Seasonality Analysis of Sentinel-1 and ALOS-2/PALSAR-2 Backscattered Power over Salar de Aguas Calientes Sur, Chile
"> Figure 1
<p>Study area: (<b>a</b>) Location within Chile, (<b>b</b>) Sentinel 1B image, VV polarization in decibels (dB), ascending pass, acquired on 3 April 2018, indicating the location and contour of the salar in yellow. The sub-basin has an area of 671,576 km<sup>2</sup>. From: <a href="http://www.geoportal.cl" target="_blank">http://www.geoportal.cl</a>. (Coordinate system: GCS_WGS_1984).</p> "> Figure 2
<p>Methodological flowchart for the four-year data sets. <sup>1</sup> Digital Model Elevation.</p> "> Figure 3
<p>Distribution of the salt pan crusts modified from a technical report together with Centro de Información de Recursos Naturales [<a href="#B4-remotesensing-12-00941" class="html-bibr">4</a>] and the corresponding author. The map is an original contribution of this paper. Red boxes indicate regions of interest.</p> "> Figure 4
<p>Types of salt crust observed in the field on 3 April 2018. (<b>a</b>) Upper panel: Hard-pan crust 1, mixture of salts and sediments (rough surface), (<b>b</b>) Center panel: Hard-pan crust 2 (gypsum and halite), (<b>c</b>) Bottom panel: Soft pan crust with contents of organic matter and thrust polygons by interaction with water.</p> "> Figure 5
<p>Meteorological data of the station Socaire, GPM (IMERG) and snow cover between January 2015 and December 2018, where 0 is no cover, and 1 indicates snow cover.</p> "> Figure 6
<p>Relative humidity (RH) registered by Socaire station over four years.</p> "> Figure 7
<p>C- and L-band penetration depth δp through a saturated saline soil of varying brine salinity. The dielectric constant is computed by means of a simple dielectric mixing model.</p> "> Figure 8
<p>Sentinel 1 temporal backscattering observed over the salt pan. Sentinel 1A (magenta) and Sentinel 1B (blue) in ascending (full markers) and descending (empty markers) orbits. VV polarization is indicated as triangles, and VH are circles. The vertical black dashed line indicated a field visit on 3 April 2018 (see <a href="#remotesensing-12-00941-f004" class="html-fig">Figure 4</a>). (<b>a</b>) Soft pan crust (site S1), the local incidence angle is between 35.2°–35.4° (ascending only), (<b>b</b>) Hard-pan crust 2 (S6), the local incidence angle is between 39.9°–40.1° (ascending), and 31.1°–31.3° (descending), (<b>c</b>) Hard-pan crust 1 (S10), local incidence angle is between 39.2°–39.3° (ascending), and 32.2°–32.3° (descending). Sentinel 1A VH polarization is available from February 2017. The green circles indicate episodic events: on 26 May 2017 for site S1 and on 13 April 2015 for sites S6 and S10. Daily accumulate rainfalls recorded at Socaire are in grey bars, and snowfall cover also shown as black crosses.</p> "> Figure 9
<p>(<b>a</b>) Sentinel 1A, VV polarization, descending orbit (9 March 2015). High backscattering coefficient accounted for well-developed salt crusts formed by capillarity over dry periods before La Niña, (<b>b</b>) Sentinel 1A, VV polarization, ascending orbit (13 April 2015). Extreme rainfall event left vast areas with a smoothened surface after salts dissolved. Intense southeast winds caused standing water to depart from flooded areas to dry areas. The opposite also occurred with loose soil particles from dry areas to flooded ones.</p> "> Figure 10
<p>(<b>a</b>) Sentinel 1-B, VV polarization, descending orbit (27 May 2017). The salar surface is fully covered by snow, (<b>b</b>) Sentinel 1-B, VV polarization, ascending orbit (11 September 2017). Flooding event following the snow melting with wind-generated roughness over the water beds. (<b>c</b>) Sentinel 1-B, VV polarization, descending orbit (7 September 2018). No-wind condition: Low backscattered power from standing water over sites S1, S8, and S9. Note the similar flooding extents between (<b>b</b>) and (<b>c</b>).</p> "> Figure 11
