Optimal Soybean (Glycine max L.) Land Suitability Using GIS-Based Multicriteria Analysis and Sentinel-2 Multitemporal Images
"> Figure 1
<p>The workflow of soybean land suitability calculation and evaluation.</p> "> Figure 2
<p>Study area: (<b>a</b>) location of Osijek-Baranja County, (<b>b</b>) location of used weather stations and soil samples, (<b>c</b>) location of centroids of test soybean parcels.</p> "> Figure 3
<p>Weather data at the sensing time of four used Sentinel-2 images from weather station Osijek provided by the Croatian Meteorological and Hydrological Service (DHMZ).</p> "> Figure 4
<p>Preprocessed criteria rasters.</p> "> Figure 5
<p>Graphs of standardization parameters per criterion for evaluated standardization methods.</p> "> Figure 6
<p>Regression graphs for best fitting functions per the suitability model.</p> "> Figure 7
<p>Final suitability maps for soybean cultivation for calculated models.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Selection and Preprocessing of Relevant Criteria
2.3. Data Standardization
2.4. Weight Determination
2.5. Criteria Aggregation
2.6. Validation of Calculated Suitability Models
2.7. Creation of Final Suitability Maps
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bajželj, B.; Richards, K.S.; Allwood, J.M.; Smith, P.; Dennis, J.S.; Curmi, E.; Gilligan, C.A. Importance of food-demand management for climate mitigation. Nat. Clim. Chang. 2014, 4, 924. [Google Scholar] [CrossRef] [Green Version]
- Pulighe, G.; Bonati, G.; Fabiani, S.; Barsali, T.; Lupia, F.; Vanino, S.; Nino, P.; Arca, P.; Roggero, P.P. Assessment of the Agronomic Feasibility of Bioenergy Crop Cultivation on Marginal and Polluted Land: A GIS-Based Suitability Study from the Sulcis Area, Italy. Energies 2016, 9, 895. [Google Scholar] [CrossRef]
- von Arb, C.; Bünemann, E.K.; Schmalz, H.; Portmann, M.; Adamtey, N.; Musyoka, M.W.; Frossard, E.; Fliessbach, A. Soil quality and phosphorus status after nine years of organic and conventional farming at two input levels in the Central Highlands of Kenya. Geoderma 2020, 362, 114112. [Google Scholar] [CrossRef]
- Davis, K.F.; Rulli, M.C.; Seveso, A.; D’Odorico, P. Increased food production and reduced water use through optimized crop distribution. Nat. Geosci. 2017, 10, 919. [Google Scholar] [CrossRef]
- Purnamasari, R.A.; Noguchi, R.; Ahamed, T. Land suitability assessments for yield prediction of cassava using geospatial fuzzy expert systems and remote sensing. Comput. Electron. Agric. 2019, 166, 105018. [Google Scholar] [CrossRef]
- Chen, J.; Yu, J.; Zhang, Y. Multivariate video analysis and Gaussian process regression model based soft sensor for online estimation and prediction of nickel pellet size distributions. Comput. Chem. Eng. 2014, 64, 13–23. [Google Scholar] [CrossRef]
- FAO Soils bulletin—A framework for land evaluation. Available online: http://www.fao.org/3/X5310E/x5310e00.htm (accessed on 17 April 2020).
- You, L.; Wood, S.; Wood-Sichra, U.; Wu, W. Generating global crop distribution maps: From census to grid. Agric. Syst. 2014, 127, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Jiang, Y.; Su, P.; Wang, J. Global Spatial Distributions of and Trends in Rice Exposure to High Temperature. Sustainability 2019, 11, 6271. [Google Scholar] [CrossRef] [Green Version]
- Layomi Jayasinghe, S.; Kumar, L.; Sandamali, J. Assessment of Potential Land Suitability for Tea (Camellia sinensis (L.) O. Kuntze) in Sri Lanka Using a GIS-Based Multi-Criteria Approach. Agriculture 2019, 9, 148. [Google Scholar] [CrossRef] [Green Version]
- Plaščak, I.; Jurišić, M.; Radočaj, D.; Barač, Ž.; Glavaš, J. Hazel plantation planning using GIS and multicriteria decision analysis. Poljoprivreda 2019, 25, 79–85. [Google Scholar] [CrossRef]
- Yun, H.J.; Kang, D.J.; Kim, D.-K.; Kang, Y. A GIS-Assisted Assessment and Attribute-Based Clustering of Forest Wetland Utility in South Korea. Sustainability 2019, 11, 4632. [Google Scholar] [CrossRef] [Green Version]
- Herzberg, R.; Pham, T.G.; Kappas, M.; Wyss, D.; Tran, C.T.M. Multi-Criteria Decision Analysis for the Land Evaluation of Potential Agricultural Land Use Types in a Hilly Area of Central Vietnam. Land 2019, 8, 90. [Google Scholar] [CrossRef] [Green Version]
- Gašparović, I.; Gašparović, M. Determining Optimal Solar Power Plant Locations Based on Remote Sensing and GIS Methods: A Case Study from Croatia. Remote Sens. 2019, 11, 1481. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Yu, J.; Khan, S. Spatial sensitivity analysis of multi-criteria weights in GIS-based land suitability evaluation. Environ. Modell. Softw. 2010, 25, 1582–1591. [Google Scholar] [CrossRef]
