Spatial and Temporal Characteristics of Vegetation NDVI Changes and the Driving Forces in Mongolia during 1982–2015
"> Figure 1
<p>Geographic characteristics of Mongolia: (<b>a</b>) general geographical map (UB refers to Ulaanbaatar), (<b>b</b>) provincial administrative map, (<b>c</b>) map of annual average of normalized density vegetation index (NDVI), and (<b>d</b>) distribution of meteorological stations in Mongolia.</p> "> Figure 2
<p>Maps of environmental factors: (<b>a</b>) annual average precipitation, (<b>b</b>) annual average temperature, (<b>c</b>) annual average wind speed, (<b>d</b>) annual average snow depth, (<b>e</b>) annual average specific humidity, (<b>f</b>) elevation, (<b>g</b>) slope degree, (<b>h</b>) slope aspect, (<b>i</b>) curvature, (<b>j</b>) livestock quantity (quantity of livestock per unit area), (<b>k</b>) vegetation type, and (<b>l</b>) soil type. The meanings of the serial numbers in the legend of soil type are (1) mountain meadow soil, (2) mountain peat soil, (3) grey forest soil, (4) dark chestnut soil, (5) chestnut soil, (6) chestnut soil and dark chestnut soil, (7) thin brown soil, (8) Gobi brown soil, (9) saline soil, (10) alkali and saline soil, (11) alkali soil, (12) cracked alkaline soil, (13) meadow soil and boggy soil, (14) sandy soil, (15) pine sandy soil, and (16) boggy soil.</p> "> Figure 3
<p>Trends of NDVI changes in Mongolia from 1982 to 2015. Regions labelled by black dots indicate that the trends were statistically significant (Mann–Kendall test; <span class="html-italic">p</span> < 0.05). The values at the top of figure are the pixel ratios.</p> "> Figure 4
<p>Proportion of NDVI change in different vegetation types: Forest (FS), Meadow steppe (MS), Typical steppe (TS), Desert steppe (DS), Alpine steppe (AS), and Gobi Desert (GD). The numbers refer to the percentage.</p> "> Figure 5
<p>Relationship diagrams of initial value and variation of NDVI: (<b>a</b>) Scatter plots and histogram initial value and variation. Initial value means the intercept of Sen’s slope linear equation and the variation is the variation of NDVI over the 34-year period (Variation = Sen’s slope × 34). (<b>b</b>) Box plot of NDVI variation under different vegetation types.</p> "> Figure 6
<p>Spatial distributions of climate factors and livestock quantity from 1982 to 2015: (<b>a</b>) precipitation, (<b>b</b>) temperature, (<b>c</b>) wind speed, (<b>d</b>) snow depth, (<b>e</b>) specific humidity, and (<b>f</b>) livestock quantity.</p> "> Figure 7
<p>Variations of <span class="html-italic">q</span> values for environmental factors on NDVI distribution and changes: (<b>a</b>) Variations of <span class="html-italic">q</span> values for environmental factors on NDVI distribution and change in Mongolia as a whole, and (<b>b</b>) variations in the <span class="html-italic">q</span> values of environmental factors on NDVI distribution for different vegetation types. The full name of all abbreviations are as following: Precipitation (Prec), Vegetation type (Vegett), Soil type (Soilt), Snow depth (Snowd), Temperature (Temp) > Wind speed (Winds), Slope degree (Slopd), Livestock quantity (Livstq), Specific humidity (Specfh), Elevation (Elev), Curve (Curv), Slope aspect (Slopa), Forest (FS), Meadow steppe (MS), Typical steppe (TS), Desert steppe (DS), Alpine steppe (AS), Gobi Desert (GD).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.2.1. NDVI Products
