Anomaly Detection for Urban Vehicle GNSS Observation with a Hybrid Machine Learning System
"> Figure 1
<p>The hybrid learning framework flow diagram for global navigation satellite systems (GNSS) observation anomaly detection.</p> "> Figure 2
<p>The experimental platform and test environment. (<b>a</b>) shows the data acquisition and calibration equipment, (<b>b</b>) shows a typical lane scenario in downtown Nanjing (from Baidu Map’s panorama).</p> "> Figure 3
<p>Vehicle routes corresponding to GNSS observations. (<b>a</b>) Vehicle route of the training set D1; (<b>b</b>) vehicle route of the test set D2; (<b>c</b>) vehicle route of the test set D3.</p> "> Figure 4
<p>Skyplots of GNSS observations. The diagrams from left to right correspond to D1, D2, and D3, respectively.</p> "> Figure 5
<p>Principal components and their explained variance ratios from the training set D1a.</p> "> Figure 6
<p>Preliminary clustering results of the dataset D1a using hierarchical density-based spatial clustering of applications with noise (HDBSCAN).</p> "> Figure 7
<p>Pair plot of satellite elevation angle, pseudorange residual, C/N<sub>0</sub> measurement, and pseudorange rate consistency. The diagonals represent the probability density of different sample points on this variable, while the off-diagonals represent the distribution of sample points on the corresponding two-dimensional features.</p> "> Figure 8
<p>Comparison of positioning errors before and after excluding anomalous observations.</p> "> Figure 9
<p>Comparison of geometric dilution of precision (GDOP) before and after excluding anomalous observations.</p> "> Figure 10
<p>Epochs with insufficient normal observations are discarded to avoid wrong position solutions in harsh environments.</p> "> Figure 11
<p>The positioning accuracy is greatly improved at the epochs with enough normal observations after anomaly exclusion.</p> "> Figure 12
<p>Classification results of D1b using HDBSCAN prediction. The background is the anomaly detection results of D1a.</p> "> Figure 13
<p>Anomaly detection results of D2 and D3 using radial basis function support vector machine (RBF SVM). (<b>a</b>) Anomaly results of the test set D2; (<b>b</b>) anomaly results of the test set D3.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Feature Extraction
2.2. Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN)
- : the lambda value when the cluster is formed
- : the lambda value when the cluster is split into two sub-clusters
- : the lambda value when that point is separated from the cluster
2.3. Hybrid Machine Learning Framework for GNSS Observation Anomaly Detection
3. Results
3.1. Data Acquisition and Preprocessing
3.2. Anomaly Detection Based on HDBSCAN
3.2.1. Results of D1a
3.2.2. Results of D1b
