Automated Aerosol Classification from Spectral UV Measurements Using Machine Learning Clustering
"> Figure 1
<p>Point by point comparison of the AOD340 obtained from the Brewer and the CIMEL (<b>a</b>). The EAE320-360 product from the Brewer is compared with the EAE340-380 from the CIMEL on the right. The uncertainties for all products are included. The AOD340 levels of the CIMEL are also visible in the EAE comparison (<b>b</b>).</p> "> Figure 2
<p>The classification flags obtained by applying the scheme of [<a href="#B6-remotesensing-12-00965" class="html-bibr">6</a>] on sunphotometer data (5270 cases). Thresholds are applied on the FMF550 and SSA440 in order to assign each case in one of the clusters. The following clusters are defined: SALT (upper left), DUST (lower left), Mixed (middle), FNA (upper right), BC Low (2nd right), BC Med (3rd right), and BC High (lower right).</p> "> Figure 3
<p>The training dataset of Brewer cases is presented in this figure. The 90% cumulative probability contour is used for the visualization of the cluster ellipses. It occurs at a Mahalanobis distance of 2.14.</p> "> Figure 4
<p>The decision tree used for the Mahalanobis classification procedure. Thresholds are applied to the Mahalanobis distance and the Normalized Probability metrics.</p> "> Figure 5
<p>The full Brewer timeseries is presented here, automatically classified in the three predominant clusters and the mixed cluster.</p> "> Figure 6
<p>The Mahalanobis distance clustering technique is compared with (<b>a</b>) the clustering technique based on [<a href="#B6-remotesensing-12-00965" class="html-bibr">6</a>], and (<b>b</b>) the manually classified cases.</p> "> Figure 7
<p>Seasonal timeseries of the AOD340 obtained from the Brewer (blue) and the CIMEL (orange).</p> "> Figure 8
<p>Seasonal timeseries of the occurrence ratio of each aerosol type in the period 1998–2017 with classification flags obtained from the Mahalanobis algorithm.</p> ">
Abstract
:1. Introduction
2. Instrumentation and Products
2.1. The Cimel Sunphotometer
2.1.1. Fine Mode Fraction at 550 nm
2.1.2. Extinction Angstrom Exponent at 340–380 nm
2.2. The Double Monochromator Brewer Spectrophotometer
2.2.1. Spectral Aerosol Optical Depth and Single Scattering Albedo
2.2.2. Extinction and Absorption Angstrom Exponents
2.2.3. Evaluation of the Extinction Angstrom Exponent at 320–360 nm
2.3. The Reference Clusters
3. The Automated Classification Technique
4. Evaluation of the Proposed Technique
5. Climatological Comparison
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AAE | Absorption Angstrom Exponent |
AOD | Aerosol Optical Depth |
AAOD | Absorption Aerosol Optical Depth |
BC | Black Carbon |
EAE | Extinction Angstrom Exponent |
FIRMS | Fire Information for Resource Management System |
FMF | Fine Mode Fraction |
FNA | Fine Non Absorbing |
FT-IR | Fourier-Transform Infrared Spectroscopy |
HYSPLIT | Hybrid Single Particle Lagrangian Integrated Trajectory Model |
LAP | Laboratory of Atmospheric Physics |
MODIS | Moderate Resolution Imaging Spectroradiometer |
MAX-DOAS | Multi Axis Differential Optical Absorption Spectroscopy |
SSA | Single Scattering Albedo |
References
- Hess, M.; Koepke, P.; Schult, I. Optical Properties of Aerosols and Clouds: The Software Package OPAC. Bull. Am. Meteorol. Soc. 1998, 79, 831–844. [Google Scholar] [CrossRef]
- Kelly, F.J.; Fussell, J.C. Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmos. Environ. 2012, 60, 504–526. [Google Scholar] [CrossRef]