- Chakhar, S.; Mousseau, V. Spatial multicriteria decision making. In Encyclopedia of Geographic Information Science; Shehkar, S., Xiong, H., Eds.; Springer: New York, NY, USA, 2008; pp. 747–753. [Google Scholar] [CrossRef]
- Ishizaka, A.; Labib, A. Analytic hierarchy process and expert choice: Benefits and limitations. Or Insight 2009, 22, 201–220. [Google Scholar] [CrossRef] [Green Version]
- Yu, R.; Tzeng, G.H. A soft computing method for multi-criteria decision making with dependence and feedback. Appl. Math. Comput. 2006, 180, 63–75. [Google Scholar] [CrossRef]
- Aragonés-Beltrán, P.; Chaparro-González, F.; Pastor-Ferrando, J.P.; Pla-Rubio, A. An AHP (Analytic Hierarchy Process)/ANP (Analytic Network Process)-based multi-criteria decision approach for the selection of solar-thermal power plant investment projects. Energy 2014, 66, 222–238. [Google Scholar] [CrossRef]
- Eastman, J.R. Multi-criteria evaluation and GIS. In Geographical Informational Systems; Goodchild, M.F., Maguire, D.J., Rhind, D.W., Eds.; John Wiley and Sons: New York, NY, USA, 1999; pp. 493–502. [Google Scholar]
- Malczewski, J.; Chapman, T.; Flegel, C.; Walters, D.; Shrubsole, D.; Healy, M.A. GIS—Multicriteria evaluation with ordered weighted averaging (OWA): Case study of developing watershed management strategies. Environ. Plan. A 2003, 35, 1769–1784. [Google Scholar] [CrossRef]
- Tang, Z.; Yi, S.; Wang, C.; Xiao, Y. Incorporating probabilistic approach into local multi-criteria decision analysis for flood susceptibility assessment. Stoch. Environ. Res. Risk Assess. 2017, 32, 701–714. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Verdoodt, A.; Van, Y.T.; Delbecque, N.; Tran, T.C.; Van Ranst, E. Design of a GIS and multi-criteria based land evaluation procedure for sustainable land-use planning at the regional level. Agric. Ecosyst. Environ. 2015, 200, 1–11. [Google Scholar] [CrossRef]
- Sallwey, J.; Bonilla Valverde, J.P.; Vásquez López, F.; Junghanns, R.; Stefan, C. Suitability maps for managed aquifer recharge: A review of multi-criteria decision analysis studies. Environ. Rev. 2019, 27, 138–150. [Google Scholar] [CrossRef]
- Jurišić, M.; Plaščak, I.; Antonić, O.; Radočaj, D. Suitability Calculation for Red Spicy Pepper Cultivation (Capsicum annum L.) Using Hybrid GIS-Based Multicriteria Analysis. Agronomy 2020, 10, 3. [Google Scholar] [CrossRef] [Green Version]
- Koch, B.; Khosla, R.; Frasier, W.M.; Westfall, D.G.; Inman, D. Economic feasibility of variable-rate nitrogen application utilizing site-specific suitability classes. Agron. J. 2004, 96, 1572–1580. [Google Scholar] [CrossRef] [Green Version]
- Van Niekerk, A. A comparison of land unit delineation techniques for land evaluation in the Western Cape, South Africa. Land Use Policy 2010, 27, 937–945. [Google Scholar] [CrossRef] [Green Version]
- Pagano, M.C.; Miransari, M. The importance of soybean production worldwide. In Abiotic and Biotic Stresses in Soybean Production; Miransari, M., Ed.; Academic Print: Cambridge, MA, USA, 2016; pp. 1–26. [Google Scholar]
- The Role of Soybean in Fighting World Hunger. Available online: http://www.fao.org/3/a-bs958e.pdf (accessed on 21 December 2019).
- EU Agricultural Outlook—European Commission. Available online: https://ec.europa.eu/info/sites/info/files/food-farming-fisheries/farming/documents/agricultural-outlook-2019-report_en.pdf (accessed on 17 April 2020).
- USDA Agricultural Projections to 2029. Available online: https://www.ers.usda.gov/webdocs/publications/95912/oce-2020-1.pdf?v=8056.6 (accessed on 17 April 2020).
- Masuda, T.; Goldsmith, P.D. World soybean production: Area harvested, yield, and long-term projections. Int. Food Agribus. Man. 2009, 12, 1–20. [Google Scholar]
- Maas, S.J.; Rajan, N. Estimating ground cover of field crops using medium-resolution multispectral satellite imagery. Agron. J. 2008, 100, 320–327. [Google Scholar] [CrossRef]
- Immitzer, M.; Vuolo, F.; Atzberger, C. First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe. Remote Sens. 2016, 8, 166. [Google Scholar] [CrossRef]
- Sentinel-2A Launch. Available online: http://marine.copernicus.eu/wp-content/uploads/2016/06/r2495_9_sentinel_2a.pdf (accessed on 21 December 2019).
- Sentinel-2 User Handbook. Available online: https://sentinel.esa.int/documents/247904/685211/Sentinel-2_User_Handbook (accessed on 13 April 2020).