3.2.3. Overall results of D1
3.3. Predicted Results Based on Supervised Classification
4. Discussion
4.1. The Necessity of Chi-Square Test Separation
4.2. The Balance between Accuracy and Availability
4.3. Performance of RAIM with Different False Alarm Rates
5. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Groves, P.D.; Jiang, Z.; Wang, L.; Ziebart, M.K. Intelligent Urban Positioning using Multi-Constellation GNSS with 3D Mapping and NLOS Signal Detection. In Proceedings of the 25th International Technical Meeting of the Satellite Division of the Institute of Navigation (Ion Gnss 2012), Nashville, TN, USA, 17–21 September 2012. [Google Scholar]
- Petovello, M.; O’Driscoll, C.; Lachapelle, G. Weak signal carrier tracking of weak using coherent integration with an ultra-tight GNSS/IMU receiver. In Proceedings of the European Navigation Conference, Toulouse, Lauragais, France, 23–25 April 2008. [Google Scholar]
- Soloviev, A.; Van Graas, F. Use of deeply integrated GPS/INS architecture and laser scanners for the identification of multipath reflections in urban environments. IEEE J. Sel. Top. Signal Process. 2009, 3, 786–797. [Google Scholar] [CrossRef]
- Jiang, Z.; Groves, P.D.; Ochieng, W.Y.; Feng, S.; Milner, C.D.; Mattos, P.G. Multi-constellation GNSS multipath mitigation using consistency checking. In Proceedings of the 24th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2011), Portland, OR, USA, 19–23 September 2011; pp. 3889–3902. [Google Scholar]
- Jiang, Z.; Groves, P.D. NLOS GPS Signal Detection Using a Dual-polarisation Antenna. GPS Solut. 2014, 18, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, J.S.; Gerhmann, A.; Thevenon, P.; Brocard, P.; Afia, A.B.; Julien, O. Use of a fisheye camera for GNSS NLOS exclusion and characterization in urban environments. In Proceedings of the 2016 International Technical Meeting of The Institute of Navigation, Monterey, CA, USA, 25–28 January 2016; pp. 283–292. [Google Scholar]
- Groves, P.D. Shadow matching: A new gnss positioning technique for urban canyons. J. Navig. 2011, 64, 417–430. [Google Scholar] [CrossRef]
- Peyraud, S.; Bétaille, D.; Renault, S.; Ortiz, M.; Mougel, F.; Meizel, D.; Peyret, F. About Non-Line-Of-Sight Satellite Detection and Exclusion in a 3D Map-Aided Localization Algorithm. Sensors 2013, 13, 829–847. [Google Scholar] [CrossRef] [Green Version]
- Hsu, L.-T.; Gu, Y.; Kamijo, S. 3D Building model-based pedestrian positioning method using GPS/GLONASS/QZSS and its reliability calculation. GPS Solut. 2015, 20, 413–428. [Google Scholar] [CrossRef]
- Miura, S.; Hsu, L.-T.; Chen, F.; Kamijo, S. GPS Error Correction with Pseudorange Evaluation Using Three-Dimensional Maps. IEEE Trans. Intell. Transp. Syst. 2015, 16, 3104–3115. [Google Scholar] [CrossRef]