- Hair, J.W.; Hostetler, C.A.; Cook, A.L.; Harper, D.B.; Ferrare, R.A.; Mack, T.L.; Welch, W.; Izquierdo, L.R.; Hovis, F.E. Airborne High Spectral Resolution Lidar for profiling aerosol optical properties. Appl. Opt. 2008, 47, 6734–6752. [Google Scholar] [CrossRef] [PubMed]
- Chiliński, M.T.; Markowicz, K.M.; Zawadzka, O.; Stachlewska, I.S.; Lisok, J.; Makuch, P. Comparison of Columnar, Surface, and UAS Profiles of Absorbing Aerosol Optical Depth and Single-Scattering Albedo in South-East Poland. Atmosphere 2019, 10, 446. [Google Scholar] [CrossRef] [Green Version]
- Hamill, P.; Giordano, M.; Ward, C.; Giles, D.; Holben, B. An AERONET-based aerosol classification using the Mahalanobis distance. Atmos. Environ. 2016, 140, 213–233. [Google Scholar] [CrossRef]
- Lee, J.; Kim, J.; Song, C.; Kim, S.; Chun, Y.; Sohn, B.; Holben, B. Characteristics of aerosol types from AERONET sunphotometer measurements. Atmos. Environ. 2010, 44, 3110–3117. [Google Scholar] [CrossRef]
- Gobbi, G.P.; Kaufman, Y.J.; Koren, I.; Eck, T.F. Classification of aerosol properties derived from AERONET direct sun data. Atmos. Chem. Phys. 2007, 7, 453–458. [Google Scholar] [CrossRef] [Green Version]
- Toledano, C.; Cachorro, V.E.; de Frutos, A.M.; Torres, B.; Berjón, A.; Sorribas, M.; Stone, R.S. Airmass Classification and Analysis of Aerosol Types at El Arenosillo (Spain). J. Appl. Meteorol. Climatol. 2009, 48, 962–981. [Google Scholar] [CrossRef]
- Pavese, G.; Lettino, A.; Calvello, M.; Esposito, F.; Fiore, S. Aerosol composition and properties variation at the ground and over the column under different air masses advection in South Italy. Environ. Sci. Pollut. Res. 2016, 23, 6546–6562. [Google Scholar] [CrossRef]
- Kaskaoutis, D.G.; Kosmopoulos, P.G.; Kambezidis, H.D.; Nastos, P.T. Identification of the Aerosol Types over Athens, Greece: The Influence of Air-Mass Transport. Adv. Meteorol. 2010. [Google Scholar] [CrossRef] [Green Version]
- Kaskaoutis, D.; Kosmopoulos, P.; Kambezidis, H.; Nastos, P. Aerosol climatology and discrimination of different types over Athens, Greece, based on MODIS data. Atmos. Environ. 2007, 41, 7315–7329. [Google Scholar] [CrossRef]
- Groß, S.; Esselborn, M.; Weinzierl, B.; Wirth, M.; Fix, A.; Petzold, A. Aerosol classification by airborne high spectral resolution lidar observations. Atmos. Chem. Phys. 2013, 13, 2487–2505. [Google Scholar] [CrossRef] [Green Version]
- Wandinger, U.; Baars, H.; Engelmann, R.; Hünerbein, A.; Horn, S.; Kanitz, T.; Donovan, D.; van Zadelhoff, G.; Daou, D.; Fischer, J.; et al. HETEAC: The Aerosol Classification Model for EarthCARE. EPJ Web. Conf. 2016, 119, 01004. [Google Scholar] [CrossRef] [Green Version]
- Burton, S.P.; Ferrare, R.A.; Hostetler, C.A.; Hair, J.W.; Rogers, R.R.; Obland, M.D.; Butler, C.F.; Cook, A.L.; Harper, D.B.; Froyd, K.D. Aerosol classification using airborne High Spectral Resolution Lidar measurements—Methodology and examples. Atmos. Meas. Tech. 2012, 5, 73–98. [Google Scholar] [CrossRef] [Green Version]
- Papagiannopoulos, N.; Mona, L.; Amodeo, A.; D’Amico, G.; Gumà Claramunt, P.; Pappalardo, G.; Alados-Arboledas, L.; Guerrero-Rascado, J.L.; Amiridis, V.; Kokkalis, P.; et al. An automatic observation-based aerosol typing method for EARLINET. Atmos. Chem. Phys. 2018, 18, 15879–15901. [Google Scholar] [CrossRef] [Green Version]