<p>Sentinel 1 temporal backscattering observed over the salt pan for the remaining sites considered in this study. Sentinel 1A (magenta) and Sentinel 1B (blue) in ascending (full markers) and descending (empty markers) orbits. VV polarization is indicated as triangles, and VH are circles. The green circles indicate episodic events: on 13 April 2015, for sites S4, S5, S7, S8, S9, and 20 April 2016, for site S8. Daily accumulate rainfalls recorded at Socaire are in grey bars, and snowfall cover also shown as black crosses.</p> "> Figure 12
<p>ALOS-2/PALSAR-2 temporal backscattering observed over the salt pan. Sites corresponded to Hard crust 2 (upper panel) and Soft crust (bottom panel). Ascending orbit. The local incidence angles are indicated in degrees. Daily accumulate rainfalls recorded at Socaire are in grey bars, and snowfall cover also shown as black crosses.</p> "> Figure 13
<p>The same as <a href="#remotesensing-12-00941-f012" class="html-fig">Figure 12</a> for sites corresponding to Hard crust 1. Ascending orbit. The local incidence angles are indicated in degrees. Daily accumulate rainfalls recorded at Socaire are in grey bars, and snowfall cover also shown as black crosses.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodological Flowchart
2.3. Ground and Geological Data
2.4. Meteorological Data
2.5. Penetration Depth
3. Results
3.1. Seasonality Analysis
3.2. Climate Seasonality
3.3. Annual Seasonality
3.4. Episodic Events
3.5. Seasonality of the Other Sites
3.6. Seasonality as Seen by ALOS-2/PALSAR-2
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chong Díaz, G. The Cenozoic Saline Deposits of the Chilean Andes Between 18°00’ and 27°00’ South Latitude. Lect. Notes Earth Sci. 1988, 17, 137–151. [Google Scholar]
- Stoertz, G.E.; Ericksen, G.E. Geology of Salars in Northern Chile; Technical Report; U.S. G.P.O: Washington, DC, USA, 1974; p. 65. [Google Scholar]
- Frison, P.L.; Paillou, P.; Sayah, N.; Pottier, E.; Rudant, J.-P. Spatio-temporal monitoring of evaporitic processes using multiresolution C-band radar remote sensing data: Example of the Chott el Djerid, Tunisia. Can. J. Remote Sens. 2013, 39, 127–137. [Google Scholar] [CrossRef]
- CIREN. Provisión de Imágenes Satelitales y Ejecución de un Estudio de Geoprocesamiento para Caracterización de Salares; Centro de Información de Recursos Naturales: Santiago, Chile, 2018; p. 250. [Google Scholar]
- Ulaby, F.T.; Dellwig, L.F. Satellite microwave observations of the Utah Great Salt Lake Desert. Radio Sci. 1975, 10, 947–963. [Google Scholar] [CrossRef]
- Wadge, G.; Archer, D.J.; Millington, A.C. Monitoring playa sedimentation using sequential radar images. Terra Nov. 1994, 6, 391–396. [Google Scholar] [CrossRef]
- Archer, D.J.; Wadge, G. Modeling the backscatter response due to salt crust development. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2307–2310. [Google Scholar] [CrossRef]
- Wadge, G.; Archer, D.J. Evaporation of groundwater from arid playas measured by C-band SAR. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1641–1650. [Google Scholar] [CrossRef]
- Shao, Y.; Hu, Q.; Guo, H.; Lu, Y.; Dong, Q.; Han, C. Effect of dielectric properties of moist salinized soils on backscattering coefficients extracted from RADARSAT image. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1879–1888. [Google Scholar] [CrossRef]
