Evaluation of Global Decametric-Resolution LAI, FAPAR and FVC Estimates Derived from Sentinel-2 Imagery
"> Figure 1
<p>Spatial distribution of the selected sites for which LAI (LAI<sub>e</sub>), FAPAR, and FVC measurements were available from 2015 to 2016. The color image (RGB) is a composition of Sentinel-2 three bands, i.e., band 8a (near-infrared), band 4 (red), and band 3 (green), at 20-m spatial resolution, where yellow points represent the ground elementary sampling units (ESUs). (a-e) denote the location of ground measurements in Ukraine, France, Spain, Italy, and Kenya, respectively.</p> "> Figure 2
<p>The normalized spectral response of Sentinel-2A multi-spectral instrument (MSI) bands. These bands cover the visible, near-infrared, and shortwave-infrared spectral domains. The top three rows show the name, spatial resolution, and width of each band, respectively. The filled area indicates the selected bands (bands 3–7, 8a, and 11–12) for the LAI, FAPAR, and FVC retrievals.</p> "> Figure 3
<p>The framework of the Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), and Fractional Vegetation Cover (FVC) retrieval algorithm for Sentinel-2 imagery. The “N”, “C<sub>ab</sub>”, “C<sub>w</sub>”, “C<sub>m</sub>”, “C<sub>bp</sub>” in the PROSPECT model and “LAI”, “ALA”, “h<sub>spot</sub>”, “ρ<sub>soil</sub>”, “θ<sub>s</sub>”, “θ<sub>v</sub>”, “φ<sub>sv</sub>” in the Scattering from Arbitrarily Inclined Leaves (SAIL) model denote mesophyll structure index, chlorophyll content (μg/cm<sup>2</sup>), dry matter content (g/cm<sup>2</sup>), water content (g/cm<sup>2</sup>), brown pigment content for leaf and leaf area index (m<sup>2</sup>/m<sup>2</sup>), average leaf angle (°), hot spot parameter, sol reflectance, solar zenith angle (°), view zenith angle (°), relative azimuth angle between solar and view (°), respectively.</p> "> Figure 4
<p>The histogram of NDVI for vegetation (red area) and non-vegetated (blue area) pixels, respectively. The statistical results (pixel count, mean and standard deviation (std) value of pixels) for all vegetation (red area) and non-vegetated (blue area) pixels are shown in the left panel.</p> "> Figure 5
<p>(<b>a</b>) The number of pixels used in evaluating the spatial coverage of retrievals from different algorithm paths for Sentinel-2 biophysical estimates at each site. The pixel identified as vegetation in the scene classification layer was selected. The proportion of (<b>b</b>) LAI, (<b>c</b>) FAPAR, and (<b>d</b>) FVC estimates with the best retrievals, input out of range, and output out of range in all vegetation pixels at each site was also displayed. The “Bar”, “Col”, ”Con”, “Cre”, “Mar”, “Pey”, “Psh1”, “Psh2”, “Sav”, and “Urg” are the abbreviation name of Barrax, Collelongo, Creón D’armagnac, Maragua_UpperTana, Peyrousse, Pshenichne (2015-188), Pshenichne (2015-204), Savenès, and Urgons sites.</p> "> Figure 6
<p>The temporal trajectory of Sentinel-2 LAI, FAPAR, and FVC estimates from July 2015 to July 2018 at the (<b>a</b>) crop site, (<b>b</b>) forest site, and (<b>c</b>) grass site, respectively. The square point indicates the value of the ground ESU. The scene classification layer (SCL) shown at the top of each panel was extracted from Sentinel-2 surface reflectance products. The quality indicator (QA) was also displayed together with the biophysical variable for each observation date.</p> "> Figure 7
<p>The biophysical-specific comparison between ground-measurements-derived (GMD) reference maps and Sentinel-2 estimates at the pixel scale from 2015 to 2016. The solid black and dash black lines represent the linear fit for all pixels and 1:1 line, respectively. The colorbar shows the density of pixels falling at each grid. (<b>a</b>)–(<b>d</b>) stand for LAI<sub>e</sub>, LAI, FAPAR, and FVC comparison, respectively.</p> "> Figure 8
<p>The comparisons between ground ESUs and Sentinel-2 biophysical estimates. (<b>a</b>) Ground LAI<sub>e</sub> ESUs versus Sentinel-2 LAI estimates; (<b>b</b>) Ground LAI ESUs versus Sentinel-2 LAI estimates; (<b>c</b>) Ground FAPAR ESUs versus Sentinel-2 FAPAR estimates; (<b>d</b>) Ground FVC ESUs versus Sentinel-2 FVC estimates. The colors stand for different vegetation types (i.e., crop types, forests, and grasses, respectively) shown in the right colorbar. The blue and black solid lines denote the fitting line and 1:1 line, respectively. The red dashed lines show the Global Climate Observing System (GCOS) specifications boundaries for LAI<sub>e</sub> (max (0.5, 20%), LAI (max (0.5, 20%)) and FAPAR (max (0.05, 10%)).</p> "> Figure A1
<p>The examples of sampling schemes for (<b>a</b>) random, (<b>b</b>) row, and (<b>c</b>) regularly planted vegetation in an ESU. This figure was cited from Camacho et al. [<a href="#B56-remotesensing-12-00912" class="html-bibr">56</a>].</p> "> Figure A2