2.2.2. Climatic Data
2.2.3. Topography
2.2.4. Soil and Vegetation Type
2.2.5. Livestock
2.3. Methods
2.3.1. Sen’s Slope
2.3.2. Mann–Kendall Test
2.3.3. Geographical Detector Model
3. Results
3.1. Dynamic Variation of NDVI
3.2. Trends of the Environmental Factors
3.3. Relative Influences of Factors on Vegetation Distribution
3.3.1. Single Factor Influence Detection
3.3.2. Combined Influences Detection
3.3.3. Optimal Range of Factors for NDVI Detection
3.3.4. Significant Differences between Factors
3.4. Relative Influences of Factors on Vegetation Changes
3.4.1. Single Factor Influence Detection
3.4.2. Vegetation Change Drivers under Different Vegetation Types
4. Discussion
4.1. The Trend of Vegetation Changes
4.2. Driving Force of Vegetation Distribution and Changes
4.3. Optimal Range of Vegetation Growth
4.4. Relative Degree of Vegetation Changes
4.5. Caveats of Our Study
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gottfried, M.; Pauli, H.; Futschik, A.; Akhalkatsi, M.; Barančok, P.; Benito Alonso, J.L.; Coldea, G.; Dick, J.; Erschbamer, B.; Fernández Calzado, M.A.R.; et al. Continent-wide response of mountain vegetation to climate change. Nat. Clim. Chang. 2012, 2, 111–115. [Google Scholar] [CrossRef]
- Gong, Z.; Zhao, S.; Gu, J. Correlation analysis between vegetation coverage and climate drought conditions in North China during 2001–2013. J. Geogr. Sci. 2017, 27, 143–160. [Google Scholar] [CrossRef]
- Parmesan, C.; Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 2003, 421, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Du, Z.; Wu, Z.; Zhang, H.; Guo, N.; Ma, Z.; Liu, X. Seasonal variations of day-and nighttime warming and their effects on vegetation dynamics in China’s temperate zone. Acta Ecol. Sin. 2018, 73, 395–404. [Google Scholar] [CrossRef]
- Du, Z.; Zhang, X.; Xu, X.; Zhang, H.; Wu, Z.; Pang, J. Quantifying influences of physiographic factors on temperate dryland vegetation, Northwest China. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef] [PubMed]
- Piao, S.; Mohammat, A.; Fang, J.; Cai, Q.; Feng, J. NDVI-based increase in growth of temperate grasslands and its responses to climate changes in China. Glob. Environ. Chang. 2006, 16, 340–348. [Google Scholar] [CrossRef]
- Zhao, L.; Dai, A.; Dong, B. Changes in global vegetation activity and its driving factors during 1982–2013. Agric. For. Meteorol. 2018, 249, 198–209. [Google Scholar] [CrossRef]
- Chen, S.; Gan, T.Y.; Tan, X.; Shao, D.; Zhu, J. Assessment of CFSR, ERA-Interim, JRA-55, MERRA-2, NCEP-2 reanalysis data for drought analysis over China. Clim. Dyn. 2019, 53, 737–757. [Google Scholar] [CrossRef]
- Guo, J.T.; Hu, Y.M.; Xiong, Z.; Yan, X.L.; Ren, B.H.; Bu, R.C. Spatiotemporal variations of growing-season NDVI and response to climate change in permafrost zone of Northeast China. Chin. J. Appl. Ecol. 2017, 28, 2413–2422. [Google Scholar] [CrossRef]
- Baniya, B.; Qiuhong, T. Vegetation dynamics in response to climate change based on satellite derived NDVI in Nepal. EGU Gen. Assem. Conf. Abstr. 2018, 20, 91. [Google Scholar]