- Aly, Z.; Bonn, F.J.; Magagi, R. Analysis of the backscattering coefficient of salt-affected soils using modeling and RADARSAT-1 SAR data. IEEE Trans. Geosci. Remote Sens. 2007, 45, 332–341. [Google Scholar] [CrossRef]
- Paillou, P.; Sufyar, S.; Freeman, A. The Chott El Djerid, Tunisia: Observation and discussion of a SAR Phase signature over evaporitic soils. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5798–5806. [Google Scholar] [CrossRef]
- Lasne, Y.; Paillou, P.; Freeman, A.; Farr, T.; McDonald, K.C.; Ruffié, G.; Malézieux, J.-M.; Chapman, B.; Demontoux, F. Effect of salinity on the dielectric properties of geological materials: Implication for soil moisture detection by means of radar remote sensing. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1674–1688. [Google Scholar] [CrossRef]
- Lasne, Y.; Paillou, P.; Freeman, A.; Farr, T.; McDonald, K.; Ruffié, G.; Malézieux, J.M.; Chapman, B. Study of hypersaline deposits and analysis of their signature in airborne and spaceborne SAR data: Example of Death Valley, California. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2581–2598. [Google Scholar] [CrossRef]
- Shao, Y.; Gong, H.; Gao, Z.; Liu, L.; Zhang, T.; Li, L. SAR data for subsurface saline lacustrine deposits detection and primary interpretation on the evolution of the vanished Lop Nur Lake. Can. J. Remote Sens. 2012, 38, 267–280. [Google Scholar] [CrossRef]
- Shao, Y.; Gong, H.; Gao, Z.; Liu, L.; Zhang, T.; Li, L.; Wang, L. Subsurface deposits detection and shoreline feature interpretation of a vanished Lop Nur lake using multi-source SAR data. IGARSS 2014, 4580–4583. [Google Scholar] [CrossRef]
- Gong, H.; Shao, Y.; Zhang, T.; Liu, L.; Gao, Z. Scattering Mechanisms for the “Ear” Feature of Lop Nur Lake Basin. Remote Sens. 2014, 6, 4546–4562. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.A.; Gong, H.; Shao, Y.; Li, B. Detecting the Depth of a Subsurface Brine Layer in Lop Nur Lake Basin Using Polarimetric L-band SAR. J. Sens. 2015, 2015, 11. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.-A.; Gong, H.; Shao, Y.; Yang, Z.; Liu, L.; Geng, Y. Recognition of salt crust types by means of PolSAR to reflect the fluctuation processes of an ancient lake in Lop Nur. Remote Sens. Environ. 2016, 175, 148–157. [Google Scholar] [CrossRef] [Green Version]
- Ramírez, C.; Gardeweg, M. Hoja Toconao. Servicio Nacional de Geología y Minería. Carta Geológica de Chile, Ser. Geol. Básica. 1982, 54, 117. [Google Scholar]
- Troncoso, R.; Ercilla, O.; Carrasco, R.; Vivallo, W. Estudio del Potencial del Litio en Salares del Norte de Chile; Servicio Nacional de Geología y Minería: Santiago, Chile, 2013; p. 252. [Google Scholar]
- Ruch, J.; Warren, J.K.; Risacher, F.; Walter, T.R.; Lanari, R. Salt lake deformation detected from space. Earth Planet. Sci. Lett. 2012, 331–332, 120–127. [Google Scholar] [CrossRef]
- Warren, J.K. Evaporites: A Geological Compendium; Springer: Bangkok, Thailand, 2016; p. 1822. [Google Scholar]
- Herrera, C.; Custodio, E.; Chong, G.; Lambán, L.J.; Riquelme, R.; Wilke, H.; Jódar, J.; Urrutia, J.; Urqueta, H.; Sarmiento, A.; et al. Groundwater flow in a closed basin with a saline shallow lake in a volcanic area: Laguna Tuyajto, northern Chilean Altiplano of the Andes. Sci. Total Environ. 2016, 541, 303–318. [Google Scholar] [CrossRef]
- Risacher, F.; Fritz, B. Origin of Salts and Brine Evolution of Bolivian and Chilean Salars. Aquat Geochem. 2009, 15, 123–157. [Google Scholar] [CrossRef]
- Available online: http://agromet.inia.cl/estaciones.php (accessed on 22 August 2019).
- Available online: https://giovanni.gsfc.nasa.gov/giovanni/ (accessed on 17 February 2019).
- Available online: https://worldview.earthdata.nasa.gov (accessed on 12 May 2019).