<p>The comparison between ground ESUs and GMD reference maps. (<b>a</b>) Ground LAI<sub>e</sub> ESUs versus GMD LAI<sub>e</sub> reference maps; (<b>b</b>) Ground LAI ESUs versus GMD LAI reference maps; (<b>c</b>) Ground FAPAR ESUs versus GMD FAPAR reference maps; (<b>d</b>) Ground FVC ESUs versus GMD FVC reference maps. The colors stand for different vegetation types (i.e., crop types, forests, and grasses, respectively) shown in the right colorbar. The blue and black solid lines denote the fitting line and 1:1 line, respectively. The red dashed lines show the GCOS specifications boundaries for LAI<sub>e</sub> (max (0.5, 20%), LAI (max (0.5, 20%)) and FAPAR (max (0.05, 10%)).</p> ">
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Ground Truth Data and Ground-measurements-derived (GMD) Reference Maps
2.3. Sentinel-2 MSI Data
3. Methodology
3.1. Generation of Sentinel-2 LAI, FAPAR, and FVC Estimates
3.2. Evaluation of Estimate Quality and Comparison with GMD Reference Maps
3.3. Uncertainty Quantification
4. Results
4.1. The Accuracy of Vegetation and Non-vegetated Pixel Classification
4.2. Spatial Coverage of Biophysical Retrievals from Different Algorithm Paths
4.3. Analysis of Sentinel-2 Time-Series Biophyiscal Estimates
4.4. Intercomparison with GMD LAI, FAPAR, and FVC Reference Maps
4.5. Uncertainty Assessment
5. Discussion
5.1. Understanding Uncertainty of Sentinel-2 Biophysical Estimates
5.2. Limitations and Future Prospects
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Sellers, P.J.; Dickinson, R.E.; Randall, D.A.; Betts, A.K.; Hall, F.G.; Berry, J.A.; Collatz, G.J.; Denning, A.S.; Mooney, H.A.; Nobre, C.A.; et al. Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science 1997, 275, 502–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simonich, S.L.; Hites, R.A. Importance of vegetation in removing polycyclic aromatic hydrocarbons from the atmosphere. Nature 1994, 370, 49–51. [Google Scholar] [CrossRef]
- Huang, J.; Zhuo, W.; Li, Y.; Huang, R.; Sedano, F.; Su, W.; Dong, J.; Tian, L.; Huang, Y.; Zhu, D.; et al. Comparison of three remotely sensed drought indices for assessing the impact of drought on winter wheat yield. Int. J. Digit. Earth 2018, 1–23. [Google Scholar] [CrossRef]
- Weiss, M.; Baret, F.; Garrigues, S.; Lacaze, R. LAI and fAPAR CYCLOPES global products derived from VEGETATION. Part 2: Validation and comparison with MODIS collection 4 products. Remote Sens. Environ. 2007, 110, 317–331. [Google Scholar] [CrossRef]
- Huang, R.; Huang, J.; Zhang, C.; Ma, H.; Zhuo, W.; Chen, Y.; Zhu, D.; Wu, Q.; Mansaray, L.R. Soil temperature estimation at different depths, using remotely-sensed data. J. Integr. Agric. 2020, 19, 277–290. [Google Scholar] [CrossRef]
- Yang, N.; Liu, D.; Feng, Q.; Xiong, Q.; Zhang, L.; Ren, T.; Zhao, Y.; Zhu, D.; Huang, J. Large-scale crop mapping based on machine learning and parallel computation with grids. Remote Sens. 2019, 11, 1500. [Google Scholar] [CrossRef] [Green Version]
- Zhuo, W.; Huang, J.; Li, L.; Zhang, X.; Ma, H.; Gao, X.; Huang, H.; Xu, B.; Xiao, X. Assimilating soil moisture retrieved from Sentinel-1 and Sentinel-2 data into WOFOST model to improve winter wheat yield estimation. Remote Sens. 2019, 11, 1618. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.M.; Black, T.A. Defining leaf area index for non-flat leaves. Plant Cell Environ. 1992, 15, 421–429. [Google Scholar] [CrossRef]
- Chen, J.M.; Menges, C.H.; Leblanc, S.G. Global mapping of foliage clumping index using multi-angular satellite data. Remote Sens. Environ. 2005, 97, 447–457. [Google Scholar] [CrossRef]
- Gray, J.; Song, C. Mapping leaf area index using spatial, spectral, and temporal information from multiple sensors. Remote Sens. Environ. 2012, 119, 173–183. [Google Scholar] [CrossRef]
- Fensholt, R.; Sandholt, I.; Rasmussen, M.S. Evaluation of MODIS LAI, fAPAR and the relation between fAPAR and NDVI in a semi-arid environment using in situ measurements. Remote Sens. Environ. 2004, 91, 490–507. [Google Scholar] [CrossRef]
- Song, W.; Mu, X.; Ruan, G.; Gao, Z.; Li, L.; Yan, G. Estimating fractional vegetation cover and the vegetation index of bare soil and highly dense vegetation with a physically based method. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 168–176. [Google Scholar] [CrossRef]
- Global Climate Observing System (GCOS). Systematic Observation Requirements for Satellite-Based Products for Climate, 2011 Update, Supplemental Details to the Satellite-Based Component of the Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC (2010 Update). Available online: https://library.wmo.int/index.php?lvl=notice_display&id=12907 (accessed on 10 January 2020).