- Yozevitch, R.; Moshe, B.B.; Weissman, A. A robust GNSS LOS NLOS signal classifier. Navigation 2016, 63, 429–442. [Google Scholar] [CrossRef]
- Hsu, L.-T. GNSS multipath detection using a machine learning approach. In Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Yokohama, Japan, 16–19 October 2017; pp. 1–6. [Google Scholar]
- Xu, B.; Jia, Q.; Luo, Y.; Hsu, L.-T. Intelligent GPS L1 LOS/Multipath/NLOS Classifiers Based on Correlator-, RINEX- and NMEA-Level Measurements. Remote Sens. 2019, 11, 1851. [Google Scholar] [CrossRef] [Green Version]
- Quan, Y.; Lau, L.; Roberts, G.W.; Meng, X.; Zhang, C. Convolutional Neural Network Based Multipath Detection Method for Static and Kinematic GPS High Precision Positioning. Remote Sens. 2018, 10, 2052. [Google Scholar] [CrossRef] [Green Version]
- Sun, R.; Hsu, L.-T.; Xue, D.; Zhang, G.; Ochieng, W.Y. GPS signal reception classification using adaptive neuro-fuzzy inference system. J. Navig. 2019, 72, 685–701. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Groves, P.D.; Ziebart, M.K. GNSS shadow matching: Improving urban positioning accuracy using a 3D city model with optimized visibility scoring scheme. Navigation 2013, 60, 195–207. [Google Scholar] [CrossRef]
- Hsu, L.-T.; Jan, S.-S.; Groves, P.D.; Kubo, N. Multipath mitigation and NLOS detection using vector tracking in urban environments. GPS Solut. 2015, 19, 249–262. [Google Scholar] [CrossRef]
- Xu, B.; Hsu, L.-T. Open source MATLAB code for GPS vector tracking on a software-defined receiver. GPS Solut. 2019, 23, 1–9. [Google Scholar] [CrossRef]
- Groves, P.D.; Jiang, Z.; Rudi, M.; Strode, P. A Portfolio Approach to NLOS and Multipath Mitigation in Dense Urban Areas. In Proceedings of the 26th International Technical Meeting of the ION Satellite Division (ION GNSS+ 2013), Nashville, TN, USA, 16–20 September 2013; pp. 3231–3247. [Google Scholar]
- Bilich, A.; Larson, K.M.; Axelrad, P. Modeling gps phase multipath with snr: Case study from the salar de uyuni, boliva. J. Geophys. Res. 2008, 113, 113. [Google Scholar] [CrossRef]
- Steingass, E.; German, A.L. Measuring the navigation multipath channel—A statistical analysis. In Proceedings of the 17th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2004), Long Beach, CA, USA, 21–24 September 2004. [Google Scholar]
- Irish, A.T.; Isaacs, J.T.; Quitin, F.; Hespanha, J.P.; Madhow, U. Belief propagation based localization and mapping using sparsely sampled GNSS SNR measurements. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–5 June 2014; pp. 1977–1982. [Google Scholar]
- Wang, Y.; Chen, X.; Liu, P. Statistical Multipath Model Based on Experimental GNSS Data in Static Urban Canyon Environment. Sensors 2018, 18, 1149. [Google Scholar] [CrossRef] [Green Version]