- Dong, T.; Meng, J.; Shang, J.; Liu, J.; Wu, B. Evaluation of chlorophyll-related vegetation indices using simulated Sentinel-2 data for estimation of crop fraction of absorbed photosynthetically active radiation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4049–4059. [Google Scholar] [CrossRef]
- Veloso, A.; Mermoz, S.; Bouvet, A.; Le Toan, T.; Planells, M.; Dejoux, J.F.; Ceschia, E. Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sens. Environ. 2017, 199, 415–426. [Google Scholar] [CrossRef]
- Walz, Y.; Wegmann, M.; Dech, S.; Vounatsou, P.; Poda, J.N.; N’Goran, E.K.; Utzinger, J.; Raso, G. Modeling and validation of environmental suitability for schistosomiasis transmission using remote sensing. PLoS Negl. Trop. Dis. 2015, 9, e0004217. [Google Scholar] [CrossRef] [Green Version]
- Vanino, S.; Nino, P.; De Michele, C.; Bolognesi, S.F.; D’Urso, G.; Di Bene, C.; Pennelli, B.; Vuolo, F.; Farina, R.; Napoli, R. Capability of Sentinel-2 data for estimating maximum evapotranspiration and irrigation requirements for tomato crop in Central Italy. Remote Sens. Environ. 2018, 215, 452–470. [Google Scholar] [CrossRef]
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for automated geoscientific analyses (SAGA) v. 2.1.4. Geosci. Model. Dev. Discuss. 2015, 8, 1991–2015. [Google Scholar] [CrossRef] [Green Version]
- QGIS Development Team 2019. QGIS Geographic Information System. Open Source Geospatial Foundation Project. Available online: http://qgis.osgeo.org (accessed on 17 April 2020).
- GRASS Development Team 2019. Geographic Resources Analysis Support System (GRASS) Software, Version 7.8. Open Source Geospatial Foundation. Available online: http://grass.osgeo.org (accessed on 17 April 2020).
- Croatian Bureau of Statistics—Structure of Agricultural Holdings. Available online: https://www.dzs.hr/Hrv_Eng/Pokazatelji/Poljoprivreda%20-%20pregled%20po%20zupanijama.XLSX (accessed on 20 December 2019).
- Statistical Yearbook of the Republic of Croatia 2018. Available online: https://www.dzs.hr/Hrv_Eng/ljetopis/2018/sljh2018.pdf (accessed on 21 December 2019).
- GalićSubašić, D. Influence of Irrigation, Nitrogen Fertilization and Genotype on the Yield and Quality of Soybean (Glycine max (L.) Merr.). Ph.D. Thesis, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia, 12 December 2019. [Google Scholar]
- Agrotechnics of Soybean Cultivation (Glycine max L.). Available online: https://www.savjetodavna.hr/wp-content/uploads/publikacije/AgrotehnikaSojeWeb102018.pdf (accessed on 17 April 2020).
- Gibson, K.E.; Yang, H.S.; Franz, T.; Eisenhauer, D.; Gates, J.B.; Nasta, P.; Farmaha, B.; Grassini, P. Assessing explanatory factors for variation in on-farm irrigation in US maize-soybean systems. Agric. Water Manag. 2018, 197, 34–40. [Google Scholar] [CrossRef]
- Bagherzadeh, A.; Ghadiri, E.; Darban, A.R.S.; Gholizadeh, A. Land suitability modeling by parametric-based neural networks and fuzzy methods for soybean production in a semi-arid region. Model. Earth Syst. Environ. 2016, 2, 104. [Google Scholar] [CrossRef] [Green Version]
- Munene, P.; Chabala, L.; Mweetwa, M. Land Suitability Assessment for Soybean (Glycine max (L.) Merr.) Production in Kabwe District, Central Zambia. J. Agric. Sci. 2017, 9, 1–16. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Liu, D.; Yao, Y.; Huang, Q.; Li, J.; Chen, Y.; Shi, S.; Wan, L.; Yu, S.; Wang, D. Spatializing growth suitability for spring soybean cultivation in northeast China. J. Appl. Meteorol. Climatol. 2013, 52, 773–783. [Google Scholar] [CrossRef]
- Seyedmohammadi, J.; Sarmadian, F.; Jafarzadeh, A.A.; Ghorbani, M.A.; Shahbazi, F. Application of SAW, TOPSIS and fuzzy TOPSIS models in cultivation priority planning for maize, rapeseed and soybean crops. Geoderma 2018, 310, 178–190. [Google Scholar] [CrossRef]
- Saaty, T.L.; Ozdemir, M.S. Why the magic number seven plus or minus two. Math. Comput. Model. 2003, 38, 233–244. [Google Scholar] [CrossRef]
- Huld, T. PVMAPS: Software tools and data for the estimation of solar radiation and photovoltaic module performance over large geographical areas. Sol. Energy 2017, 142, 171–181. [Google Scholar] [CrossRef]
- Gašparović, I.; Gašparović, M.; Medak, D. Determining and analysing solar irradiation based on freely available data: A case study from Croatia. Environ. Dev. 2018, 26, 55–67. [Google Scholar] [CrossRef]
- Kasten, F. The Linke turbidity factor based on improved values of the integral Rayleigh optical thickness. Sol. Energy 1996, 56, 239–244. [Google Scholar] [CrossRef]
- Meteosat Solar Surface Radiation and Effective Cloud Albedo Climate Data Record SARAH-2, Validation Report. Available online: https://www.cmsaf.eu/SharedDocs/Literatur/document/2016/saf_cm_dwd_val_meteosat_hel_2_1_pdf.pdf (accessed on 22 March 2020).