- Baret, F.; Weiss, M.; Lacaze, R.; Camacho, F.; Makhmara, H.; Pacholcyzk, P.; Smets, B. GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: Principles of development and production. Remote Sens. Environ. 2013, 137, 299–309. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.R.; Chen, J.; Chen, Y.; Li, J.; Yan, G.; Zhang, X. Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction. Remote Sens. Environ. 2006, 101, 366–378. [Google Scholar] [CrossRef]
- Jia, K.; Liang, S.; Gu, X.; Baret, F.; Wei, X.; Wang, X.; Yao, Y.; Yang, L.; Li, Y. Fractional vegetation cover estimation algorithm for Chinese GF-1 wide field view data. Remote Sens. Environ. 2016, 177, 184–191. [Google Scholar] [CrossRef]
- Myneni, R.B.; Hoffman, S.; Knyazikhin, Y.; Privette, J.L.; Glassy, J.; Tian, Y.; Wang, Y.; Song, X.; Zhang, Y.; Smith, G.R.; et al. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ. 2002, 83, 214–231. [Google Scholar] [CrossRef] [Green Version]
- Baret, F.; Hagolle, O.; Geiger, B.; Bicheron, P.; Miras, B.; Huc, M.; Berthelot, B.; Niño, F.; Weiss, M.; Samain, O.; et al. LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION: Part 1: Principles of the algorithm. Remote Sens. Environ. 2007, 110, 275–286. [Google Scholar] [CrossRef] [Green Version]
- Yan, K.; Park, T.; Yan, G.; Chen, C.; Yang, B.; Liu, Z.; Nemani, R.; Knyazikhin, Y.; Myneni, R. Evaluation of MODIS LAI/FPAR product Collection 6. Part 1: Consistency and improvements. Remote Sens. 2016, 8, 359. [Google Scholar] [CrossRef] [Green Version]
- Campos-Taberner, M.; Moreno-Martínez, Á.; García-Haro, F.; Camps-Valls, G.; Robinson, N.; Kattge, J.; Running, S. Global estimation of biophysical variables from Google Earth Engine platform. Remote Sens. 2018, 10, 1167. [Google Scholar] [CrossRef] [Green Version]
- Ganguly, S.; Samanta, A.; Schull, M.A.; Shabanov, N.V.; Milesi, C.; Nemani, R.R.; Knyazikhin, Y.; Myneni, R.B. Generating vegetation leaf area index Earth system data record from multiple sensors. Part 2: Implementation, analysis and validation. Remote Sens. Environ. 2008, 112, 4318–4332. [Google Scholar] [CrossRef]
- Zhu, Z.; Bi, J.; Pan, Y.; Ganguly, S.; Anav, A.; Xu, L.; Samanta, A.; Piao, S.; Nemani, R.R.; Myneni, B.R. Global data sets of vegetation leaf area index (LAI)3g and fraction of photosynthetically active radiation (FPAR)3g derived from global inventory modeling and mapping studies (GIMMS) normalized difference vegetation index (NDVI3g) for the period 1981 to 2011. Remote Sens. 2013, 5, 927–948. [Google Scholar]
- García-Haro, F.J.; Campos-Taberner, M.; Muñoz-Marí, J.; Laparra, V.; Camacho, F.; Sánchez-Zapero, J.; Camps-Valls, G. Derivation of global vegetation biophysical parameters from EUMETSAT Polar System. ISPRS J. Photogramm. Remote Sens. 2018, 139, 57–74. [Google Scholar] [CrossRef]
- Claverie, M.; Matthews, L.J.; Vermote, F.E.; Justice, O.C. A 30+ year AVHRR LAI and FAPAR climate data record: Algorithm description and validation. Remote Sens. 2016, 8, 263. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Park, T.; Yan, K.; Chen, C.; Zeng, Y.; Song, W.; Yin, G.; Li, J.; Liu, Q.; Knyazikhin, Y.; et al. Analysis of global LAI/FPAR products from VIIRS and MODIS sensors for spatio-temporal consistency and uncertainty from 2012–2016. Forests 2018, 9, 73. [Google Scholar] [CrossRef] [Green Version]
- Yan, K.; Park, T.; Chen, C.; Xu, B.; Song, W.; Yang, B.; Zeng, Y.; Liu, Z.; Yan, G.; Knyazikhin, Y.; et al. Generating global products of LAI and FPAR from SNPP-VIIRS data: Theoretical background and implementation. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2119–2137. [Google Scholar] [CrossRef]