- Hsu, L.T. Analysis and modeling GPS NLOS effect in highly urbanized area. GPS Solut. 2018, 22, 7. [Google Scholar] [CrossRef] [Green Version]
- Chandola, V.; Banerjee, A.; Kumar, V. Anomaly detection: A survey. ACM Comput. Surv. 2009, 41. [Google Scholar] [CrossRef]
- Ahmed, M.; Mahmood, A.N.; Islam, M.R. A survey of anomaly detection techniques in financial domain. Future Gen. Comput. Syst. 2016, 55, 278–288. [Google Scholar] [CrossRef]
- Ahmed, M.; Mahmood, A.N.; Hu, J. A survey of network anomaly detection techniques. J. Netw. Comput. Appl. 2016, 60, 19–31. [Google Scholar] [CrossRef]
- Yu, J.; Jang, J.; Yoo, J.; Park, J.H.; Kim, S. A Clustering-Based Fault Detection Method for Steam Boiler Tube in Thermal Power Plant. J. Electr. Eng. Technol. 2016, 11, 848–859. [Google Scholar] [CrossRef] [Green Version]
- Schlegl, T.; Seeböck, P.; Waldstein, S.M.; Schmidt-Erfurth, U.; Langs, G. Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery. In Proceedings of the International Conference on Information Processing in Medical Imaging, Boone, NC, USA, 25–30 June 2017; pp. 146–157. [Google Scholar]
- Hodge, V.J.; Austin, J. A survey of outlier detection methodologies. Artif. Intell. Rev. 2004, 22, 85–126. [Google Scholar] [CrossRef] [Green Version]
- Malik, A.; Barker, K.; Alhajj, R. A comprehensive survey of numeric and symbolic outlier mining techniques. Intell. Data Anal. 2006, 10, 521–538. [Google Scholar] [CrossRef]
- Patcha, A.; Park, J.M. An overview of anomaly detection techniques: Existing solutions and latest technological trends. Comput. Netw. 2007, 51, 3448–3470. [Google Scholar] [CrossRef]
- Kuusniemi, H.; Wieser, A.; Lachapelle, G.; Takala, J. User-level reliability monitoring in urban personal satellite-navigation. IEEE Trans. Aerosp. Electron. Syst. 2007, 43, 1305–1318. [Google Scholar] [CrossRef]
- Campello, R.J.; Moulavi, D.; Sander, J. Density-based clustering based on hierarchical density estimates. In Advances in Knowledge Discovery and Data Mining; Springer: Berlin/Heidelberg, Germany, 2013; pp. 160–172. [Google Scholar] [CrossRef]
- Campello, R.J.G.B.; Moulavi, D.; Zimek, A.; Sander, J. Hierarchical Density Estimates for Data Clustering, Visualization, and Outlier Detection. ACM Trans. Knowl. Discov. Data 2015, 10, 1–51. [Google Scholar] [CrossRef]
- Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. In KDD-96 Proceddings; AAAI Press: Portland, OR, USA, 1996; pp. 226–231. [Google Scholar]
- Schubert, E.; Sander, J.; Ester, M.; Kriegel, H.P.; Xu, X. DBSCAN Revisited, Revisited: Why and How You Should (Still) Use DBSCAN. ACM Trans. Database Syst. 2017, 42. [Google Scholar] [CrossRef]
- McInnes, L.; Healy, J.; Astels, S. HDBSCAN: Hierarchical Density Based Clustering. J. Open Source Softw. 2017, 2, 205. [Google Scholar] [CrossRef]