- Nicolae, D.; Vasilescu, J.; Talianu, C.; Binietoglou, I.; Nicolae, V.; Andrei, S.; Antonescu, B. A neural network aerosol-typing algorithm based on lidar data. Atmos. Chem. Phys. 2018, 18, 14511–14537. [Google Scholar] [CrossRef] [Green Version]
- Voudouri, K.A.; Siomos, N.; Michailidis, K.; Papagiannopoulos, N.; Mona, L.; Cornacchia, C.; Nicolae, D.; Balis, D. Comparison of two automated aerosol typing methods and their application to an EARLINET station. Atmos. Chem. Phys. 2019, 19, 10961–10980. [Google Scholar] [CrossRef] [Green Version]
- Brewer, A.W. A replacement for the Dobson spectrophotometer? Pure Appl. Geophys. 1973, 106, 919–927. [Google Scholar] [CrossRef]
- Kerr, J.B.; McElroy, C.T.; Wardle, D.I.; Olafson, R.A.; Evans, W.F.J. The Automated Brewer Spectrophotometer. In Atmospheric Ozone; Zerefos, C.S., Ghazi, A., Eds.; Springer: Dordrecht, The Netherlands, 1985; pp. 396–401. [Google Scholar]
- Bais, A.F. Absolute spectral measurements of direct solar ultraviolet irradiance with a Brewer spectrophotometer. Appl. Opt. 1997, 36, 5199–5204. [Google Scholar] [CrossRef]
- Gröbner, J.; Meleti, C. Aerosol optical depth in the UVB and visible wavelength range from Brewer spectrophotometer direct irradiance measurements: 1991–2002. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef]
- Meleti, C.; Cappellani, F. Measurements of aerosol optical depth at Ispra: Analysis of the correlation with UV-B, UV-A, and total solar irradiance. J. Geophys. Res. Atmos. 2000, 105, 4971–4978. [Google Scholar] [CrossRef]
- López-Solano, J.; Redondas, A.; Carlund, T.; Rodriguez-Franco, J.J.; Diémoz, H.; León-Luis, S.F.; Hernández-Cruz, B.; Guirado-Fuentes, C.; Kouremeti, N.; Gröbner, J.; et al. Aerosol optical depth in the European Brewer Network. Atmos. Chem. Phys. 2018, 18, 3885–3902. [Google Scholar] [CrossRef] [Green Version]
- Kiedron, P.W.; Michalsky, J.J. Non-parametric and least squares Langley plot methods. Atmos. Meas. Tech. 2016, 9, 215–225. [Google Scholar] [CrossRef] [Green Version]
- Kazadzis, S.; Bais, A.; Kouremeti, N.; Gerasopoulos, E.; Garane, K.; Blumthaler, M.; Schallhart, B.; Cede, A. Direct spectral measurements with a Brewer spectroradiometer: Absolute calibration and aerosol optical depth retrieval. Appl. Opt. 2005, 44, 1681–1690. [Google Scholar] [CrossRef] [PubMed]
- Bais, A.; Kazantzidis, A.; Kazadzis, S.; Balis, D.; Zerefos, C.; Meleti, C. Deriving an effective aerosol single scattering albedo from spectral surface UV irradiance measurements. Atmos. Environ. 2005, 39, 1093–1102. [Google Scholar] [CrossRef]
- Campanelli, M.; Siani, A.M.; di Sarra, A.; Iannarelli, A.M.; Sanò, P.; Diémoz, H.; Casasanta, G.; Cacciani, M.; Tofful, L.; Dietrich, S. Aerosol optical characteristics in the urban area of Rome, Italy, and their impact on the UV index. Atmos. Meas. Tech. Discuss. 2019, 2019, 1–23. [Google Scholar] [CrossRef]
- Bais, A.F.; Bernhard, G.; McKenzie, R.L.; Aucamp, P.J.; Young, P.J.; Ilyas, M.; Jöckel, P.; Deushi, M. Ozone–climate interactions and effects on solar ultraviolet radiation. Photochem. Photobiol. Sci. 2019, 18, 602–640. [Google Scholar] [CrossRef] [Green Version]
- Eck, T.F.; Holben, B.N.; Slutsker, I.; Setzer, A. Measurements of irradiance attenuation and estimation of aerosol single scattering albedo for biomass burning aerosols in Amazonia. J. Geophys. Res. Atmos. 1998, 103, 31865–31878. [Google Scholar] [CrossRef]