- Li, W.; Weiss, M.; Waldner, F.; Defourny, P.; Demarez, V.; Morin, D.; Hagolle, O.; Baret, F. A generic algorithm to estimate LAI, FAPAR and FCOVER variables from SPOT4 HRVIR and Landsat sensors: Evaluation of the consistency and comparison with ground measurements. Remote Sens. 2015, 7, 15494–15516. [Google Scholar] [CrossRef] [Green Version]
- Ganguly, S.; Nemani, R.R.; Zhang, G.; Hashimoto, H.; Milesi, C.; Michaelis, A.; Wang, W.; Votava, P.; Samanta, A.; Melton, F.; et al. Generating global leaf area index from Landsat: Algorithm formulation and demonstration. Remote Sens. Environ. 2012, 122, 185–202. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.M.; Pavlic, G.; Brown, L.; Cihlar, J.; Leblanc, S.G.; White, H.P.; Hall, R.J.; Peddle, D.R.; King, D.J.; Trofymow, J.A.; et al. Derivation and validation of Canada-wide coarse-resolution leaf area index maps using high-resolution satellite imagery and ground measurements. Remote Sens. Environ. 2002, 80, 165–184. [Google Scholar] [CrossRef]
- Yin, G.; Li, J.; Liu, Q.; Li, L.; Zeng, Y.; Xu, B.; Yang, L.; Zhao, J. Improving leaf area index retrieval over heterogeneous surface by integrating textural and contextual information: A case study in the Heihe river basin. IEEE Geosci. Remote Sens. Lett. 2015, 12, 359–363. [Google Scholar]
- Xu, B.; Li, J.; Park, T.; Liu, Q.; Zeng, Y.; Yin, G.; Yan, K.; Chen, C.; Zhao, J.; Fan, W.; et al. Improving leaf area index retrieval over heterogeneous surface mixed with water. Remote Sens. Environ. 2020, 240, 111700. [Google Scholar] [CrossRef]
- Fang, H.; Li, W.; Myneni, R. The impact of potential land cover misclassification on MODIS leaf area index (LAI) estimation: A statistical perspective. Remote Sens. 2013, 5, 830–844. [Google Scholar] [CrossRef] [Green Version]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Weiss, M.; Baret, F. S2ToolBox Level 2 Products: LAI, FAPAR, FCOVER. Version 1.1. 2016. Available online: http//step.esa.int/docs/extra/ATBD_S2ToolBox_L2B_V1.1.pdf (accessed on 21 October 2019).
- Colombo, R.; Bellingeri, D.; Fasolini, D.; Marino, C.M. Retrieval of leaf area index in different vegetation types using high resolution satellite data. Remote Sens. Environ. 2003, 86, 120–131. [Google Scholar] [CrossRef]
- Djamai, N.; Zhong, D.; Fernandes, R.; Zhou, F. Evaluation of vegetation biophysical variables time series derived from synthetic Sentinel-2 images. Remote Sens. 2019, 11, 1547. [Google Scholar] [CrossRef] [Green Version]
- Djamai, N.; Fernandes, R.; Weiss, M.; McNairn, H.; Goïta, K. Validation of the Sentinel Simplified Level 2 Product Prototype Processor (SL2P) for mapping cropland biophysical variables using Sentinel-2/MSI and Landsat-8/OLI data. Remote Sens. Environ. 2019, 225, 416–430. [Google Scholar] [CrossRef]
- Putzenlechner, B.; Castro, S.; Kiese, R.; Ludwig, R.; Marzahn, P.; Sharp, I.; Sanchez-Azofeifa, A. Validation of Sentinel-2 fAPAR products using ground observations across three forest ecosystems. Remote Sens. Environ. 2019, 232, 111310. [Google Scholar] [CrossRef]
- Upreti, D.; Huang, W.; Kong, W.; Pascucci, S.; Pignatti, S.; Zhou, X.; Ye, H.; Casa, R. A comparison of hybrid machine learning algorithms for the retrieval of wheat biophysical variables from Sentinel-2. Remote Sens. 2019, 11, 481. [Google Scholar] [CrossRef] [Green Version]
- Fang, H.; Wei, S.; Liang, S. Validation of MODIS and CYCLOPES LAI products using global field measurement data. Remote Sens. Environ. 2012, 119, 43–54. [Google Scholar] [CrossRef]