- Peng, J.; Liu, Z.; Liu, Y.; Wu, J.; Han, Y. Trend analysis of vegetation dynamics in Qinghai–Tibet Plateau using Hurst Exponent. Ecol. Indic. 2012, 14, 28–39. [Google Scholar] [CrossRef]
- Hein, L.; de Ridder, N.; Hiernaux, P.; Leemans, R.; de Wit, A.; Schaepman, M. Desertification in the Sahel: Towards better accounting for ecosystem dynamics in the interpretation of remote sensing images. J. Arid Environ. 2011, 75, 1164–1172. [Google Scholar] [CrossRef]
- Goodchild, M.F. The Validity and Usefulness of Laws in Geographic Information Science and Geography. Ann. Assoc. Am. Geogr. 2004, 2, 300–303. [Google Scholar] [CrossRef] [Green Version]
- Fischer, M.; Wang, J. Spatial Data Analysis: Models, Methods and Techniques; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Fortin, M.J. Spatio-Temporal Heterogeneity: Concepts and Analyses by Pierre R.L. Dutilleul. Q. Rev. Biol. 2012, 87. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Christakos, G.; Liao, Y.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical Detectors-ased Health Risk Assessment and its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Dagvadorj, D.; Natsagdorj, L.; Dorjpurev, J.; Namkhainyam, B. Mongolia Assessment Report on Climate Change 2009. Minist. Nat. Environ. Tour. Ulaanbaatar 2009, 2, 34–46. [Google Scholar]
- Jiang, L.; Yao, Z.; Huang, H.Q. Climate variability and change on the Mongolian Plateau: Historical variation and future predictions. Clim. Res. 2016, 67, 1–14. [Google Scholar] [CrossRef]
- Hilker, T.; Natsagdorj, E.; Waring, R.H.; Lyapustin, A.; Wang, Y. Satellite observed widespread decline in Mongolian grasslands largely due to overgrazing. Glob. Chang. Biol. 2014, 20, 418–428. [Google Scholar] [CrossRef] [Green Version]
- John, R.; Chen, J.; Kim, Y.; Ou-yang, Z.; Xiao, J.; Park, H.; Shao, C.; Zhang, Y.; Amarjargal, A.; Batkhshig, O.; et al. Differentiating anthropogenic modification and precipitation-driven change on vegetation productivity on the Mongolian Plateau. Landsc. Ecol. 2016, 31, 547–566. [Google Scholar] [CrossRef]
- Bao, G.; Bao, Y.; Sanjjava, A.; Qin, Z.; Zhou, Y.; Xu, G. NDVI-indicated long-term vegetation dynamics in Mongolia and their response to climate change at biome scale. Int. J. Climatol. 2015, 35, 4293–4306. [Google Scholar] [CrossRef]
- Tsydypov, B.Z.; Garmaev, E.Z.; Tulokhonov, A.K.; Batotsyrenov, E.A.; Ayurzhanaev, A.A.; Alymbaeva, Z.B.; Chimeddorj, T. Degradation of the Vegetation Cover in Central Mongolia: A Case Study. J. Resour. Ecol. 2015, 6, 73–78. [Google Scholar] [CrossRef]
- Filei, A.A.; Slesarenko, L.A.; Boroditskaya, A.V.; Mishigdorj, O. Analysis of Desertification in Mongolia. Russ. Meteorol. Hydrol. 2018, 43, 599–606. [Google Scholar] [CrossRef]
- Zhou, X.; Yamaguchi, Y.; Arjasakusuma, S. Distinguishing the vegetation dynamics induced by anthropogenic factors using vegetation optical depth and AVHRR NDVI: A cross-border study on the Mongolian Plateau. Sci. Total Environ. 2018, 616, 730–743. [Google Scholar] [CrossRef] [PubMed]
