Time Series Remote Sensing Data-Based Identification of the Dominant Factor for Inland Lake Surface Area Change: Anthropogenic Activities or Natural Events?
"> Figure 1
<p>Overview of the study area.</p> "> Figure 2
<p>Segmentation method for time series curves.</p> "> Figure 3
<p>Curve points used in feature extraction of times series of lake surface area.</p> "> Figure 4
<p>The extracted lake boundaries (polygon in red line) for: (<b>a</b>) Shudu Lake; (<b>b</b>) Qilu Lake; (<b>c</b>) Yilong Lake; (<b>d</b>) Bitahai Lake; (<b>e</b>) Lashihai Lake; (<b>f</b>) Yuxian Lake; (<b>g</b>) Haixihai Lake; (<b>h</b>) Dianchi Lake; (<b>i</b>) Erhai Lake.</p> "> Figure 5
<p>Thresholding results for: (<b>a</b>) to (<b>d</b>): Douglas-Peucker simplification algorithm; (<b>e</b>) to (<b>h</b>): bend simplification algorithm.</p> "> Figure 6
<p>Time series curve segmentation and event identification results for lake areas in the study region during the period 1987–2017. (<b>a</b>) Shudu Lake; (<b>b</b>) Qilu Lake; (<b>c</b>) Yilong Lake; (<b>d</b>) Bitahai Lake; (<b>e</b>) Lashihai Lake; (<b>f</b>) Yuxian Lake; (<b>g</b>) Haixihai Lake; (<b>h</b>) Dianchi Lake; (<b>i</b>) Erhai Lake.</p> ">
Abstract
:1. Introduction
2. Study Area and Data
2.1. Overview of Study Area
2.2. Data Source and Preprocessing
3. Methods
3.1. Lake Surface Extraction and Building Time Series with Lake Surface Areas
3.2. Time Series Lake Surface Area Curve Segmentation and Identification of Disturbance Events
4. Results and Discussion
4.1. Accuracy Evaluation of Extracted Lake Surface Area
4.2. Time Series Curve Segmentation Accuracy Assessment
4.2.1. Parameter Tuning for Time Series Surface Area Curve Segmentation Method
4.2.2. Time Series Curve Segmentation Results
4.3. Lake Surface Area Disturbance Feature Extraction and Identification
4.3.1. Lake Surface Area Disturbance Feature Extraction
4.3.2. Classification Results of Lake Surface Area Disturbances
5. Conclusions
- (1)
- The method can accurately locate the main lake changing events based on the time series lake surface area curve. When a large disturbance event occurs for a lake, its area will also increase (or decrease). The method proposed in this paper effectively eliminates noise in the time series of lake surface area using the combined D-P simplification algorithm and bend simplification algorithm. This method retains the large mutation points in the time series lake surface area curve and accurately locates the lake changing events within the time series lake surface curve; the temporal accuracy of this model for segmenting the lake area time series curves was 94.73% in our study.
- (2)
- To characterize the disturbances on each time series curve, we extracted the disturbance classification features, including the amplitude (event rate), duration and trajectory (recovery rate). Using the k-means clustering method, we achieved an overall accuracy of disturbance identification of 87.75%, with an F-score of 85.71 for anthropogenic disturbances and 88.89 for natural disturbances.