- Xu, B.; Li, J.; Liu, Q.; Huete, A.; Yu, Q.; Zeng, Y.; Yin, G.; Zhao, J.; Yang, L. Evaluating spatial representativeness of station observations for remotely sensed leaf area index products. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3267–3282. [Google Scholar] [CrossRef]
- Camacho, F.; Cernicharo, J.; Lacaze, R.; Baret, F.; Weiss, M. GEOV1: LAI, FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part 2: Validation and intercomparison with reference products. Remote Sens. Environ. 2013, 137, 310–329. [Google Scholar] [CrossRef]
- Garrigues, S.; Lacaze, R.; Baret, F.; Morisette, J.T.; Weiss, M.; Nickeson, J.E.; Fernandes, R.; Plummer, S.; Shabanov, N.V.; Myneni, R.B.; et al. Validation and intercomparison of global leaf area index products derived from remote sensing data. J. Geophys. Res. 2008, 113, G02028. [Google Scholar] [CrossRef]
- Claverie, M.; Vermote, E.F.; Weiss, M.; Baret, F.; Hagolle, O.; Demarez, V. Validation of coarse spatial resolution LAI and FAPAR time series over cropland in southwest France. Remote Sens. Environ. 2013, 139, 216–230. [Google Scholar] [CrossRef]
- Yin, G.; Li, A.; Jin, H.; Zhao, W.; Bian, J.; Qu, Y.; Zeng, Y.; Xu, B. Derivation of temporally continuous LAI reference maps through combining the LAINet observation system with CACAO. Agric. For. Meteorol. 2017, 233, 209–221. [Google Scholar] [CrossRef]
- Campos-Taberner, M.; García-Haro, J.F.; Camps-Valls, G.; Grau-Muedra, G.; Nutini, F.; Busetto, L.; Katsantonis, D.; Stavrakoudis, D.; Minakou, C.; Gatti, L.; et al. Exploitation of SAR and optical Sentinel data to detect rice crop and estimate seasonal dynamics of leaf area index. Remote Sens. 2017, 9, 248. [Google Scholar] [CrossRef] [Green Version]
- Campos-Taberner, M.; Javier Garcia-Haro, F.; Busetto, L.; Ranghetti, L.; Martinez, B.; Amparo Gilabert, M.; Camps-Valls, G.; Camacho, F.; Boschetti, M. A critical comparison of remote sensing leaf area index estimates over rice-cultivated areas: From Sentinel-2 and Landsat-7/8 to MODIS, GEOV1 and EUMETSAT Polar System. Remote Sens. 2018, 10, 763. [Google Scholar] [CrossRef] [Green Version]
- Korhonen, L.; Packalen, P.; Rautiainen, M. Comparison of Sentinel-2 and Landsat 8 in the estimation of boreal forest canopy cover and leaf area index. Remote Sens. Environ. 2017, 195, 259–274. [Google Scholar] [CrossRef]
- Brown, A.L.; Ogutu, O.B.; Dash, J. Estimating forest leaf area index and canopy chlorophyll content with Sentinel-2: An evaluation of two hybrid retrieval algorithms. Remote Sens. 2019, 11, 1752. [Google Scholar] [CrossRef] [Green Version]
- Pan, H.; Chen, Z.; Ren, J.; Li, H.; Wu, S. Modeling winter wheat leaf area index and canopy water content with three different approaches using Sentinel-2 multispectral instrument data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 482–492. [Google Scholar] [CrossRef]
- Pasqualotto, N.; D’Urso, G.; Bolognesi, F.S.; Belfiore, R.O.; Van Wittenberghe, S.; Delegido, J.; Pezzola, A.; Winschel, C.; Moreno, J. Retrieval of evapotranspiration from Sentinel-2: Comparison of vegetation indices, semi-empirical models and SNAP biophysical processor approach. Agronomy 2019, 9, 663. [Google Scholar] [CrossRef] [Green Version]
- Pasqualotto, N.; Delegido, J.; Van Wittenberghe, S.; Rinaldi, M.; Moreno, J. Multi-crop green LAI estimation with a new simple sentinel-2 LAI index (SeLI). Sensors 2019, 19, 904. [Google Scholar] [CrossRef] [Green Version]