- Jantalia, C.P.; Resck, D.V.; Alves, B.J.; Zotarelli, L.; Urquiaga, S.; Boddey, R.M. Tillage effect on C stocks of a clayey Oxisol under a soybean-based crop rotation in the Brazilian Cerrado region. Soil Till Res. 2007, 95, 97–109. [Google Scholar] [CrossRef]
- Mesic, M.; Birkás, M.; Zgorelec, Z.; Kisic, I.; Sestak, I.; Jurisic, A.; Husnjak, S. Soil Carbon Variability in Some Hungarian and Croatian Soils. In Soil Carbon; Hartemink, A., McSweeney, K., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 419–426. [Google Scholar] [CrossRef]
- United States Department of Agriculture—Soil Survey Manual Handbook No. 18. Available online: https://www.iec.cat/mapasols/DocuInteres/PDF/Llibre50.pdf (accessed on 21 December 2019).
- North Dakota State University—Soybean production. Available online: https://library.ndsu.edu/ir/bitstream/handle/10365/5450/a250.pdf?sequence=1 (accessed on 22 March 2020).
- Python Software Foundation. Python Language Reference, Version 3.7. Available online: http://www.python.org (accessed on 17 April 2020).
- Böhner, J.; Selige, T. Spatial prediction of soil attributes using terrain analysis and climate regionalisation. In SAGA—Analysis and Modelling Applications; Böhner, J., McCloy, K.R., Strobl, J., Eds.; Verlag Erich Goltze: Goltze, Germany, 2006; pp. 13–27. [Google Scholar]
- Oliver, M.A.; Webster, R. Geostatistical prediction: Kriging. In Basic Steps in Geostatistics: The Variogram and Kriging; Oliver, M.A., Webster, R., Eds.; Springer International Publishing: Berlin, Germany, 2015; pp. 43–69. [Google Scholar] [CrossRef]
- Lu, G.Y.; Wong, D.W. An adaptive inverse-distance weighting spatial interpolation technique. Comput. Geosci. 2008, 34, 1044–1055. [Google Scholar] [CrossRef]
- Hofstra, N.; New, M. Spatial variability in correlation decay distance and influence on angular-distance weighting interpolation of daily precipitation over Europe. Int. J. Climatol. 2009, 29, 1872–1880. [Google Scholar] [CrossRef]
- Yao, X.; Yu, K.; Deng, Y.; Zeng, Q.; Lai, Z.; Liu, J. Spatial distribution of soil organic carbon stocks in Masson pine (Pinus massoniana) forests in subtropical China. Catena 2019, 178, 189–198. [Google Scholar] [CrossRef]
- Qiao, P.; Lei, M.; Yang, S.; Yang, J.; Guo, G.; Zhou, X. Comparing ordinary kriging and inverse distance weighting for soil as pollution in Beijing. Environ. Sci. Pollut. Res. 2018, 25, 15597–15608. [Google Scholar] [CrossRef]
- Xavier, A.C.; King, C.W.; Scanlon, B.R. Daily gridded meteorological variables in Brazil (1980–2013). Int. J. Climatol. 2016, 36, 2644–2659. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Cárdenas, G.; López-Mata, L.; Ortiz-Solorio, C.A.; Villaseñor, J.L.; Ortiz, E.; Silva, J.T.; Estrada-Godoy, F. Interpolation of Mexican soil properties at a scale of 1: 1,000,000. Geoderma 2014, 213, 29–35. [Google Scholar] [CrossRef]
- Malczewski, J. GIS and Multicriteria Decision Analysis; John Wiley & Sons: New York, NY, USA, 1999; p. 408. [Google Scholar]
- Kaykhosravi, S.; Abogadil, K.; Khan, U.T.; Jadidi, M.A. The Low-Impact Development Demand Index: A New Approach to Identifying Locations for LID. Water 2019, 11, 2341. [Google Scholar] [CrossRef] [Green Version]
- Alamgir, M.; Mohsenipour, M.; Homsi, R.; Wang, X.; Shahid, S.; Shiru, M.S.; Alias, N.E.; Yuzir, A. Parametric Assessment of Seasonal Drought Risk to Crop Production in Bangladesh. Sustainability 2019, 11, 1442. [Google Scholar] [CrossRef] [Green Version]
- Bonilla Valverde, J.P.; Blank, C.; Roidt, M.; Schneider, L.; Stefan, C. Application of a GIS Multi-Criteria Decision Analysis for the Identification of Intrinsic Suitable Sites in Costa Rica for the Application of Managed Aquifer Recharge (MAR) through Spreading Methods. Water 2016, 8, 391. [Google Scholar] [CrossRef]
- Kumari, M.; Sakai, K.; Kimura, S.; Yuge, K.; Gunarathna, M. Classification of Groundwater Suitability for Irrigation in the Ulagalla Tank Cascade Landscape by GIS and the Analytic Hierarchy Process. Agronomy 2019, 9, 351. [Google Scholar] [CrossRef] [Green Version]