- (3)
- According to our results, lakes in Yunnan Province, China, have undergone extensive disturbances, and the human-induced disturbances occurred almost twice as often as natural disturbances, indicating intensified disturbances caused by human activities, such as reservoir constructions, irrigation, turning lakes into fields, etc. Worse still, the anthropogenic disturbances appear to be lasting compared with the natural disturbances. Lakes subjected to natural disturbances tend to recover within a short period of time, while lakes subjected to anthropogenic disturbances had longer recovery times or never recovered.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ding, Y.; Liu, S.; Ma, Y.; Ye, B.; Zhao, L. Climatic implications on variations of lakes in the cold and arid regions of china during the recent 50 Years. J. Glaciol. Geocryol. 2006, 28, 623–632. [Google Scholar] [CrossRef]
- Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef]
- Yamazaki, D.; Trigg, M.A.; Ikeshima, D. Development of a global ~90m water body map using multi-temporal Landsat images. Remote Sens. Environ. 2015, 171, 337–351. [Google Scholar] [CrossRef]
- Moser, K.A.; Baron, J.S.; Brahney, J.; Oleksy, I.A.; Saros, J.E.; Hundey, E.J.; Sadro, S.A.; Kopáček, J.; Sommaruga, R.; Kainz, M.J.; et al. Mountain lakes: Eyes on global environmental change. Glob. Planet. Chang. 2019, 178, 77–95. [Google Scholar] [CrossRef] [Green Version]
- Vorosmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global water resources: Vulnerability from climate change and population growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Chen, Y.; Zhang, S.; Wu, J. Detecting, extracting and monitoring surface water from space using optical sensors: A review. Rev. Geophys. 2018, 56, 333–360. [Google Scholar] [CrossRef]
- Luo, K.; Tao, F. Monitoring of forest virtual water in Hunan Province, China, based on HJ-CCD remote-sensing images and pattern analysis. Int. J. Remote Sens. 2016, 37, 2376–2393. [Google Scholar] [CrossRef]
- Tulbure, M.G.; Broich, M.; Stehman, S.V.; Kommareddy, A. Surface water extent dynamics from three decades of seasonally continuous Landsat time series at subcontinental scale in a semi-arid region. Remote Sens. Environ. 2016, 178, 142–157. [Google Scholar] [CrossRef]
- Colgan, M.; Baldeck, C.; Féret, J.-B.; Asner, G. Mapping Savanna Tree Species at Ecosystem Scales Using Support Vector Machine Classification and BRDF Correction on Airborne Hyperspectral and LiDAR Data. Remote Sens. 2012, 4, 3462–3480. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Jia, J.; Liu, Y.; Li, H.; Wu, J. Seasonal contrast of the dominant factors for spatial distribution of land surface temperature in urban areas. Remote Sens. Environ. 2018, 215, 255–267. [Google Scholar] [CrossRef]
- Feng, L.; Hou, X.; Zheng, Y. Monitoring and understanding the water transparency changes of fifty large lakes on the Yangtze Plain based on long-term MODIS observations. Remote Sens. Environ. 2019, 221, 675–686. [Google Scholar] [CrossRef]
- Che, X.; Feng, M.; Jiang, H.; Xiao, T.; Wang, C.; Jia, B.; Bai, Y. Detection and analysis of Qinghai-Tibet Plateau lake area from 2000 to 2013. Geo Inf. Sci. 2015, 17, 97–107. [Google Scholar] [CrossRef]
- Mcfeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Feng, L.; Hu, C.; Chen, X.; Cai, X.; Tian, L.; Gan, W. Assessment of inundation changes of Poyang Lake using MODIS observations between 2000 and 2010. Remote Sens. Environ. 2012, 121, 80–92. [Google Scholar] [CrossRef]
- Li, H.; Mao, D.; Li, X.; Wang, Z.; Wang, Z.; Wang, C. Monitoring 40-year lake area changes of the Qaidam Basin; Tibetan Plateau; using Landsat time series. Remote Sens. 2019, 11, 343. [Google Scholar] [CrossRef] [Green Version]
- Maeda, E.; Lisboa, F.; Kaikkonen, L.; Kallio, K.; Koponen, S.; Brotas, V.; Kuikka, S. Temporal patterns of phytoplankton phenology across high latitude lakes unveiled by long-term time series of satellite data. Remote Sens. Environ. 2019, 221, 609–620. [Google Scholar] [CrossRef]
- Wulder, M.A.; Loveland, T.R.; Roy, D.P.; Crawford, C.J.; Masek, J.G.; Woodcock, C.E.; Zhu, Z. Current status of Landsat program, science, and applications. Remote Sens. Environ. 2019, 225, 127–147. [Google Scholar] [CrossRef]
- Xiao, Q.; Yang, K.; Hong, L. Remote sensing monitoring and temporal-spatial analysis of surface water body area changes of lakes on the Yunnan-Guizhou Plateau over the past 30 years. J. Lake Sci. 2018, 30, 1083–1096. [Google Scholar] [CrossRef]
- Arvor, D.; Daher, F.R.G.; Briand, D.; Dufour, S.; Rollet, A.J.; Simoes, M.; Ferraz, R.P.D. Monitoring thirty years of small water reservoirs proliferation in the southern Brazilian Amazon with Landsat time series. ISPRS J. Photogramm. Remote Sens. 2018, 145, 225–237. [Google Scholar] [CrossRef]
- Li, H.; Zang, H.; Chen, G.; Chang, F.; Duan, L.; Wang, J.; Lu, H.; Wu, H.; Hu, K. The Grain Size Distribution Characteristics of Surface Sediments from Plateau Lakes in Yunnan Province and Their Environmental Significances. Acta Sedimentol. Sin. 2017, 35, 499–507. [Google Scholar]
- Qin, J.; Ju, J.; Xie, M. Low Latitude Plateau Weather Climate; China Meteorological Press: Beijing, China, 1997; pp. 18–19. [Google Scholar]
- Cooley, T.; Anderson, G.P.; Felde, G.W.; Hoke, M.L.; Ratkowski, A.J.; Chetwynd, J.H.; Gardner, J.A.; Adler-Golden, S.M.; Matthew, M.W.; Berk, A.; et al. FLAASH, a MODTRAN4-based atmospheric correction algorithm, its application and validation. In Proceedings of the 2002 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Toronto, ON, Canada, 24–28 June 2002; pp. 1414–1418. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Zeng, L.; Schmitt, M.; Li, L.; Zhu, X. Analysing changes of the Poyang Lake water area using Sentinel-1 synthetic aperture radar imagery. Int. J. Remote Sens. 2017, 38, 7041–7069. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Du, L.; Ke, Y.; Huang, M.; Zhang, J.; Zhao, Y.; Li, X.; Gong, H. Impact of Climate Variabilities and Human Activities on Surface Water Extents in Reservoirs of Yongding River Basin, China, from 1985 to 2016 Based on Landsat Observations and Time Series Analysis. Remote Sens. 2019, 11, 560. [Google Scholar] [CrossRef] [Green Version]