- Sinyuk, A.; Torres, O.; Dubovik, O. Combined use of satellite and surface observations to infer the imaginary part of refractive index of Saharan dust. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef] [Green Version]
- Corr, C.A.; Krotkov, N.; Madronich, S.; Slusser, J.R.; Holben, B.; Gao, W.; Flynn, J.; Lefer, B.; Kreidenweis, S.M. Retrieval of aerosol single scattering albedo at ultraviolet wavelengths at the T1 site during MILAGRO. Atmos. Chem. Phys. 2009, 9, 5813–5827. [Google Scholar] [CrossRef] [Green Version]
- Ialongo, I.; Buchard, V.; Brogniez, C.; Casale, G.R.; Siani, A.M. Aerosol Single Scattering Albedo retrieval in the UV range: An application to OMI satellite validation. Atmos. Chem. Phys. 2010, 10, 331–340. [Google Scholar] [CrossRef] [Green Version]
- Kazadzis, S.; Raptis, P.; Kouremeti, N.; Amiridis, V.; Arola, A.; Gerasopoulos, E.; Schuster, G.L. Aerosol absorption retrieval at ultraviolet wavelengths in a complex environment. Atmos. Meas. Tech. 2016, 9, 5997–6011. [Google Scholar] [CrossRef] [Green Version]
- Mahalanobis, P.C. On the Generalized Distance in Statistics; National Institute of Science of India: Odisha, India, 1936; Volume 12, pp. 49–55. [Google Scholar]
- De Mazière, M.; Thompson, A.M.; Kurylo, M.J.; Wild, J.D.; Bernhard, G.; Blumenstock, T.; Braathen, G.O.; Hannigan, J.W.; Lambert, J.C.; Leblanc, T.; et al. The Network for the Detection of Atmospheric Composition Change (NDACC): History, status and perspectives. Atmos. Chem. Phys. 2018, 18, 4935–4964. [Google Scholar] [CrossRef] [Green Version]
- McKenzie, R.; Bernhard, G.; Liley, B.; Disterhoft, P.; Rhodes, S.; Bais, A.; Morgenstern, O.; Newman, P.; Oman, L.; Brogniez, C.; et al. Success of Montreal Protocol Demonstrated by Comparing High-Quality UV Measurements with “World Avoided” Calculations from Two Chemistry-Climate Models. Sci. Rep. 2019, 9, 12332. [Google Scholar] [CrossRef]
- Fountoulakis, I.; Zerefos, C.S.; Bais, A.F.; Kapsomenakis, J.; Koukouli, M.E.; Ohkawara, N.; Fioletov, V.; Backer, H.D.; Lakkala, K.; Karppinen, T.; et al. Twenty-five years of spectral UV-B measurements over Canada, Europe and Japan: Trends and effects from changes in ozone, aerosols, clouds, and surface reflectivity. C. R. Geosci. 2018, 350, 393–402. [Google Scholar] [CrossRef]
- Siomos, N.; Balis, D.S.; Voudouri, K.A.; Giannakaki, E.; Filioglou, M.; Amiridis, V.; Papayannis, A.; Fragkos, K. Are EARLINET and AERONET climatologies consistent? The case of Thessaloniki, Greece. Atmos. Chem. Phys. 2018, 18, 11885–11903. [Google Scholar] [CrossRef] [Green Version]
- Holben, B.; Eck, T.; Slutsker, I.; Tanré, D.; Buis, J.; Setzer, A.; Vermote, E.; Reagan, J.; Kaufman, Y.; Nakajima, T.; et al. AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Dubovik, O.; King, M.D. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J. Geophys. Res. Atmos. 2000, 105, 20673–20696. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, N.T.; Eck, T.F.; Smirnov, A.; Holben, B.N.; Thulasiraman, S. Spectral discrimination of coarse and fine mode optical depth. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Sinyuk, A.; Holben, B.N.; Eck, T.F.; Giles, D.M.; Slutsker, I.; Korkin, S.; Schafer, J.S.; Smirnov, A.; Sorokin, M.; Lyapustin, A. The AERONET Version 3 aerosol retrieval algorithm, associated uncertainties and comparisons to Version 2. Atmos. Meas. Tech. Discuss. 2020, 2020, 1–80. [Google Scholar] [CrossRef] [Green Version]