- Camacho, F.; Lacaze, R.; Latorre, C.; Baret, F.; De la Cruz, F.; Demarez, V.; Di Bella, C.; García-Haro, J.; González-Dugo, M.P.; Kussul, N. Collection of ground biophysical measurements in support of Copernicus Global Land Product Validation: The ImagineS database. In Proceedings of the EGU General Assembly, Vienna, Austria, 17–22 April 2015; Volume 17. Geophysical Research Abstracts, 17 EGU2015–2209-1. [Google Scholar]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camacho, F.; Lacaze, R.; Latorre, C.; Baret, F.; De la Cruz, F.; Demarez, V.; Di Bella, C.; Fang, H.; García-Haro, J.; Gonzalez, M.P. A network of sites for ground biophysical measurements in support of Copernicus Global Land Product Validation. In Proceedings of the IV RAQRS Conference, Torrent, Spain, 22–26 September 2014; pp. 22–26. [Google Scholar]
- Camacho, F.; Latorre, C.; Roujean, J.L. Vegetation field data and production of ground-based maps. In Proceedings of the AHSPECT Multi-Site Campaign, South West, France, 22–25 June 2015. [Google Scholar]
- Fang, H.; Li, W.; Wei, S.; Jiang, C. Seasonal variation of leaf area index (LAI) over paddy rice fields in NE China: Intercomparison of destructive sampling, LAI-2200, digital hemispherical photography (DHP), and AccuPAR methods. Agric. For. Meteorol. 2014, 198–199, 126–141. [Google Scholar] [CrossRef]
- Weiss, M.; Baret, F. Can_Eye V6.4.91 User Manual; French National Institute for Agriculture Research (INRA): Toulouse, France, 2017. [Google Scholar]
- Liu, C.C.; Zhang, Y.C.; Chen, P.Y.; Lai, C.C.; Chen, Y.H.; Cheng, J.H.; Ko, M.H. Clouds classification from Sentinel-2 imagery with deep residual learning and semantic image segmentation. Remote Sens. 2019, 11, 119. [Google Scholar] [CrossRef] [Green Version]
- Jacquemoud, S.; Verhoef, W.; Baret, F.; Bacour, C.; Zarco-Tejada, P.J.; Asner, G.P.; François, C.; Ustin, S.L. PROSPECT + SAIL models: A review of use for vegetation characterization. Remote Sens. Environ. 2009, 113, S56–S66. [Google Scholar] [CrossRef]
- Verhoef, W. Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model. Remote Sens. Environ. 1984, 16, 125–141. [Google Scholar] [CrossRef] [Green Version]
- Jacquemoud, S.; Baret, F. PROSPECT: A model of leaf optical properties spectra. Remote Sens. Environ. 1990, 34, 75–91. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Baret, F.; Hanocq, J.F. Modeling spectral and bidirectional soil reflectance. Remote Sens. Environ. 1992, 41, 123–132. [Google Scholar] [CrossRef]
- Liu, W.; Baret, F.; Gu, X.; Tong, Q.; Zheng, L.; Zhang, B. Relating soil surface moisture to reflectance. Remote Sens. Environ. 2002, 81, 238–246. [Google Scholar]
- Baret, F.; de Solan, B.; Lopez-Lozano, R.; Ma, K.; Weiss, M. GAI estimates of row crops from downward looking digital photos taken perpendicular to rows at 57.5° zenith angle: Theoretical considerations based on 3D architecture models and application to wheat crops. Agric. For. Meteorol. 2010, 150, 1393–1401. [Google Scholar] [CrossRef]
- Wang, Y.J.; Tian, Y.H.; Zhang, Y.; El-Saleous, N.; Knyazikhin, Y.; Vermote, E.; Myneni, R.B. Investigation of product accuracy as a function of input and model uncertainties: Case study with SeaWiFS and MODIS LAI/FPAR algorithm. Remote Sens. Environ. 2001, 78, 299–313. [Google Scholar] [CrossRef]
- Baghzouz, M.; Devitt, D.A.; Fenstermaker, L.F.; Young, M.H. Monitoring vegetation phenological cycles in two different semi-arid environmental settings using a ground-based NDVI system: A potential approach to improve satellite data interpretation. Remote Sens. 2010, 2, 990–1013. [Google Scholar] [CrossRef] [Green Version]
