 28–36. [Google Scholar]
- Sakamoto, T.; Yokozawa, M.; Toritani, H.; Shibayama, M.; Ishitsuka, N.; Ohno, H. A crop phenology detection method using time-series MODIS data. Remote Sens. Environ. 2005, 96, 366–374. [Google Scholar] [CrossRef]
- Dash, J.; Jeganathan, C.; Atkinson, P. The use of MERIS Terrestrial Chlorophyll Index to study spatio-temporal variation in vegetation phenology over India. Remote Sens. Environ. 2010, 114, 1388–1402. [Google Scholar] [CrossRef]
- Kang, W.; Wang, T.; Liu, S. The Response of Vegetation Phenology and Productivity to Drought in Semi-Arid Regions of Northern China. Remote Sens. 2018, 10, 727. [Google Scholar] [CrossRef] [Green Version]
- Boschetti, M.; Busetto, L.; Manfron, G.; Laborte, A.; Asilo, S.; Pazhanivelan, S.; Nelson, A. PhenoRice: A method for automatic extraction of spatio-temporal information on rice crops using satellite data time series. Remote Sens. Environ. 2017, 194, 347–365. [Google Scholar] [CrossRef] [Green Version]
- Busetto, L.; Zwart, S.; Boschetti, M. Analysing spatial–temporal changes in rice cultivation practices in the Senegal River Valley using MODIS time-series and the PhenoRice algorithm. Int. J. Appl. Earth Obs. Geoinf. 2019, 75, 15–28. [Google Scholar] [CrossRef]
- Pagani, V.; Guarneri, T.; Busetto, L.; Ranghetti, L.; Boschetti, M.; Movedi, E.; Campos-Taberner, M.; García-Haro, F.J.; Katsantonis, D.; Stavrakoudis, D.; et al. A high-resolution, integrated system for rice yield forecasting at district level. Agric. Syst. 2019, 168, 181–190. [Google Scholar] [CrossRef]
- Setiyono, T.; Quicho, E.D.; Gatti, L.; Campos-Taberner, M.; Busetto, L.; Collivignarelli, F.; García-Haro, F.J.; Boschetti, M.; Khan, N.I.; Holecz, F. Spatial Rice Yield Estimation Based on MODIS and Sentinel-1 SAR Data and ORYZA Crop Growth Model. Remote Sens. 2018, 10, 293. [Google Scholar] [CrossRef] [Green Version]
- USDA National Agricultural Statistics Service Cropland Data Layer. Available online: https://nassgeodata.gmu.edu/CropScape/ (accessed on 29 April 2019).
- Quick Stats. United States Department of Agriculture National Agriculture and Statistics Service, Washington, DC, 2019. Available online: https://quickstats.nass.usda.gov/ (accessed on 18 March 2020).
- Crop Mapping 2014, California Department of Water Resources. Available online: https://data.cnra.ca.gov/dataset/crop-mapping-2014 (accessed on 15 April 2019).
- Brodt, S.; Kendall, A.; Mohammadi, Y.; Arslan, A.; Yuan, J.; Lee, I.-S.; Linquist, B.; Arslan, A. Life cycle greenhouse gas emissions in California rice production. Field Crop. Res. 2014, 169, 89–98. [Google Scholar] [CrossRef]
- Roel, A.; Plant, R.E.; Young, J.A.; Pettygrove, G.S.; Deng, J.; Williams, J.F. Interpreting yield patterns for California rice precision farm management. Proceedings of Fifth International Conference on Precision Agriculture (CD), Bloomington, MN, USA, 16–19 July 2000. [Google Scholar]
- Hill, J.E.; Williams, J.F.; Mutters, R.G.; Greer, C.A. The California rice cropping system: Agronomic and natural resource issues for long-term sustainability. Paddy Water Environ. 2006, 4, 13–19. [Google Scholar] [CrossRef]
- Vermote, E. MOD09A1 MODIS/Terra Surface Reflectance 8-Day L3 Global 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC, 2015. Available online: https://doi.org/10.5067/MODIS/MOD09A1.006 (accessed on 2 May 2020).
- Wan, Z.; Hook, S.; Hulley, G. MOD11A2 MODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 1km SIN Grid V006. NASA EOSDIS Land Processes DAAC, 2015. Available online: https://doi.org/10.5067/MODIS/MOD11A2.006 (accessed on 2 May 2020).
- Chen, J.; Jönsson, P.; Tamura, M.; Gu, Z.; Matsushita, B.; Eklundh, L. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter. Remote Sens. Environ. 2004, 91, 332–344. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. Available online: https://www.R-project.org/ (accessed on 30 October 2019).
- Wang, H.; Ghosh, A.; Hijmans, R.J. Phenorice: An Implementation of Phenorice Algorithm to Detect Rice Crops from Remote Sensing Data. R Package Version: 0.1-1. 2019. Available online: https://github.com/cropmodels/phenorice (accessed on 20 February 2020).
- United States Department of Agriculture National Agricultural Statistics Service. Available online: http://www.nass.usda.gov/ (accessed on 3 May 2013).
- United States Department of Agriculture National Agricultural Statistics Service. Research and Science. Available online: https://www.nass.usda.gov/Research_and_Science/Cropland/sarsfaqs2.php (accessed on 3 May 2020).
- Montgomery, D.C.; Peck, E.A. Introduction to Linear Regression Analysis, 2nd ed.; Wiley: New York, NY, USA, 1992. [Google Scholar]
- PRISM Climate Group, Oregon State University. Available online: http://www.prism.oregonstate.edu/ (accessed on 14 May 2019).