- Bezdan, A.; Blagojevic, B.; Vranesevic, M.; Benka, P.; Savic, R.; Bezdan, J. Defining Spatial Priorities for Irrigation Development Using the Soil Conservation and Water Use Efficiency Criteria. Agronomy 2019, 9, 324. [Google Scholar] [CrossRef] [Green Version]
- Novák, V. Fuzzy Sets and Their Applications; Taylor & Francis: London, UK, 1989; p. 190. [Google Scholar]
- Domazetović, F.; Šiljeg, A.; Lončar, N.; Marić, I. Development of automated multicriteria GIS analysis of gully erosion susceptibility. Appl. Geogr. 2019, 112, 102083. [Google Scholar] [CrossRef]
- Hamzeh, S.; Mokarram, M.; Haratian, A.; Bartholomeus, H.; Ligtenberg, A.; Bregt, A.K. Feature Selection as a Time and Cost-Saving Approach for Land Suitability Classification (Case Study of Shavur Plain, Iran). Agriculture 2016, 6, 52. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Su, Y.; Wu, J.; Liang, H. GIS based land suitability assessment for tobacco production using AHP and fuzzy set in Shandong province of China. Comput. Electron. Agric. 2015, 114, 202–211. [Google Scholar] [CrossRef]
- Klir, G.J. Fuzzy set theory. In Uncertainty and Information: Foundations of Generalized Information Theory; Klir, G.J., Ed.; Wiley-IEEE Press: Hoboken, NJ, USA, 2006; pp. 260–314. [Google Scholar]
- Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Musakwa, W. Identifying land suitable for agricultural land reform using GIS-MCDA in South Africa. Environ. Dev. Sustain. 2018, 20, 2281–2299. [Google Scholar] [CrossRef]
- Islam, M.M.; Ahamed, T.; Noguchi, R. Land Suitability and Insurance Premiums: A GIS-based Multicriteria Analysis Approach for Sustainable Rice Production. Sustainability 2018, 10, 1759. [Google Scholar] [CrossRef]
- Aldababseh, A.; Temimi, M.; Maghelal, P.; Branch, O.; Wulfmeyer, V. Multi-Criteria Evaluation of Irrigated Agriculture Suitability to Achieve Food Security in an Arid Environment. Sustainability 2018, 10, 803. [Google Scholar] [CrossRef] [Green Version]
- Nigussie, G.; Moges, M.A.; Moges, M.M.; Steenhuis, T.S. Assessment of Suitable Land for Surface Irrigation in Ungauged Catchments: Blue Nile Basin, Ethiopia. Water 2019, 11, 1465. [Google Scholar] [CrossRef] [Green Version]
- Saaty, T.L. Fundamentals of Decision Making and Priority Theory with the Analytic Hierarchy Process; RWS Publications: Pittsburgh, PA, USA, 2000; p. 478. [Google Scholar]
- Chhetri, S.; Kayastha, P. Manifestation of an analytic hierarchy process (AHP) model on fire potential zonation mapping in Kathmandu Metropolitan City, Nepal. ISPRS Int. J. Geo Inf. 2015, 4, 400–417. [Google Scholar] [CrossRef] [Green Version]
- Aydi, A.; Abichou, T.; Nasr, I.H.; Louati, M.; Zairi, M. Assessment of land suitability for olive mill wastewater disposal site selection by integrating fuzzy logic, AHP, and WLC in a GIS. Environ. Monit. Assess. 2016, 188, 59. [Google Scholar] [CrossRef] [PubMed]
- Shahabi, H.; Keihanfard, S.; Ahmad, B.B.; Amiri, M.J.T. Evaluating Boolean, AHP and WLC methods for the selection of waste landfill sites using GIS and satellite images. Environ. Earth sci. 2014, 71, 4221–4233. [Google Scholar] [CrossRef]
- Cui, X.; Dong, Y.; Gi, P.; Wang, H.; Xu, K.; Zhang, Z. Relationship between root vigour, photosynthesis and biomass in soybean cultivars during 87 years of genetic improvement in the northern China. Photosynthetica 2016, 54, 81–86. [Google Scholar] [CrossRef]
- Vizzari, M.; Santaga, F.; Benincasa, P. Sentinel 2-Based Nitrogen VRT Fertilization in Wheat: Comparison between Traditional and Simple Precision Practices. Agronomy 2019, 9, 278. [Google Scholar] [CrossRef] [Green Version]
- Bishop, K.A.; Betzelberger, A.M.; Long, S.P.; Ainsworth, E.A. Is there potential to adapt soybean (Glycine max Merr.) to future [CO2]? An analysis of the yield response of 18 genotypes in free-air CO2 enrichment. Plant. Cell Environ. 2015, 38, 1765–1774. [Google Scholar] [CrossRef]
- Sawilowsky, S.S. New effect size rules of thumb. J. Mod. Appl. Stat. Methods 2009, 8, 26. [Google Scholar] [CrossRef]
- The Structure of the FAO Framework Classification. Available online: http://www.fao.org/3/x5648e/x5648e0j.htm (accessed on 22 March 2020).