- Klinge, M.; Dulamsuren, C.; Erasmi, S.; Karger, D.N.; Hauck, M. Climate effects on vegetation vitality at the treeline of boreal forests of Mongolia. Biogeosciences 2018, 15, 1319–1333. [Google Scholar] [CrossRef] [Green Version]
- Tian, F.; Fensholt, R.; Verbesselt, J.; Grogan, K.; Horion, S.; Wang, Y. Evaluating temporal consistency of long-term global NDVI datasets for trend analysis. Remote Sens. Environ. 2015, 163, 326–340. [Google Scholar] [CrossRef]
- Jiapaer, G.; Liang, S.; Yi, Q.; Liu, J. Vegetation dynamics and responses to recent climate change in Xinjiang using leaf area index as an indicator. Ecol. Indic. 2015, 58, 64–76. [Google Scholar] [CrossRef]
- Wang, T. Vegetation NDVI Change and Its Relationship with Climate Change and Human Activities in Yulin, Shaanxi Province of China. J. Geosci. Environ. Prot. 2016, 4, 28–40. [Google Scholar] [CrossRef] [Green Version]
- Leroux, L.; Bégué, A.; Lo Seen, D.; Jolivot, A.; Kayitakire, F. Driving forces of recent vegetation changes in the Sahel: Lessons learned from regional and local level analyses. Remote Sens. Environ. 2017, 191, 38–54. [Google Scholar] [CrossRef] [Green Version]
- Jinkai, L.; Dengfeng, L.; Qiang, H.; Jiuliang, F.; Mu, L.; Guobao, L. Analysis of the spatial-temporal change and impact factors of the vagetation index in Yulin, Shaanxi Province, in the last 17 years. Acta Ecol. Sin. 2018, 38. [Google Scholar] [CrossRef]
- Bespalov, N.D.; Gourevitch, A. Soils of Outer Mongolia (Mongolian People’s Republic); Israel Program for Scientific Translations: Jerusalem, Israel, 1964. [Google Scholar]
- Pinzon, J.; Tucker, C. A Non-Stationary 1981–2012 AVHRR NDVI3g Time Series. Remote Sens. 2014, 6, 6929–6960. [Google Scholar] [CrossRef] [Green Version]
- Garonna, I.; de Jong, R.; de Wit, A.J.W.; Mücher, C.A.; Schmid, B.; Schaepman, M.E. Strong contribution of autumn phenology to changes in satellite-derived growing season length estimates across Europe (1982–2011). Glob. Chang. Biol. 2014, 20, 3457–3470. [Google Scholar] [CrossRef] [PubMed]
- HOLBEN, B.N. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens. 1986, 7, 1417–1434. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, J.; Arsenault, K.; Brain, C.; Radakovich, J.; MG, B.; et al. The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Cheng, S.; Guan, X.; Huang, J.; Ji, M. Analysis of Response of Soil Moisture to Climate Change in Semi-arid Loess Plateau in China Based on GLDAS Data. J. Arid Meteorol. 2013, 27, 4–19. [Google Scholar] [CrossRef]
- Tao, J.; Reichle, R.H.; Koster, R.D.; Forman, B.A.; Xue, Y. Evaluation and Enhancement of Permafrost Modeling with the NASA Catchment Land Surface Model. J. Adv. Model. Earth Syst. 2017, 9, 2771–2795. [Google Scholar] [CrossRef] [Green Version]
- Ouma, Y.O.; Aballa, D.O.; Marinda, D.O.; Tateishi, R.; Hahn, M. Use of GRACE time-variable data and GLDAS-LSM for estimating groundwater storage variability at small basin scales: A case study of the Nzoia River Basin. Int. J. Remote Sens. 2015, 36, 5707–5736. [Google Scholar] [CrossRef]
- Jarvis, A.; Reuter, H.; Nelson, A.; Guevara, E. Ole-Filled Seamless SRTM Data V4; International Centre for Tropical Agriculture (CIAT): Cali, Colombia, 2008. [Google Scholar]