- Douglas, D.H.; Peucker, T.K. Algorithms for the Reduction of the Number of Points Required to Represent a Digitized Line or its Caricature. Cartogr. Int. J. Geogr. Inf. Geovis. 1973, 10, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Müller, J.C. Line generalization based on analysis of shape characteristics. Cartogr. Geogr. Inf. Syst. 1998, 25, 3–15. [Google Scholar] [CrossRef]
- Fisher, A.; Flood, N.; Danaher, T. Comparing Landsat water index methods for automated water classification in eastern Australia. Remote Sens. Environ. 2016, 175, 167–182. [Google Scholar] [CrossRef]
- Frazier, P.S. Water body detection and delineation with Landsat TM data. Photogramm. Eng. Remote Sens. 2000, 66, 1461–1467. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated water extraction index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Huang, X.; Hu, T.; Li, J.; Wang, Q.; Benediktsson, J.A. Mapping urban areas in China using multisource data with a novel ensemble SVM method. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4258–4273. [Google Scholar] [CrossRef]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Sun, G.; Chen, X.; Jia, C.; Yao, Y.; Wang, Z. Combinational Build-Up Index (CBI) for effective impervious surface mapping in urban areas. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2081–2092. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ. 2014, 144, 152–171. [Google Scholar] [CrossRef] [Green Version]
- Verbesselt, J.; Hyndman, R.; Newnham, G.; Culvenor, D. Detecting trend and seasonal changes in satellite image time series. Remote Sens. Environ. 2010, 114, 106–115. [Google Scholar] [CrossRef]
- Chuon, C.; Guha, S.; Janecek, P.; Nguyen, D.C.S. Simplipoly: Curvature-based polygonal curve simplification. Int. J. Comput. Geom. Appl. 2011, 21, 417–429. [Google Scholar] [CrossRef] [Green Version]
- Hartigan, J.A.; Wong, M.A. Algorithm AS 136: A k-means clustering algorithm. J. R. Stat. Soc. Ser. C Appl. Stat. 1979, 28, 100–108. [Google Scholar] [CrossRef]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Adeline, K.R.M.; Chen, M.; Briottet, X.; Pang, S.K.; Paparoditis, N. Shadow detection in very high spatial resolution aerial images: A comparative study. ISPRS J. Photogramm. Remote Sens. 2013, 80, 21–38. [Google Scholar] [CrossRef]
- Sulla-Menashe, D.; Kennedy, R.E.; Yang, Z.; Braaten, J.; Krankina, O.N.; Friedl, M.A. Detecting forest disturbance in the Pacific Northwest from MODIS time series using temporal segmentation. Remote Sens. Environ. 2014, 151, 114–123. [Google Scholar] [CrossRef]
- Liu, X.; Bo, Y.; Zhang, J.; He, Y. Classification of C3 and C4 Vegetation Types Using MODIS and ETM+ Blended High Spatio-Temporal Resolution Data. Remote Sens. 2015, 7, 15244–15268. [Google Scholar] [CrossRef] [Green Version]
- Goudie, A.S. Human Impact on the Natural Environment; Wiley: Chennai, India, 2018. [Google Scholar]
- Li, H.; Yu, Q.; Li, N.; Wang, J.; Yang, Y. Study on Landscape Dynamics and Driving Mechanisms of the Shudu Lake Catchment Wetlands in Northwest Yunnan. J. West China For. Sci. 2013, 42. [Google Scholar] [CrossRef]
- Yang, L.; Li, H. Yunnan Wetland; China Forestry Publishing House: Beijing, China, 2010. [Google Scholar]