- Prim, R.C. Shortest connection networks and some generalizations. Bell Syst. Tech. J. 1957, 36, 1389–1401. [Google Scholar] [CrossRef]
- Takasu, T.; Yasuda, A. Development of the low-cost rtk-GPS receiver with an open source program package rtklib. In Proceedings of the International Symposium on GPS/GNSS 2009, Jeju, Korea, 4–6 November 2009; pp. 121–131. [Google Scholar]
- Halevy, A.; Norvig, P.; Pereira, F. The unreasonable effectiveness of data. IEEE Intell. Syst. 2009, 24, 8–12. [Google Scholar] [CrossRef]
- Zhu, N.; Marais, J.; Bétaille, D.; Berbineau, M. GNSS Position Integrity in Urban Environments: A Review of Literature. IEEE Trans. Intell. Transp. Syst. 2018, 19, 2762–2778. [Google Scholar] [CrossRef] [Green Version]
- Smith, L.I. A Tutorial on Principal Components Analysis; Cornell University: Ithaca, NY, USA, 2002. [Google Scholar]
- Meng, X.; Roberts, G.W.; Dodson, A.H.; Cosser, E.; Barnes, J.; Rizos, C. Impact of GPS satellite and pseudolite geometry on structural deformation monitoring, analytical and empirical studies. J. Geodesy 2004, 77, 809–822. [Google Scholar] [CrossRef]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
Dataset | Start Time (UTC) | End Time (UTC) | Valid Epoch | Sample Size |
---|---|---|---|---|
D1 | 2016-12-07 06:35:48 | 2016-12-07 07:07:59 | 1784 | 20,302 |
D2 | 2017-04-20 05:12:58 | 2017-04-20 05:31:43 | 1052 | 11,454 |
D3 | 2017-04-20 05:31:44 | 2017-04-20 05:41:28 | 531 | 6011 |
Data Subset | Valid Epoch | Sample Size | Attribute |
---|---|---|---|
D1a | 1705 | 19,569 | Training set |
D1b | 79 | 733 | Validation set |
Method | RMSE (m) | Maximum Error (m) | Availability | ||||
---|---|---|---|---|---|---|---|
East | North | Up | East | North | Up | ||
Original | 3.05 | 2.41 | 9.88 | 77.25 | 21.86 | 215.15 | 1705 |
HDBSCAN | 1.09 | 2.10 | 6.17 | 8.82 | 9.42 | 46.69 | 1655 |
Elevation Mask (°) | C/N0 Mask (dB-Hz) | RMSE (m) | Maximum Error (m) | Availability | ||||
---|---|---|---|---|---|---|---|---|
East | North | Up | East | North | Up | |||
15 | 0 | 3.04 | 2.38 | 10.21 | 77.25 | 21.86 | 215.15 | 1705 |
30 | 11.89 | 6.46 | 55.96 | 474.48 | 249.00 | 2271.86 | 1703 | |
35 | 21.81 | 11.50 | 103.59 | 884.83 | 460.76 | 4211.24 | 1685 | |
40 | 4.00 | 2.73 | 19.37 | 129.47 | 73.53 | 622.91 | 1615 | |
45 | 3.79 | 2.81 | 17.76 | 104.94 | 49.66 | 487.84 | 1304 | |
50 | 0.81 | 2.68 | 5.03 | 1.81 | 4.83 | 12.00 | 8 | |
20 | 0 | 3.05 | 2.38 | 10.31 | 77.25 | 21.86 | 215.15 | 1705 |
30 | 11.89 | 6.46 | 55.98 | 474.48 | 249.00 | 2271.86 | 1703 | |
35 | 21.81 | 11.50 | 103.59 | 884.83 | 460.76 | 4211.24 | 1685 | |
40 | 4.00 | 2.73 | 19.41 | 129.47 | 73.53 | 622.91 | 1615 | |
45 | 3.79 | 2.81 | 17.76 | 104.94 | 49.66 | 487.84 | 1304 | |
50 | 0.81 | 2.68 | 5.03 | 1.81 | 4.83 | 12.00 | 8 | |