- Lolli, F.; Ishizaka, A.; Gamberini, R. New AHP-based approaches for multi-criteria inventory classification. Int. J. Prod. Econ. 2014, 156, 62–74. [Google Scholar] [CrossRef] [Green Version]
- Foody, G.M.; Pal, M.; Rocchini, D.; Garzon-Lopez, C.X.; Bastin, L. The Sensitivity of Mapping Methods to Reference Data Quality: Training Supervised Image Classifications with Imperfect Reference Data. ISPRS Int. J. Geo-Inf. 2016, 5, 199. [Google Scholar] [CrossRef] [Green Version]
- Bo, L.I.; Zhang, F.; Zhang, L.W.; Huang, J.F.; Zhi-Feng, J.I.N.; Gupta, D.K. Comprehensive suitability evaluation of tea crops using GIS and a modified land ecological suitability evaluation model. Pedosphere 2012, 22, 122–130. [Google Scholar] [CrossRef]
- Neji, H.B.B.; Turki, S.Y. GIS—Based multicriteria decision analysis for the delimitation of an agricultural perimeter irrigated with treated wastewater. Agric. Water Manag. 2015, 162, 78–86. [Google Scholar] [CrossRef]
- Gašparović, M.; Zrinjski, M.; Barković, Đ.; Radočaj, D. An automatic method for weed mapping in oat fields based on UAV imagery. Comput. Electron. Agric. 2020, 173, 105385. [Google Scholar] [CrossRef]
- CLC2018 Technical Guidelines. Available online: https://forum.eionet.europa.eu/nrc_land_covers/library/copernicus-2014-2020/pan-european-component/corine-land-cover-clc-2018/technical-guidelines/clc2018-technical-guidelines/download/en/2/CLC2018TechnicalGuidelines_final.pdf (accessed on 17 April 2020).
- Rhebergen, T.; Fairhurst, T.; Zingore, S.; Fisher, M.; Oberthür, T.; Whitbread, A. Climate, soil and land-use based land suitability evaluation for oil palm production in Ghana. Eur. J. Agron. 2016, 81, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Gunnink, J.L.; Burrough, P.A. Interactive spatial analysis of soil attribute patterns using exploratory data analysis (EDA) and GIS. In Spatial Analytical Perspectives on GIS, 1st ed.; Ficher, M., Scholten, H., Unwin, D., Eds.; Taylor & Francis Ltd.: London, UK, 2019; pp. 87–100. [Google Scholar]
- Gong, G.; Mattevada, S.; O’Bryant, S.E. Comparison of the accuracy of kriging and IDW interpolations in estimating groundwater arsenic concentrations in Texas. Environ. Res. 2014, 130, 59–69. [Google Scholar] [CrossRef]
- Heuvelink, G.B.; Pebesma, E.J. Spatial aggregation and soil process modelling. Geoderma 1999, 89, 47–65. [Google Scholar] [CrossRef]
- Vrieling, A.; de Beurs, K.M.; Brown, M.E. Variability of African farming systems from phenological analysis of NDVI time series. Clim. Chang. 2011, 109, 455–477. [Google Scholar] [CrossRef] [Green Version]
- Dedeoğlu, M.; Dengiz, O. Generating of land suitability index for wheat with hybrid system approach using AHP and GIS. Comput. Electron. Agric. 2019, 167, 105062. [Google Scholar] [CrossRef]
- Schipanski, M.E.; Drinkwater, L.E.; Russelle, M.P. Understanding the variability in soybean nitrogen fixation across agroecosystems. Plant. Soil 2010, 329, 379–397. [Google Scholar] [CrossRef]
- Schultz, P.A.; Halpert, M.S. Global correlation of temperature, NDVI and precipitation. Adv. Space Res. 1993, 13, 277–280. [Google Scholar] [CrossRef]
- Frampton, W.J.; Dash, J.; Watmough, G.; Milton, E.J. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS J. Photogramm. Remote Sens. 2013, 82, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Ren, H.; Zhou, G.; Zhang, F. Using negative soil adjustment factor in soil-adjusted vegetation index (SAVI) for aboveground living biomass estimation in arid grasslands. Remote Sens. Environ. 2018, 209, 439–445. [Google Scholar] [CrossRef]
- Jiang, H.; Eastman, J.R. Application of fuzzy measures in multi-criteria evaluation in GIS. Int. J. Geogr. Inf. Sci. 2000, 14, 173–184. [Google Scholar] [CrossRef]