- Dorijgotov, D. National Atlas of Mongolia; Institute of Geography, Ulaanbaatar City: Ulaanbaatar, Mongolia, 2009. [Google Scholar]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Mann, H. Non-Parametric Test against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M. Rank Correlation Methods; Griffin: London, UK, 1975. [Google Scholar]
- Rahman, A.; Dawood, M. Satio-statistical analysis of temperature fluctuation using Mann-Kendall and Sen’s slope approach. Clim. Dyn. 2017, 48, 783–797. [Google Scholar] [CrossRef]
- Alhaji, U.; Yusuf, A.; Edet, C.; Oche, C.; Agbo, E. Trend Analysis of Temperature in Gombe State Using Mann Kendall Trend Test. J. Sci. Res. Rep. 2018, 20. [Google Scholar] [CrossRef]
- Ali, R.; Kuriqi, A.; Abubaker, S.; Kisi, O. Long-Term Trends and Seasonality Detection of the Observed Flow in Yangtze River Using Mann-Kendall and Sen’s Innovative Trend Method. Water 2019, 11, 1855. [Google Scholar] [CrossRef] [Green Version]
- Kamal, N.; Pachauri, S. Mann-Kendall, and Sen’s Slope Estimators for Precipitation Trend Analysis in North-Eastern States of India. Int. J. Comp. Appl. 2019, 177, 7–16. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, T.; Fu, B. A measure of spatial stratified heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Jenks, G. The Data Model Concept in Statistical Mapping. Int. Yearb. Cartogr. 1967, 7, 186–190. [Google Scholar]
- Zhu, Z.; Piao, S.; Myneni, R.B.; Huang, M.; Zeng, Z.; Canadell, J.G.; Ciais, P.; Sitch, S.; Friedlingstein, P.; Arneth, A.; et al. Greening of the Earth and its drivers. Nat. Clim. Chang. 2016, 6, 791–795. [Google Scholar] [CrossRef]
- Vinnikov, K.Y.; Robock, A.; Stouffer, R.J.; Walsh, J.E.; Parkinson, C.L.; Cavalieri, D.J.; Mitchell, J.F.; Garrett, D.; Zakharov, V.F. Global Warming and Northern Hemisphere Sea Ice Extent. Science 1999, 286, 1934–1937. [Google Scholar] [CrossRef]
- Hughes, I.I. Biological consequences of global warming: Is the signal already apparent? Trends Ecol. Evol. 2000, 15, 56–61. [Google Scholar] [CrossRef]
- Zhao, X.; Hu, H.; Shen, H.; Zhou, D.; Zhou, L.; Myneni, R.B.; Fang, J. Satellite-indicatedlong-term vegetation changes and their drivers on the Mongolian Plateau. Landsc. Ecol. 2014, 30, 1599–1611. [Google Scholar] [CrossRef]
- Gantsetseg, B.; Ishizuka, M.; Kurosaki, Y.; Mikami, M. Topographical and hydrological effects on meso-scale vegetation in desert steppe, Mongolia. J. Arid Land 2017. [Google Scholar] [CrossRef] [Green Version]
- Buol, S.; Southard, R.; Graham, R.; Mcdaniel, P. Soil-Forming Factors: Soil as a Component of Ecosystems. Wiley-Blackwell 2011, 3, 89–140. [Google Scholar] [CrossRef]
- Otgonbayar, M.; Atzberger, C.; Chambers, J.; Amarsaikhan, D.; Böck, S.; Tsogtbayar, J. Land suitability evaluation for agricultural cropland in Mongolia using the spatial MCDM method and AHP based GIS. J. Geosci. Environ. Prot. 2017, 5, 238–263. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.F.; Zhu, X.F.; Pan, Y.Z.; Zhao, A.Z. Spatiotemporal changes in vegetation coverage in China during 1982-2012. Acta Ecol. Sin. 2015, 35, 5331–5342. [Google Scholar] [CrossRef]
- Cao, F.; Ge, Y.; Wang, J.F. Optimal discretization for geographical detectors-based risk assessment. GISci. Remote Sens. 2015. [Google Scholar] [CrossRef]