- Candiago, S.; Remondino, F.; De Giglio, M.; Dubbini, M.; Gattelli, M. Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. Remote Sens. 2015, 7, 4026–4047. [Google Scholar] [CrossRef] [Green Version]
- Hmimina, G.; Dufrêne, E.; Pontailler, J.Y.; Delpierre, N.; Aubinet, M.; Caquet, B.; de Grandcourt, A.; Burban, B.; Flechard, C.; Granier, A.; et al. Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: An investigation using ground-based NDVI measurements. Remote Sens. Environ. 2013, 132, 145–158. [Google Scholar] [CrossRef]
- Soudani, K.; Hmimina, G.; Delpierre, N.; Pontailler, J.Y.; Aubinet, M.; Bonal, D.; Caquet, B.; de Grandcourt, A.; Burban, B.; Flechard, C.; et al. Ground-based network of NDVI measurements for tracking temporal dynamics of canopy structure and vegetation phenology in different biomes. Remote Sens. Environ. 2012, 123, 234–245. [Google Scholar] [CrossRef]
- Brantley, S.T.; Zinnert, J.C.; Young, D.R. Application of hyperspectral vegetation indices to detect variations in high leaf area index temperate shrub thicket canopies. Remote Sens. Environ. 2011, 115, 514–523. [Google Scholar] [CrossRef] [Green Version]
- Tillack, A.; Clasen, A.; Kleinschmit, B.; Foerster, M. Estimation of the seasonal leaf area index in an alluvial forest using high-resolution satellite-based vegetation indices. Remote Sens. Environ. 2014, 141, 52–63. [Google Scholar] [CrossRef]
- Zhou, X.; Zheng, H.B.; Xu, X.Q.; He, J.Y.; Ge, X.K.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.X.; Tian, Y.C. Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery. ISPRS J. Photogramm. Remote Sens. 2017, 130, 246–255. [Google Scholar] [CrossRef]
- Djamai, N.; Fernandes, R. Comparison of SNAP-derived Sentinel-2A L2A product to ESA product over Europe. Remote Sens. 2018, 10, 926. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Chen, J.; Ma, Q.; Zhang, H.K.; Liu, J. Evaluation of Sentinel-2A surface reflectance derived using Sen2Cor in North America. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1997–2021. [Google Scholar] [CrossRef]
- Martins, S.V.; Barbosa, C.C.; De Carvalho, A.L.; Jorge, S.D.; Lobo, D.F.; Novo, M.E. Assessment of atmospheric correction methods for Sentinel-2 MSI images applied to Amazon floodplain lakes. Remote Sens. 2017, 9, 322. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Li, J.; Park, T.; Liu, Q.; Zeng, Y.; Yin, G.; Zhao, J.; Fan, W.; Yang, L.; Knyazikhin, Y.; et al. An integrated method for validating long-term leaf area index products using global networks of site-based measurements. Remote Sens. Environ. 2018, 209, 134–151. [Google Scholar] [CrossRef]
- Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.-C.; Skakun, S.V.; Justice, C. The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sens. Environ. 2018, 219, 145–161. [Google Scholar] [CrossRef]
Site Name | Country | Year-DOY | Ground ESU Number (μ ± σ) | ||||
---|---|---|---|---|---|---|---|
In-situ Measurements | Sentinel-2A (cloud free) | LAIe (m2/m2) | LAI (m2/m2) | FAPAR | FVC | ||
Barrax | Spain | 2015-203 | 2015-207 | 44 (1.58 ± 1.61) | 35 (1.67 ± 2.04) | 35 (0.37 ± 0.42) | 35 (0.34 ± 0.39) |
Pshenichne | Ukraine | 2015-188 | 2015-197 | 28 (2.14 ± 0.36) | 28 (3.28 ± 0.95) | 28 (0.81 ± 0.04) | 28 (0.70 ± 0.08) |
2015-204 | 2015-214 | 28 (2.56 ± 0.36) | 28 (3.78 ± 0.79) | 28 (0.85 ± 0.05) | 28 (0.73 ± 0.12) | ||
Meteopol | France | 2015-173 | 2015-187 | 2 (0.52 ± 0.06) | 2 (0.55 ± 0.08) | 2 (0.34 ± 0.02) | 2 (0.35 ± 0.05) |
Peyrousse | 2015-174 | 2015-187 | 12 (0.51 ± 0.44) | 12 (0.89 ± 0.78) | 12 (0.32 ± 0.24) | 12 (0.33 ± 0.25) | |