- Giles, D.M.; Sinyuk, A.; Sorokin, M.G.; Schafer, J.S.; Smirnov, A.; Slutsker, I.; Eck, T.F.; Holben, B.N.; Lewis, J.R.; Campbell, J.R.; et al. Advancements in the Aerosol Robotic Network (AERONET) Version 3 database—Automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements. Atmos. Meas. Tech. 2019, 12, 169–209. [Google Scholar] [CrossRef] [Green Version]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- Eck, T.F.; Holben, B.N.; Reid, J.S.; Dubovik, O.; Smirnov, A.; O’Neill, N.T.; Slutsker, I.; Kinne, S. Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J. Geophys. Res. Atmos. 1999, 104, 31333–31349. [Google Scholar] [CrossRef]
- Ångström, A. On the Atmospheric Transmission of Sun Radiation and on Dust in the Air. Geogr. Ann. 1929, 11, 156–166. [Google Scholar] [CrossRef]
- Bais, A.F.; Zerefos, C.S.; McElroy, C.T. Solar UVB measurements with the double- and single-monochromator Brewer ozone spectrophotometers. Geophys. Res. Lett. 1996, 23, 833–836. [Google Scholar] [CrossRef]
- Kazadzis, S.; Bais, A.; Amiridis, V.; Balis, D.; Meleti, C.; Kouremeti, N.; Zerefos, C.S.; Rapsomanikis, S.; Petrakakis, M.; Kelesis, A.; et al. Nine years of UV aerosol optical depth measurements at Thessaloniki, Greece. Atmos. Chem. Phys. 2007, 7, 2091–2101. [Google Scholar] [CrossRef] [Green Version]
- Bais, A.F.; Kazadzis, S.; Balis, D.; Zerefos, C.S.; Blumthaler, M. Correcting global solar ultraviolet spectra recorded by a Brewer spectroradiometer for its angular response error. Appl. Opt. 1998, 37, 6339–6344. [Google Scholar] [CrossRef]
- Garane, K.; Bais, A.F.; Kazadzis, S.; Kazantzidis, A.; Meleti, C. Monitoring of UV spectral irradiance at Thessaloniki (1990–2005): Data re-evaluation and quality control. Ann. Geophys. 2006, 24, 3215–3228. [Google Scholar] [CrossRef]
- Bais, A.F.; Gardiner, B.G.; Slaper, H.; Blumthaler, M.; Bernhard, G.; McKenzie, R.; Webb, A.R.; Seckmeyer, G.; Kjeldstad, B.; Koskela, T.; et al. SUSPEN intercomparison of ultraviolet spectroradiometers. J. Geophys. Res. Atmos. 2001, 106, 12509–12525. [Google Scholar] [CrossRef] [Green Version]
- Redondas, A.; Carreño, V.; León-Luis, S.F.; Hernández-Cruz, B.; López-Solano, J.; Rodriguez-Franco, J.J.; Vilaplana, J.M.; Gröbner, J.; Rimmer, J.; Bais, A.F.; et al. EUBREWNET RBCC-E Huelva 2015 Ozone Brewer Intercomparison. Atmos. Chem. Phys. 2018, 18, 9441–9455. [Google Scholar] [CrossRef] [Green Version]
- Hülsen, G.; Gröbner, J.; Nevas, S.; Sperfeld, P.; Egli, L.; Porrovecchio, G.; Smid, M. Traceability of solar UV measurements using the Qasume reference spectroradiometer. Appl. Opt. 2016, 55, 7265–7275. [Google Scholar] [CrossRef] [PubMed]
- Zempila, M.M.; Fountoulakis, I.; Taylor, M.; Kazadzis, S.; Arola, A.; Koukouli, M.E.; Bais, A.; Meleti, C.; Balis, D. Validation of OMI erythemal doses with multi-sensor ground-based measurements in Thessaloniki, Greece. Atmos. Environ. 2018, 183, 106–121. [Google Scholar] [CrossRef] [Green Version]
- Fountoulakis, I.; Natsis, A.; Siomos, N.; Drosoglou, T.; Bais, A.F. Deriving Aerosol Absorption Properties from Solar Ultraviolet Radiation Spectral Measurements at Thessaloniki, Greece. Remote Sens. 2019, 11, 2179. [Google Scholar] [CrossRef] [Green Version]
- Carlund, T.; Kouremeti, N.; Kazadzis, S.; Gröbner, J. Aerosol optical depth determination in the UV using a four-channel precision filter radiometer. Atmos. Meas. Tech. 2017, 10, 905–923. [Google Scholar] [CrossRef]