25 | 0 | 3.03 | 2.37 | 10.25 | 77.25 | 21.86 | 215.15 | 1705 |
30 | 11.88 | 6.45 | 55.96 | 474.48 | 249.00 | 2271.86 | 1703 | |
35 | 21.81 | 11.50 | 103.59 | 884.83 | 460.76 | 4211.24 | 1685 | |
40 | 4.00 | 2.73 | 19.41 | 129.47 | 73.53 | 622.91 | 1615 | |
45 | 3.79 | 2.81 | 17.77 | 104.94 | 49.66 | 487.84 | 1304 | |
50 | 0.81 | 2.68 | 5.03 | 1.81 | 4.83 | 12.00 | 8 | |
30 | 0 | 3.03 | 2.39 | 10.39 | 77.25 | 21.86 | 215.15 | 1705 |
30 | 11.88 | 6.46 | 55.99 | 474.48 | 249.00 | 2271.86 | 1703 | |
35 | 21.81 | 11.51 | 103.60 | 884.83 | 460.76 | 4211.24 | 1685 | |
40 | 4.00 | 2.76 | 19.50 | 129.47 | 73.53 | 622.91 | 1615 | |
45 | 3.80 | 2.81 | 17.79 | 104.94 | 49.66 | 487.84 | 1304 | |
50 | 0.81 | 2.68 | 5.03 | 1.81 | 4.83 | 12.00 | 8 | |
35 | 0 | 3.05 | 2.35 | 10.11 | 77.25 | 21.86 | 215.15 | 1705 |
30 | 11.89 | 6.45 | 55.94 | 474.48 | 249.00 | 2271.86 | 1703 | |
35 | 21.81 | 11.50 | 103.57 | 884.83 | 460.76 | 4211.24 | 1685 | |
40 | 4.01 | 2.71 | 19.34 | 129.47 | 73.53 | 622.91 | 1615 | |
45 | 3.80 | 2.81 | 17.79 | 104.94 | 49.66 | 487.84 | 1304 | |
50 | 0.81 | 2.68 | 5.03 | 1.81 | 4.83 | 12.00 | 8 | |
40 | 0 | 17.35 | 9.30 | 82.41 | 474.48 | 249.00 | 2271.86 | 1702 |
30 | 17.37 | 9.29 | 82.48 | 474.48 | 249.00 | 2271.86 | 1700 | |
35 | 22.00 | 11.59 | 104.44 | 884.83 | 460.76 | 4211.24 | 1679 | |
40 | 4.06 | 2.76 | 19.47 | 129.47 | 73.53 | 622.91 | 1608 | |
45 | 3.80 | 2.81 | 17.81 | 104.94 | 49.66 | 487.84 | 1302 | |
50 | 0.81 | 2.68 | 5.03 | 1.81 | 4.83 | 12.00 | 8 |
Method | RMSE (m) | Maximum Error (m) | Availability | ||||
---|---|---|---|---|---|---|---|
East | North | Up | East | North | Up | ||
Original | 37.37 | 14.67 | 84.68 | 125.79 | 34.43 | 352.13 | 79 |
RAIM FDE | 54.46 | 18.42 | 226.81 | 437.12 | 159.49 | 1926.57 | 78 |
HDBSCAN | 0.86 | 0.88 | 2.08 | 1.13 | 1.01 | 2.44 | 2 |
Method | RMSE (m) | Maximum Error (m) | Availability | ||||
---|---|---|---|---|---|---|---|
East | North | Up | East | North | Up | ||
RBF SVM | 0.79 | 1.24 | 6.61 | 1.01 | 1.43 | 9.20 | 2 |
Decision tree | 0.79 | 1.24 | 6.61 | 1.01 | 1.43 | 9.20 | 2 |
Random Forest | 18.51 | 11.69 | 50.01 | 36.09 | 22.85 | 97.09 | 5 |
AdaBoost | 12.56 | 7.74 | 31.82 | 19.84 | 12.58 | 52.05 | 4 |
MLP | 0.79 | 1.24 | 6.61 | 1.01 | 1.43 | 9.20 | 2 |
Elevation Mask (°) | C/N0 Mask (dB-Hz) | RMSE (m) | Maximum Error (m) | Availability | ||||
---|---|---|---|---|---|---|---|---|
East | North | Up | East | North | Up | |||
15 | 0 | 37.59 | 14.60 | 91.41 | 125.79 | 34.43 | 352.13 | 79 |
30 | 38.85 | 13.33 | 90.74 | 125.79 | 34.43 | 352.13 | 79 | |
35 | 39.45 | 13.05 | 92.68 | 125.79 | 31.42 | 365.73 | 78 | |
40 | 37.06 | 22.20 | 93.44 | 86.92 | 121.52 | 365.73 | 74 | |
45 | 48.56 | 53.73 | 188.54 | 166.75 | 282.75 | 792.43 | 54 | |