Urgons | 2015-174 | 2015-187 | 12 (0.92 ± 0.25) | 7 (1.67 ± 0.50) | 7 (0.47 ± 0.12) | 7 (0.39 ± 0.08) | |
Creón D’armagnac | 2015-175 | 2015-187 | 14 (2.40 ± 1.23) | 8 (3.05 ± 1.94) | 9 (0.61 ± 0.34) | 8 (0.49 ± 0.31) | |
Condom | 2015-176 | 2015-187 | 8 (0.77 ± 0.42) | 8 (1.24 ± 0.76) | 8 (0.43 ± 0.22) | 8 (0.42 ± 0.22) | |
Savenès | 2015-176 | 2015-187 | 13 (0.74 ± 0.57) | 10 (0.77 ± 0.69) | 10 (0.32 ± 0.29) | 10 (0.31 ± 0.27) | |
Collelongo | Italy | 2015-189 | - | 15 (2.63 ± 0.32) | 15 (3.62 ± 0.56) | 15 (0.83 ± 0.04) | 15 (0.78 ± 0.06) |
2015-268 | 2015-262 | 15 (2.78 ± 0.22) | 15 (3.79 ± 0.35) | 15 (0.86 ± 0.17) | 15 (0.86 ± 0.03) | ||
Maragua_UpperTana | Kenya | 2016-068 | 2016-075 | 26 (1.33 ± 1.31) | 26 (1.78 ± 1.38) | 26 (0.55 ± 0.32) | 26 (0.54 ± 0.32) |
Sentinel-2 Scene Classification Layer | ||||||
---|---|---|---|---|---|---|
Ground ESUs | Unclassified | Cloud | Land cover | Vegetation | Non-vegetated | Accuracy |
1 | 18 | Vegetation | 149 | 6 | 96.13% | |
Non-vegetated | 0 | 28 | 100% |
Vegetation type | LAIe (m2/m2) | LAI (m2/m2) | FAPAR | FVC | ||||||||||||
N | Bias | RMSE | R2 | N | Bias | RMSE | R2 | N | Bias | RMSE | R2 | N | Bias | RMSE | R2 | |
Alfalfa | - | - | - | - | - | - | - | - | - | - | - | - | 4 | −0.00 | 0.01 | 0.79 |
Banana | 1 | 0.35 | 0.35 | - | 1 | −0.76 | 0.76 | - | 1 | −0.16 | 0.16 | - | 1 | −0.24 | 0.24 | - |
Prunus Popplar | 1 | −0.29 | 0.29 | - | 1 | −1.16 | 1.16 | - | 1 | −0.10 | 0.10 | - | 1 | −0.08 | 0.08 | - |
Tea | 4 | −0.86 | 1.02 | <0.1 | 4 | −1.08 | 1.22 | <0.1 | 4 | −0.16 | 0.16 | 0.52 | 4 | −0.14 | 0.14 | 0.34 |
Coffee | 7 | 0.59 | 0.64 | 0.73 | 7 | 0.02 | 0.61 | 0.74 | 7 | 0.01 | 0.15 | 0.92 | 7 | −0.02 | 0.13 | 0.87 |
Sunflower | 8 | 0.80 | 1.12 | 0.44 | 7 | 0.46 | 0.99 | 0.33 | 7 | 0.10 | 0.12 | 0.92 | 20 | 0.15 | 0.20 | 0.62 |
Soybean | 24 | 0.40 | 1.23 | <0.1 | 21 | −0.29 | 1.47 | <0.1 | 21 | −0.08 | 0.17 | <0.1 | 25 | −0.08 | 0.19 | <0.1 |
Corn | 39 | 0.96 | 1.24 | 0.46 | 29 | −0.63 | 1.24 | 0.21 | 30 | 0.02 | 0.12 | 0.33 | 38 | 0.17 | 0.19 | 0.56 |
Crops | 84 | 0.65 | 1.16 | 0.37 | 70 | −0.39 | 1.24 | 0.32 | 71 | −0.02 | 0.14 | 0.52 | 100 | 0.06 | 0.18 | 0.34 |
Forests | 19 | 0.42 | 0.69 | 0.68 | 19 | −0.52 | 0.89 | 0.61 | 19 | −0.04 | 0.07 | 0.63 | 20 | −0.10 | 0.12 | 0.55 |
Grasses | 8 | 0.09 | 0.40 | 0.65 | 8 | −0.19 | 0.59 | 0.42 | 8 | −0.03 | 0.14 | 0.39 | 8 | −0.05 | 0.17 | 0.32 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Q.; Yang, J.; Xu, B.; Huang, J.; Memon, M.S.; Yin, G.; Zeng, Y.; Zhao, J.; Liu, K. Evaluation of Global Decametric-Resolution LAI, FAPAR and FVC Estimates Derived from Sentinel-2 Imagery. Remote Sens. 2020, 12, 912. https://doi.org/10.3390/rs12060912
Hu Q, Yang J, Xu B, Huang J, Memon MS, Yin G, Zeng Y, Zhao J, Liu K. Evaluation of Global Decametric-Resolution LAI, FAPAR and FVC Estimates Derived from Sentinel-2 Imagery. Remote Sensing. 2020; 12(6):912. https://doi.org/10.3390/rs12060912
Chicago/Turabian StyleHu, Qiong, Jingya Yang, Baodong Xu, Jianxi Huang, Muhammad Sohail Memon, Gaofei Yin, Yelu Zeng, Jing Zhao, and Ke Liu. 2020. "Evaluation of Global Decametric-Resolution LAI, FAPAR and FVC Estimates Derived from Sentinel-2 Imagery" Remote Sensing 12, no. 6: 912. https://doi.org/10.3390/rs12060912
APA StyleHu, Q., Yang, J., Xu, B., Huang, J., Memon, M. S., Yin, G., Zeng, Y., Zhao, J., & Liu, K. (2020). Evaluation of Global Decametric-Resolution LAI, FAPAR and FVC Estimates Derived from Sentinel-2 Imagery. Remote Sensing, 12(6), 912. https://doi.org/10.3390/rs12060912