- Compilation of Eryuan County Local Chronicles Compilation Committee. Eryuan County Records: 1978–2005; Yunnan People’s Publishing House: Kunming, China, 2018. [Google Scholar]
- Li, R. Annals of Naxi Autonomous County of Lijiang; Yunnan People’s Publishing House: Kunming, China, 2001. [Google Scholar]
- Yan, S. Discussion on the Environmental Impact of Erhai Sea Engineering Construction. Technol. Dev. Enterp. 2014, 33. [Google Scholar] [CrossRef]
- He, J. Yunnan Water Conservancy Yearbook; Yunnan Water Resources Department: Kunming, China, 2014. [Google Scholar]
- Compilation of Shiping County annals Compilation Committee. Shiping County Annals: 1985–2000; Yunnan People’s Publishing House: Kunming, China, 2005. [Google Scholar]
- Gong, P. Huaning Water Conservancy; Dehong National Publishing House: Mangshi, China, 2014. [Google Scholar]
Date | Satellite Sensors | Images Selected | Spatial Resolution | Data Source |
---|---|---|---|---|
11/01/1986-11/02/2011 | Landsat TM | 686 | 30 m | https://glovis.usgs.gov/ |
11/03/2011-04/12/2013 | HJ-1A/B | 27 | 30 m | http://www.cresda.com/ |
04/13/2013-04/30/2017 | Landsat OLI | 109 | 30 m | https://glovis.usgs.gov/ |
Lake | ADF Test (at 0.05 Level) | Stationary (yes/no) |
---|---|---|
Shudu lake | P = 0.5355 > 0.05 | no |
Qilu Lake | P = 0.341 > 0.05 | no |
Yilong Lake | P = 0.1825 > 0.05 | no |
Bitahai Lake | P = 0.03192 < 0.05 | yes |
Lashihai Lake | P = 0.04617 < 0.05 | yes |
Yuxian Lake | P = 0.3644 > 0.05 | no |
Haixihai Lake | P = 0.5563 > 0.05 | no |
Dianchi Lake | P = 0.01 < 0.05 | yes |
Erhai Lake | P = 0.1577 > 0.05 | no |
Producer’s Accuracy | User’s Accuracy | Overall Accuracy | F-Score | ||
---|---|---|---|---|---|
Anthropogenic Disturbances | Natural Disturbances | Anthropogenic Disturbances | Natural Disturbances | ||
Lakes | Landsat-OLI | Area (km²) | Sentinel-1A | Area (km²) | Area Differences (km²) |
---|---|---|---|---|---|
Shudu Lake | 02/15/2017 | 1.69 | 02/10/2017 | 1.69 | 0.00 |
Qilu Lake | 03/14/2017 | 32.12 | 03/13/2017 | 30.99 | 1.13 |
Yilong Lake | 03/14/2017 | 18.21 | 03/13/2017 | 17.33 | 0.88 |
Bitahai Lake | 02/15/2017 | 1.61 | 02/10/2017 | 1.59 | 0.02 |
Lashihai Lake | 02/03/2015 | 12.28 | 01/30/2015 | 11.25 | 1.03 |
Yuxian Lake | 03/23/2017 | 0.96 | 03/22/2017 | 0.91 | 0.04 |
Haixihai Lake | 02/08/2017 | 3.77 | 02/10/2017 | 3.55 | 0.22 |
Dianchi Lake | 03/14/2017 | 298.32 | 03/13/2017 | 295.42 | 2.90 |
Erhai Lake | 02/08/2017 | 242.34 | 02/10/2017 | 241.35 | 0.98 |
Lake | Maximum Area (km²) | Minimum Area (km²) | Area Difference (km²) | Threshold ε for D-P | Threshold α for Bend Simplification |
---|---|---|---|---|---|
Shudu lake | 1.72 | 1.19 | 0.54 | 0.06 | 12.50 |
Qilu lake | 46.44 | 23.96 | 22.48 | 3.00 | 17.50 |
Yilong lake | 43.21 | 12.49 | 30.71 | 3.50 | 19.50 |
Bitahai lake | 1.64 | 1.56 | 0.09 | 0.03 | 23.00 |
Lashihai lake | 13.15 | 6.47 | 6.68 | 1.50 | 25.00 |
Yuxian lake | 2.01 | 0.00 | 2.01 | 0.45 | 11.50 |
Haixihai lake | 4.05 | 2.50 | 1.55 | 0.35 | 18.00 |
Dianchi lake | 300.42 | 293.92 | 6.50 | 1.60 | 28.50 |
Erhai lake | 244.90 | 237.96 | 6.94 | 1.15 | 13.50 |