50 | 0.55 | 2.43 | 4.10 | 0.55 | 2.43 | 4.10 | 1 | |
20 | 0 | 37.58 | 14.48 | 91.43 | 125.79 | 34.43 | 352.13 | 79 |
30 | 38.86 | 13.29 | 91.81 | 125.79 | 34.43 | 352.13 | 79 | |
35 | 39.45 | 13.04 | 93.12 | 125.79 | 31.42 | 365.73 | 78 | |
40 | 37.06 | 22.20 | 93.44 | 86.92 | 121.52 | 365.73 | 74 | |
45 | 48.56 | 53.73 | 188.54 | 166.75 | 282.75 | 792.43 | 54 | |
50 | 0.55 | 2.43 | 4.10 | 0.55 | 2.43 | 4.10 | 1 | |
25 | 0 | 37.43 | 14.75 | 93.51 | 125.79 | 34.43 | 352.13 | 79 |
30 | 38.78 | 13.44 | 92.87 | 125.79 | 34.43 | 352.13 | 79 | |
35 | 39.42 | 13.13 | 93.70 | 125.79 | 31.42 | 365.73 | 78 | |
40 | 37.06 | 22.20 | 93.44 | 86.92 | 121.52 | 365.73 | 74 | |
45 | 48.56 | 53.73 | 188.54 | 166.75 | 282.75 | 792.43 | 54 | |
50 | 0.55 | 2.43 | 4.10 | 0.55 | 2.43 | 4.10 | 1 | |
30 | 0 | 37.43 | 14.75 | 93.51 | 125.79 | 34.43 | 352.13 | 79 |
30 | 38.78 | 13.44 | 92.87 | 125.79 | 34.43 | 352.13 | 79 | |
35 | 39.42 | 13.13 | 93.70 | 125.79 | 31.42 | 365.73 | 78 | |
40 | 37.06 | 22.20 | 93.44 | 86.92 | 121.52 | 365.73 | 74 | |
45 | 48.56 | 53.73 | 188.54 | 166.75 | 282.75 | 792.43 | 54 | |
50 | 0.55 | 2.43 | 4.10 | 0.55 | 2.43 | 4.10 | 1 | |
35 | 0 | 38.10 | 14.84 | 95.39 | 125.79 | 34.43 | 352.13 | 79 |
30 | 39.29 | 13.41 | 92.15 | 125.79 | 34.43 | 352.13 | 79 | |
35 | 39.87 | 13.08 | 92.58 | 125.79 | 31.42 | 365.73 | 78 | |
40 | 37.06 | 22.20 | 93.44 | 86.92 | 121.52 | 365.73 | 74 | |
45 | 48.56 | 53.73 | 188.54 | 166.75 | 282.75 | 792.43 | 54 | |
50 | 0.55 | 2.43 | 4.10 | 0.55 | 2.43 | 4.10 | 1 | |
40 | 0 | 38.58 | 14.04 | 104.33 | 125.79 | 34.43 | 352.13 | 79 |
30 | 39.96 | 12.85 | 100.10 | 125.79 | 34.43 | 352.13 | 79 | |
35 | 40.90 | 12.61 | 100.64 | 125.79 | 31.42 | 365.73 | 78 | |
40 | 38.25 | 22.00 | 101.75 | 86.74 | 121.52 | 365.73 | 74 | |
45 | 68.27 | 56.13 | 279.08 | 353.07 | 282.75 | 1529.57 | 54 | |
50 | 0.55 | 2.43 | 4.10 | 0.55 | 2.43 | 4.10 | 1 |
Method | RMSE (m) | Maximum Error (m) | Availability | ||||
---|---|---|---|---|---|---|---|
East | North | Up | East | North | Up | ||
Original | 8.41 | 3.88 | 20.27 | 125.79 | 34.43 | 352.13 | 1784 |
HDBSCAN | 1.09 | 2.10 | 6.17 | 8.82 | 9.42 | 46.69 | 1657 |
RAIM FDE | 11.77 | 4.52 | 48.41 | 437.12 | 159.49 | 1926.57 | 1783 |
Cut-off | 8.42 | 3.87 | 22.08 | 125.79 | 34.43 | 352.13 | 1784 |
Chi-square test | 3.05 | 2.41 | 9.88 | 77.25 | 21.86 | 215.15 | 1705 |
Method | RMSE (m) | Maximum Error (m) | Availability | ||||
---|---|---|---|---|---|---|---|
East | North | Up | East | North | Up | ||
Original | 3.95 | 3.86 | 16.43 | 30.59 | 26.94 | 100.13 | 1052 |
RAIM FDE | 3.37 | 3.02 | 13.09 | 28.87 | 26.94 | 92.47 | 1020 |
Chi-square test | 2.20 | 3.05 | 10.75 | 14.79 | 26.94 | 92.46 | 947 |
HDBSCAN | 2.08 | 2.37 | 8.37 | 28.29 | 31.82 | 142.67 | 776(5) |
RBF SVM | 2.04 | 2.33 | 8.28 | 28.29 | 31.82 | 142.67 | 795(7) |