- Ulaby, F.T.; Stiles, W.H.; Abdelrazik, M. Snowcover Influence on Backscattering from Terrain. IEEE Trans. Geosci. Remote Sens. 1984, GE-22, 126–133. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Long, D.G.; Blackwell, W.; Elachi, C.; Fung, A.; Ruf, C.; Sarabandi, K.; Zebker, H.; Zyl, J.V. Microwave Radar and Radiometric Remote Sensing; University of Michigan Press: Ann Arbor, MI, USA, 2014. [Google Scholar]
- Charlton, M.B.; White, K. Sensitivity of radar backscatter to desert surface roughness. Int. J. Remote Sens. 2006, 27, 1641–1659. [Google Scholar] [CrossRef]
- Torres, R.; Navas-Traver, I.; Bibby, D.; Lokas, S.; Snoeij, P.; Rommen, B.; Osborne, S.; Ceba-Vega, F.; Potin, P.; Geudtner, D. Sentinel-1 SAR system and mission. IEEE Radar Conf. 2017, 1582–1585. [Google Scholar] [CrossRef]
Dates | ||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2014 | 2015 | 2016 | 2017 | 2018 | ||||||||||||||||||||||||||||||||||||||||||||||
O | N D | J | F | M | A | M | J | J | A | S | O | N | D | J | F | M | A | M | J | J | A | S | O | N | D | J | F | M | A | M | J | J | A | S | O | N | D | J | F | M | A | M | J | J | A | S | O | N | D | |
Sentinel 1A | ||||||||||||||||||||||||||||||||||||||||||||||||||
Sentinel 1B | ||||||||||||||||||||||||||||||||||||||||||||||||||
ALOS-2/PALSAR-2 | ||||||||||||||||||||||||||||||||||||||||||||||||||
Polarizations | |||||
HH-HV | VV | VV-VH |
Surface | Region of Interest (ROI) | Total of Pixels |
---|---|---|
Hard-pan crust 1 | S3; S5; S7; S10; S11; S13 | 600 |
Hard-pan crust 2 | S4; S6; S12 | 300 |
Soft pan crust | S1; S2; S8 | 300 |
Pond | S9 | 100 |
Site | Range (Start Date–End Date) | Interval [day] | Variation [dB] | Rate [dB/month] |
---|---|---|---|---|
1 | 23 October 2017–28 December 2017 | 66 | 4.56 | 2.07 |
23 February 2018–27 April 2018 | 72 | 2.55 | 1.06 | |
10 | 17 September 2017–15 January 2018 | 120 | 8.80 | 2.20 |
20 February 2018–08 June 2018 | 108 | 3.76 | 1.04 | |
18 September 2018–23 December 2018 | 96 | 5.01 | 1.57 | |
11 | 22 March 2018–14 June 2018 | 84 | 4.18 | 1.49 |
12 September 2018–29 December 2018 | 108 | 4.71 | 1.31 | |
4 | 20 February 2018–21 May 2018 | 90 | 4.10 | 1.37 |
06 September 2018–29 December 2018 | 114 | 3.84 | 1.01 | |
6 | 29 September 2017–28 December 2017 | 90 | 3.71 | 1.24 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delsouc, A.; Barber, M.; Gallaud, A.; Grings, F.; Vidal-Páez, P.; Pérez-Martínez, W.; Briceño-De-Urbaneja, I. Seasonality Analysis of Sentinel-1 and ALOS-2/PALSAR-2 Backscattered Power over Salar de Aguas Calientes Sur, Chile. Remote Sens. 2020, 12, 941. https://doi.org/10.3390/rs12060941
Delsouc A, Barber M, Gallaud A, Grings F, Vidal-Páez P, Pérez-Martínez W, Briceño-De-Urbaneja I. Seasonality Analysis of Sentinel-1 and ALOS-2/PALSAR-2 Backscattered Power over Salar de Aguas Calientes Sur, Chile. Remote Sensing. 2020; 12(6):941. https://doi.org/10.3390/rs12060941
Chicago/Turabian StyleDelsouc, Analia, Matías Barber, Audrey Gallaud, Francisco Grings, Paulina Vidal-Páez, Waldo Pérez-Martínez, and Idania Briceño-De-Urbaneja. 2020. "Seasonality Analysis of Sentinel-1 and ALOS-2/PALSAR-2 Backscattered Power over Salar de Aguas Calientes Sur, Chile" Remote Sensing 12, no. 6: 941. https://doi.org/10.3390/rs12060941
APA StyleDelsouc, A., Barber, M., Gallaud, A., Grings, F., Vidal-Páez, P., Pérez-Martínez, W., & Briceño-De-Urbaneja, I. (2020). Seasonality Analysis of Sentinel-1 and ALOS-2/PALSAR-2 Backscattered Power over Salar de Aguas Calientes Sur, Chile. Remote Sensing, 12(6), 941. https://doi.org/10.3390/rs12060941