- Sharifi, H.; Hijmans, R.J.; Hill, J.E.; Linquist, B. Water and air temperature impacts on rice (Oryza sativa) phenology. Paddy Water Environ. 2018, 16, 467–476. [Google Scholar] [CrossRef]
- Son, N.; Chen, C.; Chen, C.; Duc, H.; Chang, L. A Phenology-Based Classification of Time-Series MODIS Data for Rice Crop Monitoring in Mekong Delta, Vietnam. Remote Sens. 2013, 6, 135–156. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Huang, J.; Huete, A.; Peng, D.; Zhang, F. Mapping paddy rice with multi-date moderate-resolution imaging spectroradiometer (MODIS) data in China. J. Zhejiang Univ. A 2009, 10, 1509–1522. [Google Scholar] [CrossRef]
- Zhang, G.; Xiao, X.; Dong, J.; Kou, W.; Jin, C.; Qin, Y.; Zhou, Y.; Wang, J.; Menarguez, M.A.; Biradar, C. Mapping paddy rice planting areas through time series analysis of MODIS land surface temperature and vegetation index data. ISPRS J. Photogramm. Remote Sens. 2015, 106, 157–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kucuk, C.; Taskin, G.; Erten, E.; Taskın, G. Paddy-Rice Phenology Classification Based on Machine-Learning Methods Using Multitemporal Co-Polar X-Band SAR Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2509–2519. [Google Scholar] [CrossRef]
- Lopez-Sanchez, J.M.; Cloude, S.R.; Ballester-Berman, J.D. Rice Phenology Monitoring by Means of SAR Polarimetry at X-Band. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2695–2709. [Google Scholar] [CrossRef]
- Wang, J.; Huang, J.; Wang, X.-Z.; Jin, M.-T.; Zhou, Z.; Guo, Q.-Y.; Zhao, Z.-W.; Huang, W.-J.; Zhang, Y.; Song, X.-D. Estimation of rice phenology date using integrated HJ-1 CCD and Landsat-8 OLI vegetation indices time-series images. J. Zhejiang Univ. Sci. B 2015, 16, 832–844. [Google Scholar] [CrossRef]
- Linquist, B.A.; Espe, M.B. When is the Optimal Time to Plant Rice in the Sacramento Valley? 2015. Available online: http://rice.ucanr.edu/files/232444.pdf (accessed on 1 November 2019).
- Ye, T.; Zong, S.; Kleidon, A.; Yuan, W.; Wang, Y.; Shi, P. Impacts of climate warming, cultivar shifts, and phenological dates on rice growth period length in China after correction for seasonal shift effects. Clim. Chang. 2019, 155, 127–143. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Huang, Y.; Yang, X. Climate warming over the past three decades has shortened rice growth duration in China and cultivar shifts have further accelerated the process for late rice. Glob. Chang. Boil. 2012, 19, 563–570. [Google Scholar] [CrossRef]
- Nguyen-Sy, T.; Cheng, W.; Tawaraya, K.; Sugawara, K.; Kobayashi, K. Impacts of climatic and varietal changes on phenology and yield components in rice production in Shonai region of Yamagata Prefecture, Northeast Japan for 36 years. Plant Prod. Sci. 2019, 22, 382–394. [Google Scholar] [CrossRef] [Green Version]
County | Planting Date | Heading Date | Harvesting Date | Pre-Heading Length | Post-Heading Length | Total Growing Length | |
---|---|---|---|---|---|---|---|
Ppt | Tmean | Tmean | Tmean | Tmean | Tmean | Tmean | |
Butte | 4.48** | −2.06 | −2.75 | −1.28 | −2.15 | −0.26 | −4.16 ** |
Colusa | 5.99** | −0.85 | −2.04 | −0.20 | −1.28 | 1.67 | −2.50 |
Glenn | 4.81 ** | −1.00 | −2.73 | 0.04 | −2.77 | 2.08 | −3.65 ** |
Placer | 5.18 ** | −1.99 * | −2.73 | −0.07 | −2.05 | −1.30 | −3.52 |
Sacramento | 6.27 ** | −1.13 | −3.11 | 1.56 | −1.23 | −0.06 | −2.34 |
Sutter | 4.91 ** | −1.67 * | −3.49 * | −0.51 | −2.30 * | 0.41 | −3.72 |
Yolo | 4.10 ** | −0.67 | −3.91 * | −0.70 | −3.12 * | 0.78 | −3.34 |
Yuba | 5.84 ** | −2.28 * | −1.78 | −0.11 | −1.13 | −0.19 | −2.62 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Ghosh, A.; Linquist, B.A.; Hijmans, R.J. Satellite-Based Observations Reveal Effects of Weather Variation on Rice Phenology. Remote Sens. 2020, 12, 1522. https://doi.org/10.3390/rs12091522
Wang H, Ghosh A, Linquist BA, Hijmans RJ. Satellite-Based Observations Reveal Effects of Weather Variation on Rice Phenology. Remote Sensing. 2020; 12(9):1522. https://doi.org/10.3390/rs12091522
Chicago/Turabian StyleWang, Hongfei, Aniruddha Ghosh, Bruce A. Linquist, and Robert J. Hijmans. 2020. "Satellite-Based Observations Reveal Effects of Weather Variation on Rice Phenology" Remote Sensing 12, no. 9: 1522. https://doi.org/10.3390/rs12091522
APA StyleWang, H., Ghosh, A., Linquist, B. A., & Hijmans, R. J. (2020). Satellite-Based Observations Reveal Effects of Weather Variation on Rice Phenology. Remote Sensing, 12(9), 1522. https://doi.org/10.3390/rs12091522