Decision tree | 3.06 | 2.97 | 11.78 | 31.41 | 28.46 | 86.11 | 946(45) |
AdaBoost | 5.39 | 5.28 | 16.00 | 108.96 | 83.14 | 243.90 | 939(9) |
Random forest | 3.22 | 3.61 | 13.81 | 35.88 | 25.63 | 94.19 | 1027(21) |
MLP | 2.53 | 3.12 | 11.85 | 30.95 | 40.62 | 113.07 | 999(5) |
Method | RMSE (m) | Maximum Error (m) | Availability | ||||
---|---|---|---|---|---|---|---|
East | North | Up | East | North | Up | ||
Original | 3.85 | 1.88 | 8.02 | 35.20 | 19.98 | 49.88 | 531 |
RAIM FDE | 3.46 | 1.57 | 7.05 | 24.63 | 19.98 | 49.88 | 518 |
Chi-square test | 3.50 | 1.55 | 7.04 | 24.63 | 19.98 | 49.88 | 493 |
HDBSCAN | 2.19 | 1.26 | 4.45 | 12.19 | 15.76 | 31.73 | 426(1) |
RBF SVM | 2.09 | 0.69 | 4.08 | 12.19 | 4.94 | 31.73 | 466(3) |
Decision tree | 2.58 | 1.12 | 5.60 | 19.12 | 17.98 | 50.51 | 462(1) |
AdaBoost | 2.59 | 1.16 | 4.88 | 15.57 | 19.98 | 35.98 | 478(5) |
Random forest | 4.55 | 2.18 | 8.45 | 44.38 | 23.76 | 73.65 | 513(16) |
MLP | 2.25 | 0.69 | 3.79 | 14.66 | 5.68 | 24.31 | 472(2) |
Method | RMSE (m) | Maximum Error (m) | Availability | ||||
---|---|---|---|---|---|---|---|
East | North | Up | East | North | Up | ||
Separation | 1.09 | 2.10 | 6.17 | 8.82 | 9.42 | 46.69 | 1657(0) |
No separation | 1.64 | 2.23 | 6.91 | 36.09 | 22.85 | 97.09 | 1643(5) |
Alpha | RMSE (m) | Maximum Error (m) | Availability | ||||
---|---|---|---|---|---|---|---|
East | North | Up | East | North | Up | ||
0.05 | 1.89 | 2.35 | 7.48 | 31.85 | 21.86 | 97.35 | 1698 |
0.1 | 1.67 | 2.34 | 7.35 | 31.85 | 21.86 | 97.35 | 1689 |
0.2 | 1.45 | 2.23 | 6.74 | 20.61 | 10.81 | 68.61 | 1683 |
0.5 | 1.23 | 2.20 | 6.34 | 10.16 | 10.81 | 40.67 | 1667 |
0.7 | 1.16 | 2.12 | 6.14 | 7.59 | 9.42 | 25.52 | 1648 |
0.7 (FDE) | 18.52 | 16.23 | 83.10 | 515.91 | 617.27 | 2274.64 | 1773 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, Y.; Pan, S.; Meng, X.; Gao, W.; Ye, F.; Zhao, Q.; Zhao, X. Anomaly Detection for Urban Vehicle GNSS Observation with a Hybrid Machine Learning System. Remote Sens. 2020, 12, 971. https://doi.org/10.3390/rs12060971
Xia Y, Pan S, Meng X, Gao W, Ye F, Zhao Q, Zhao X. Anomaly Detection for Urban Vehicle GNSS Observation with a Hybrid Machine Learning System. Remote Sensing. 2020; 12(6):971. https://doi.org/10.3390/rs12060971
Chicago/Turabian StyleXia, Yan, Shuguo Pan, Xiaolin Meng, Wang Gao, Fei Ye, Qing Zhao, and Xingwang Zhao. 2020. "Anomaly Detection for Urban Vehicle GNSS Observation with a Hybrid Machine Learning System" Remote Sensing 12, no. 6: 971. https://doi.org/10.3390/rs12060971
APA StyleXia, Y., Pan, S., Meng, X., Gao, W., Ye, F., Zhao, Q., & Zhao, X. (2020). Anomaly Detection for Urban Vehicle GNSS Observation with a Hybrid Machine Learning System. Remote Sensing, 12(6), 971. https://doi.org/10.3390/rs12060971