- Zabihi, H.; Alizadeh, M.; Kibet Langat, P.; Karami, M.; Shahabi, H.; Ahmad, A.; Nor Said, M.; Lee, S. GIS Multi-Criteria Analysis by Ordered Weighted Averaging (OWA): Toward an Integrated Citrus Management Strategy. Sustainability 2019, 11, 1009. [Google Scholar] [CrossRef] [Green Version]
- Mokarram, M.; Hojati, M. Using ordered weight averaging (OWA) aggregation for multi-criteria soil fertility evaluation by GIS (case study: Southeast Iran). Comput. Electron. Agric. 2017, 132, 1–13. [Google Scholar] [CrossRef]
- Gašparović, M.; Zrinjski, M.; Gudelj, M. Automatic cost-effective method for land cover classification (ALCC). Comput. Environ. Urban Syst. 2019, 76, 1–10. [Google Scholar] [CrossRef]
Criteria Group | Criterion Name | Unit | Description | Source | Native Format |
---|---|---|---|---|---|
Climate | Tmin | °C | Mean minimum air temperature | DHMZ | tabular |
Tavg | °C | Mean average air temperature | DHMZ | tabular | |
Tmax | °C | Mean maximum air temperature | DHMZ | tabular | |
Precipitation | mm | Total precipitation amount | DHMZ | tabular | |
AirHumidity | % | Mean relative air humidity | DHMZ | tabular | |
Solar Irradiation | kWh /m2 | Mean daily global horizontal irradiation | ASTER | raster | |
Soil | SoilType | / | Soil type classes | Basic pedologic map of Croatia | vector (polygon) |
pH | / | Soil pH values | CAEN | vector (point) | |
SoilTexture | / | Soil texture classes | CAEN | vector (point) | |
C/N | / | Carbon-to-nitrogen soil ratio | CAEN | vector (point) | |
Slope | ° | Terrain slope | SRTM | raster | |
TWI | / | Topographic wetness index | SRTM | raster |
Tile ID | Satellite | Sensing Date | Day of Year | Peak NDVI Values |
---|---|---|---|---|
T34TCR | S2B | 19th July 2019 | 200 | 38 |
T33TYL | S2A | 24th July 2019 | 205 | 102 |
T33TYL | S2A | 3rd August 2019 | 215 | 49 |
T33TYL | S2B | 8th August 2019 | 220 | 15 |
Criteria name | n | mean | CV | SK | KT |
---|---|---|---|---|---|
Tmin | 15 | 13.8 | 0.029 | 0.075 | −1.302 |
Tavg | 15 | 18.2 | 0.033 | 0.284 | −1.365 |
Tmax | 15 | 22.9 | 0.046 | −0.469 | −1.048 |
Precipitation | 15 | 457.5 | 0.100 | 1.275 | 0.818 |
AirHumidity | 15 | 71.9 | 0.052 | 1.077 | 1.689 |
pH | 48 | 6.7 | 0.159 | 0.061 | 1.400 |
SoilTexture (Clay) | 48 | 31.5 | 0.332 | 0.525 | 0.176 |
SoilTexture (Silt) | 48 | 57.8 | 0.215 | 0.600 | 0.563 |
SoilTexture (Sand) | 48 | 10.7 | 1.190 | 1.945 | 4.348 |
C/N | 48 | 7.6 | 0.251 | 0.747 | 1.537 |
Input Data | OK | IDW | ADW | ||||||
---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | NRMSE | R2 | RMSE | NRMSE | R2 | RMSE | NRMSE | |
Tmin | 0.6992 | 3.479 | 0.252 | 0.8371 | 0.778 | 0.056 | 0.7598 | 0.817 | 0.059 |
Tavg | 0.7491 | 1.965 | 0.108 | 0.8150 | 0.797 | 0.043 | 0.8198 | 0.831 | 0.045 |
Tmax | 0.6060 | 4.091 | 0.178 | 0.8029 | 1.155 | 0.050 | 0.7248 | 1.050 | 0.045 |
Precipitation | 0.6787 | 72.451 | 0.158 | 0.8165 | 25.915 | 0.056 | 0.7806 | 26.269 | 0.057 |
Air Humidity | 0.6589 | 8.106 | 0.112 | 0.7311 | 5.049 | 0.070 | 0.6842 | 5.983 | 0.083 |
pH | 0.5991 | 0.643 | 0.096 | 0.7313 | 0.526 | 0.078 | 0.7407 | 0.603 | 0.090 |
Clay | 0.5512 | 6.570 | 0.208 | 0.7022 | 5.751 | 0.182 | 0.6467 | 6.604 | 0.209 |
Silt | 0.5930 | 10.299 | 0.178 | 0.6695 | 9.247 | 0.160 | 0.6487 | 10.458 | 0.180 |
Sand | 0.6183 | 1.472 | 0.137 | 0.6529 | 1.477 | 0.138 | 0.6458 | 1.531 | 0.143 |
C/N | 0.5872 | 1.873 | 0.246 | 0.7726 | 0.654 | 0.086 | 0.6937 | 0.744 | 0.097 |
Tmin | Precipitation | Solar Irradiation | Tavg | Tmax | AirHumidity | Weight | |
---|---|---|---|---|---|---|---|
Tmin | 1 | 2 | 3 | 3 | 4 | 7 | 0.388 |