- Amiridis, V.; Balis, D.S.; Kazadzis, S.; Bais, A.; Giannakaki, E.; Papayannis, A.; Zerefos, C. Four-year aerosol observations with a Raman lidar at Thessaloniki, Greece, in the framework of European Aerosol Research Lidar Network (EARLINET). J. Geophys. Res. Atmos. 2005, 110, D21203. [Google Scholar] [CrossRef] [Green Version]
- Giannakaki, E.; Balis, D.S.; Amiridis, V.; Zerefos, C. Optical properties of different aerosol types: Seven years of combined Raman-elastic backscatter lidar measurements in Thessaloniki, Greece. Atmos. Meas. Tech. 2010, 3, 569–578. [Google Scholar] [CrossRef] [Green Version]
- Siomos, N.; Balis, D.S.; Poupkou, A.; Liora, N.; Dimopoulos, S.; Melas, D.; Giannakaki, E.; Filioglou, M.; Basart, S.; Chaikovsky, A. Investigating the quality of modeled aerosol profiles based on combined lidar and sunphotometer data. Atmos. Chem. Phys. 2017, 17, 7003–7023. [Google Scholar] [CrossRef] [Green Version]
- Gobbi, G.P.; Angelini, F.; Barnaba, F.; Costabile, F.; Baldasano, J.M.; Basart, S.; Sozzi, R.; Bolignano, A. Changes in particulate matter physical properties during Saharan advections over Rome (Italy): A four-year study, 2001–2004. Atmos. Chem. Phys. 2013, 13, 7395–7404. [Google Scholar] [CrossRef] [Green Version]
- Carstea, E.; Fragkos, K.; Siomos, N.; Antonescu, B.; Belegante, L. Columnar aerosol measurements in a continental southeastern Europe site: Climatology and trends. Theor. Appl. Climatol. 2019. [Google Scholar] [CrossRef]
- Fountoulakis, I.; Bais, A.F.; Fragkos, K.; Meleti, C.; Tourpali, K.; Zempila, M.M. Short- and long-term variability of spectral solar UV irradiance at Thessaloniki, Greece: Effects of changes in aerosols, total ozone and clouds. Atmos. Chem. Phys. 2016, 16, 2493–2505. [Google Scholar] [CrossRef] [Green Version]
Product Name | Instrument | Algorithm | Restrictions |
---|---|---|---|
AOD340-380 | CIMEL | AERONET Ver. 3 Direct Sun | |
FMF500 | CIMEL | AERONET Ver. 3 Direct Sun | |
FMF550 | CIMEL | Interpolated from FMF440 | |
SSA440 | CIMEL | AERONET Ver. 3 Inversions | |
EAE340-380 | CIMEL | Angstrom formula | < 0.4 |
AOD320-360 | BREWER | LAP Operational Algorithm | SZA < 75, 0.2 < AOD340 < 1.5 |
SSA340 | BREWER | LAP Operational Algorithm | SZA < 75 |
EAE320-360 | BREWER | Logarithmic fit of AOD | < 0.4 |
Cluster Name | SSA340 | EAE320-340 | Number of Cases |
---|---|---|---|
FNA Mixtures | 0.87 | 1.3 | 564 |
BC Mixtures | 0.78 | 1.2 | 233 |
DUST Mixtures | 0.78 | 0.5 | 117 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siomos, N.; Fountoulakis, I.; Natsis, A.; Drosoglou, T.; Bais, A. Automated Aerosol Classification from Spectral UV Measurements Using Machine Learning Clustering. Remote Sens. 2020, 12, 965. https://doi.org/10.3390/rs12060965
Siomos N, Fountoulakis I, Natsis A, Drosoglou T, Bais A. Automated Aerosol Classification from Spectral UV Measurements Using Machine Learning Clustering. Remote Sensing. 2020; 12(6):965. https://doi.org/10.3390/rs12060965
Chicago/Turabian StyleSiomos, Nikolaos, Ilias Fountoulakis, Athanasios Natsis, Theano Drosoglou, and Alkiviadis Bais. 2020. "Automated Aerosol Classification from Spectral UV Measurements Using Machine Learning Clustering" Remote Sensing 12, no. 6: 965. https://doi.org/10.3390/rs12060965
APA StyleSiomos, N., Fountoulakis, I., Natsis, A., Drosoglou, T., & Bais, A. (2020). Automated Aerosol Classification from Spectral UV Measurements Using Machine Learning Clustering. Remote Sensing, 12(6), 965. https://doi.org/10.3390/rs12060965