- Zhao, Y.; Deng, Q.; Lin, Q.; Cai, C. Quantitative analysis of the impacts of terrestrial environmental factors on precipitation variation over the Beibu Gulf Economic Zone in Coastal Southwest China. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.J.; Piao, D.; Song, C.; Kim, J.; Lim, C.; Kim, E.; Moon, J.; Kafatos, M.; Lamchin, M.; Jeon, S.W.; et al. Assessing environmentally sensitive land to desertification using MEDALUS method in Mongolia. For. Sci. Technol. 2019, 15, 210–220. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Sousa, D.; Small, C. Globally standardized MODIS spectral mixture models. Remote Sens. Lett. 2019, 10, 1018–1027. [Google Scholar] [CrossRef]
- Otgonbayar, M.; Atzberger, C.; Chambers, J.; Damdinsuren, A. Mapping pasture biomass in Mongolia using Partial Least Squares, Random Forest regression and Landsat 8 imagery. Int. J. Remote. Sens. 2019, 40, 3204–3226. [Google Scholar] [CrossRef]
- Gao, M.; Piao, S.; Chen, A.; Yang, H.; Liu, Q.; Fu, Y.H.; Janssens, I.A. Divergent changes in the elevational gradient of vegetation activities over the last 30 years. Nat. Commun. 2019, 10, 2970. [Google Scholar] [CrossRef]
- Albarakat, R.; Lakshmi, V. Comparison of Normalized Difference Vegetation Index Derived from Landsat, MODIS, and AVHRR for the Mesopotamian Marshes between 2002 and 2018. Remote Sens. 2019, 11, 1245. [Google Scholar] [CrossRef] [Green Version]
- Otgonbayar, M.; Atzberger, C.; Mattiuzzi, M.; Erdenedalai, A. Estimation of Climatologies of Average Monthly Air Temperature over Mongolia Using MODIS Land Surface Temperature (LST) Time Series and Machine Learning Techniques. Remote Sens. 2019, 11, 2588. [Google Scholar] [CrossRef] [Green Version]
Factor Type | Abbreviation | Factor | Unit | Source/URL |
---|---|---|---|---|
Climate | Prec | Precipitation | mm | Global Land Data Assimilation System, GLDAS (https://disc.gsfc.nasa.gov/) |
Temp | Temperature | °C | Global Land Data Assimilation System, GLDAS (https://disc.gsfc.nasa.gov/) | |
Winds | Wind speed | m/s | Global Land Data Assimilation System, GLDAS (https://disc.gsfc.nasa.gov/) | |
Snowd | Snow depth | mm | Global Land Data Assimilation System, GLDAS (https://disc.gsfc.nasa.gov/) | |
Specfh | Specific humidity | g/kg | Global Land Data Assimilation System, GLDAS (https://disc.gsfc.nasa.gov/) | |
Topography | Elev | Elevation | m | Shuttle Radar Topography Mission, STRM (http://srtm.csi.cgiar.org/) |
Slopd | Slope degree | ° | Derived from STRM DEM | |
Slopa | Slope aspect | ° | Derived from STRM DEM | |
Curv | Curvature | / | Derived from STRM DEM | |
Vegetation | Vegett | Vegetation type | class | The Mongolia Environmental Information Center (https://eic.mn/) |
Soil | Soilt | Soil type | class | Vectorization from Bespalov.et al. [31] |
Livestock quantity | Livstq | Livestock quantity | head | Mongolia Statistical Information Service (http://www.1212.mn/) |
Description | Interaction |
---|---|
q(X1 ∩ X2) < Min(q(X1), q(X2)) | Weaken, nonlinear |
Min(q(X1), q(X2)) < q(X1 ∩ X2) < Max(q(X1), q(X2)) | Weaken, uni- |
q(X1 ∩ X2) > Max(q(X1), q(X2)) | Enhance, bi- |
q(X1 ∩ X2) = q(X1) + q(X2) | Independent |
q(X1 ∩ X2) > q(X1) + q(X2) | Enhance, nonlinear |