Precipitation | 1/2 | 1 | 2 | 3 | 3 | 6 | 0.261 |
SolarIrradiation | 1/3 | 1/2 | 1 | 2 | 3 | 4 | 0.156 |
Tavg | 1/3 | 1/3 | 1/2 | 1 | 2 | 3 | 0.104 |
Tmax | 1/4 | 1/3 | 1/3 | 1/2 | 1 | 3 | 0.082 |
AirHumidity | 1/7 | 1/6 | 1/4 | 1/3 | 1/3 | 1 | 0.042 |
SoilType | pH | Slope | SoilTexture | C/N | TWI | Weight | |
---|---|---|---|---|---|---|---|
SoilType | 1 | 2 | 3 | 3 | 4 | 7 | 0.383 |
pH | 1/2 | 1 | 2 | 3 | 4 | 6 | 0.254 |
Slope | 1/3 | 1/2 | 1 | 3 | 4 | 5 | 0.178 |
SoilTexture | 1/3 | 1/3 | 1/3 | 1 | 2 | 4 | 0.104 |
C/N | 1/4 | 1/4 | 1/4 | 1/2 | 1 | 3 | 0.073 |
TWI | 1/7 | 1/6 | 1/5 | 1/4 | 1/3 | 1 | 0.039 |
Value | Fuzzy standardization | Stepwise standardization | Linear standardization | ||||||
---|---|---|---|---|---|---|---|---|---|
Climate | Soil | Climate + Soil | Climate | Soil | Climate + Soil | Climate | Soil | Climate + Soil | |
R2lin | 0.4056 | 0.6839 | 0.8416 | 0.3016 | 0.6116 | 0.6947 | 0.3290 | 0.4855 | 0.6337 |
R2log | 0.4143 | 0.6644 | 0.8273 | 0.3175 | 0.6046 | 0.6944 | 0.3249 | 0.4819 | 0.6279 |
R2exp | 0.4191 | 0.6672 | 0.8417 | 0.2844 | 0.5760 | 0.6771 | 0.3422 | 0.4755 | 0.6289 |
R2poly2 | 0.4161 | 0.6907 | 0.8429 | 0.3319 | 0.6117 | 0.6975 | 0.3293 | 0.4858 | 0.6337 |
R2poly3 | 0.4162 | 0.6923 | 0.8438 | 0.3326 | 0.6291 | 0.7095 | 0.3310 | 0.4929 | 0.6357 |
RMSE | 0.1874 | 0.1435 | 0.0962 | 0.2070 | 0.1891 | 0.1926 | 0.2156 | 0.2089 | 0.1925 |
d | 0.2717 | 0.0049 | 0.0147 | 0.2987 | 0.3720 | 0.5990 | 0.2780 | 0.3434 | 0.4738 |
Model | S1 (%) | S2 (%) | S3 (%) | N1 (%) | N2 (%) | |
---|---|---|---|---|---|---|
Fuzzy standardization | Climate | 13.1 | 25.5 | 26.2 | 23.2 | 12.0 |
Soil | 23.6 | 14.7 | 30.5 | 21.7 | 9.5 | |
Climate + Soil | 14.5 | 22.2 | 27.6 | 22.5 | 13.2 | |
Stepwise standardization | Climate | 33.4 | 26.9 | 3.6 | 27.5 | 8.6 |
Soil | 19.1 | 23.0 | 15.9 | 18.5 | 23.5 | |
Climate + Soil | 9.2 | 26.3 | 25.0 | 20.9 | 18.6 | |
Linear standardization | Climate | 16.8 | 23.5 | 24.6 | 24.9 | 10.2 |
Soil | 19.2 | 20.5 | 21.6 | 15.4 | 23.3 | |
Climate + Soil | 18.6 | 25.5 | 23.9 | 17.1 | 14.9 |
FC | FS | FCS | SC | SS | SCS | LC | LS | LCS | |
---|---|---|---|---|---|---|---|---|---|
FC | 1.000 | 0.285 | 0.578 | 0.578 | 0.278 | 0.396 | 0.718 | 0.242 | 0.520 |
FS | 1.000 | 0.947 | 0.343 | 0.909 | 0.892 | 0.313 | 0.779 | 0.736 | |
FCS | 1.000 | 0.486 | 0.866 | 0.891 | 0.506 | 0.743 | 0.799 | ||
SC | 1.000 | 0.333 | 0.555 | 0.493 | 0.292 | 0.452 | |||
SS | 1.000 | 0.969 | 0.326 | 0.901 | 0.834 | ||||
SCS | 1.000 | 0.415 | 0.870 | 0.853 | |||||
LC | 1.000 | 0.294 | 0.689 | ||||||
LS | 1.000 | 0.895 | |||||||
LCS | 1.000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radočaj, D.; Jurišić, M.; Gašparović, M.; Plaščak, I. Optimal Soybean (Glycine max L.) Land Suitability Using GIS-Based Multicriteria Analysis and Sentinel-2 Multitemporal Images. Remote Sens. 2020, 12, 1463. https://doi.org/10.3390/rs12091463
Radočaj D, Jurišić M, Gašparović M, Plaščak I. Optimal Soybean (Glycine max L.) Land Suitability Using GIS-Based Multicriteria Analysis and Sentinel-2 Multitemporal Images. Remote Sensing. 2020; 12(9):1463. https://doi.org/10.3390/rs12091463
Chicago/Turabian StyleRadočaj, Dorijan, Mladen Jurišić, Mateo Gašparović, and Ivan Plaščak. 2020. "Optimal Soybean (Glycine max L.) Land Suitability Using GIS-Based Multicriteria Analysis and Sentinel-2 Multitemporal Images" Remote Sensing 12, no. 9: 1463. https://doi.org/10.3390/rs12091463
APA StyleRadočaj, D., Jurišić, M., Gašparović, M., & Plaščak, I. (2020). Optimal Soybean (Glycine max L.) Land Suitability Using GIS-Based Multicriteria Analysis and Sentinel-2 Multitemporal Images. Remote Sensing, 12(9), 1463. https://doi.org/10.3390/rs12091463