Lake | Time | Event Rate 1 | Event Rate 2 | Area_Diff | Re_Rate | Documented Disturbance | Classified Disturbance |
---|---|---|---|---|---|---|---|
Shudu Lake | 1994–1998 | 0.6002 | 0.0188 | 0.0314 | 0.9059 | An. | An. |
Qilu Lake | 1989–1995 | 0.0221 | 0.1066 | 0.2072 | 0.0346 | Na. | Na. |
Qilu Lake | 2010–2017 | 0.1304 | 0.1017 | 0.7792 | 0.4156 | Na. | Na. |
Yilong Lake | 2010–2017 | 0.1640 | 0.0332 | 0.2022 | 0.7978 | An. | An. |
Yilong Lake | 1993–1996 | 0.0849 | 0.1502 | 0.5653 | −0.1521 | Na. | Na. |
Bitahai Lake | 2009–2015 | 0.1982 | 0.2053 | 0.9658 | −0.0342 | Na. | Na. |
Lashihai Lake | 1992–1994 | 0.3116 | 0.1467 | 0.4707 | 0.5293 | An. | An. |
Lashihai Lake | 2008–2011 | 0.1629 | 0.2216 | 0.7351 | 0.0931 | An. | Na. |
Lashihai Lake | 1994–2001 | 0.2216 | 0.2235 | 0.9917 | 0.0083 | Na. | Na. |
Yuxian Lake | 2011–2012 | 0.3986 | 0.2243 | 0.5628 | −0.1255 | Na. | Na. |
Haixihai Lake | 1994–1996 | 0.3882 | 0.0121 | 0.0313 | 0.9062 | An. | An. |
Haixihai Lake | 2011–2014 | 0.2516 | 0.4329 | 0.5812 | 0.1398 | Na. | Na. |
Dianchi Lake | 2012–2015 | 0.2439 | 0.0636 | 0.2607 | 0.8262 | An. | An. |
Dianchi Lake | 2012–2017 | 0.1658 | 0.2439 | 0.6797 | −0.5469 | Na. | Na. |
Erhai Lake | 1991–1995 | 0.1336 | 0.3483 | 0.3835 | 0.3482 | An. | Na. |
Erhai Lake | 2004–2005 | 0.4536 | 0.1254 | 0.2764 | 0.4472 | An. | An. |
Producer’s Accuracy (%) | User’s Accuracy (%) | Overall Accuracy (%) | F(ad)-Score | F(nd)-Score | ||
---|---|---|---|---|---|---|
An. | Na. | An. | Na. | |||
100 | 80 | 75 | 100 | 87.5 | 85.71 | 88.89 |
Lake Name | Anthropogenic Disturbances (times) | Natural Disturbances (times) | No Disturbances | Total |
---|---|---|---|---|
Shudu lake | 1 | 1 | 1 | 3 |
Qilu lake | 4 | 0 | 2 | 6 |
Yilong lake | 1 | 2 | 1 | 4 |
Bitahai lake | 1 | 1 | 1 | 3 |
Lashihai lake | 7 | 1 | 1 | 9 |
Yuxian lake | 1 | 1 | 1 | 3 |
Haixihai lake | 2 | 4 | 1 | 7 |
Dianchi lake | 4 | 2 | 1 | 7 |
Erhai lake | 4 | 5 | 0 | 9 |
Total | 25 | 17 | 9 | 51 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Shi, Z.; Huang, G.; Bo, Y.; Chen, G. Time Series Remote Sensing Data-Based Identification of the Dominant Factor for Inland Lake Surface Area Change: Anthropogenic Activities or Natural Events? Remote Sens. 2020, 12, 612. https://doi.org/10.3390/rs12040612
Liu X, Shi Z, Huang G, Bo Y, Chen G. Time Series Remote Sensing Data-Based Identification of the Dominant Factor for Inland Lake Surface Area Change: Anthropogenic Activities or Natural Events? Remote Sensing. 2020; 12(4):612. https://doi.org/10.3390/rs12040612
Chicago/Turabian StyleLiu, Xiaolong, Zhengtao Shi, Guangcai Huang, Yanchen Bo, and Guangjie Chen. 2020. "Time Series Remote Sensing Data-Based Identification of the Dominant Factor for Inland Lake Surface Area Change: Anthropogenic Activities or Natural Events?" Remote Sensing 12, no. 4: 612. https://doi.org/10.3390/rs12040612
APA StyleLiu, X., Shi, Z., Huang, G., Bo, Y., & Chen, G. (2020). Time Series Remote Sensing Data-Based Identification of the Dominant Factor for Inland Lake Surface Area Change: Anthropogenic Activities or Natural Events? Remote Sensing, 12(4), 612. https://doi.org/10.3390/rs12040612