Factor | Prec | Vegett | Soilt | Snowd | Temp | Winds | Slopd | Livstq | Specfh | Elev | Curv | Slopa |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Distribution | 0.7811 | 0.7266 | 0.699 | 0.4879 | 0.4649 | 0.4504 | 0.2777 | 0.2054 | 0.1977 | 0.13 | 0.125 | 0.1073 |
p | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Changes | 0.0473 | 0.0984 | 0.098 | 0.0074 | 0.1232 | 0.0318 | 0.0135 | 0.122 | 0.1091 | 0.2026 | 0.0131 | 0.0206 |
p | 0.000 | 0.000 | 0.000 | 0.020 | 0.000 | 0.000 | 0.003 | 0.019 | 0.000 | 0.000 | 0.000 | 0.000 |
C = q(X1 ∩ X2) | A = q(X1) | B = q(X2) | Conclusion | Interpretation |
---|---|---|---|---|
Prec ∩ ∩ Temp = 0.8049 | 0.7811 | 0.4649 | C < A + B; C > A, B | ↑ |
Prec ∩ Winds = 0.8387 | 0.7811 | 0.2937 | C < A + B; C > A, B | ↑ |
Prec ∩ Snowd = 0.8022 | 0.7811 | 0.4878 | C < A + B; C > A, B | ↑ |
Prec ∩ Specfh = 0.8217 | 0.7811 | 0.1976 | C < A + B; C > A, B | ↑ |
Prec ∩ Elev = 0.8264 | 0.7811 | 0.1299 | C < A + B; C > A, B | ↑ |
Prec ∩ Slopd = 0.8297 | 0.7811 | 0.2776 | C < A + B; C > A, B | ↑ |
Prec ∩ Slopa = 0.8187 | 0.7811 | 0.1072 | C < A + B; C > A, B | ↑ |
Prec ∩ Curv = 0.8054 | 0.7811 | 0.1250 | C < A + B; C > A, B | ↑ |
Prec ∩ Vegett = 0.8712 | 0.7811 | 0.7266 | C < A + B; C > A, B | ↑ |
Prec ∩ Soilt = 0.842 | 0.7811 | 0.6990 | C < A + B; C > A, B | ↑ |
Temp ∩ Winds = 0.5589 | 0.4649 | 0.2937 | C < A + B; C > A, B | ↑ |
Temp ∩ Snowd = 0.4949 | 0.4649 | 0.4878 | C < A + B; C > A, B | ↑ |
Temp ∩ Specfh = 0.5885 | 0.4649 | 0.1976 | C < A + B; C > A, B | ↑ |
Temp ∩ Elev = 0.5903 | 0.1619 | 0.1299 | C < A + B; C > A, B | ↑ |
Temp ∩ Slopd = 0.5447 | 0.4649 | 0.2776 | C < A + B; C > A, B | ↑ |
Temp ∩ Slopa = 0.5154 | 0.4649 | 0.1072 | C < A + B; C > A, B | ↑ |
Temp ∩ Curv = 0.4992 | 0.4649 | 0.1250 | C < A + B; C > A, B | ↑ |
Temp ∩ Vegett = 0.7648 | 0.4649 | 0.7266 | C < A + B; C > A, B | ↑ |
Temp ∩ Soilt = 0.7563 | 0.4649 | 0.6990 | C < A + B; C > A, B | ↑ |
Winds ∩ Snowd = 0.5912 | 0.2937 | 0.4878 | C < A + B; C > A, B | ↑ |
Winds ∩ Specfh = 0.3953 | 0.2937 | 0.1976 | C < A + B; C > A, B | ↑ |
Winds ∩ Elev = 0.4703 | 0.2937 | 0.1299 | C > A + B; C > A, B | ↑↑ |
Winds ∩ Slopd = 0.4803 | 0.2937 | 0.2776 | C < A + B; C > A, B | ↑ |
Winds ∩ Slopa = 0.4156 | 0.2937 | 0.1072 | C < A + B; C > A, B | ↑ |
Winds ∩ Curv = 0.3967 | 0.2937 | 0.1250 | C > A + B; C > A, B | ↑↑ |
Winds ∩ Vegett = 0.7683 | 0.2937 | 0.7266 | C < A + B; C > A, B | ↑ |
Winds ∩ Soilt = 0.5912 | 0.2937 | 0.6990 | C < A + B; C > A, B | ↑ |
Snowd ∩ Specfh = 0.6061 | 0.4878 | 0.1976 | C < A + B; C > A, B | ↑ |
Snowd ∩ Elev = 0.4703 | 0.2937 | 0.1299 | C > A + B; C > A, B | ↑↑ |
Snowd ∩ Slopd = 0.5722 | 0.4878 | 0.2776 | C < A + B; C > A, B | ↑ |
Snowd ∩ Slopa = 0.5439 | 0.4878 | 0.1072 | C < A + B; C > A, B | ↑ |
Snowd ∩ Curv = 0.5276 | 0.4878 | 0.1250 | C < A + B; C > A, B | ↑ |
Snowd ∩ Vegett = 0.777 | 0.4878 | 0.7266 | C < A + B; C > A, B | ↑ |
Snowd ∩ Soilt = 0.7665 | 0.4878 | 0.6990 | C < A + B; C > A, B | ↑ |
Specfh ∩ Elev = 0.4188 | 0.1976 | 0.1299 | C > A + B; C > A, B | ↑↑ |
Specfh ∩ Slopd = 0.5722 | 0.4878 | 0.2776 | C < A + B; C > A, B | ↑ |
Specfh ∩ Slopa = 0.5439 | 0.4878 | 0.1072 | C < A + B; C > A, B | ↑ |
Specfh ∩ Curv = 0.5276 | 0.4878 | 0.1250 | C < A + B; C > A, B | ↑ |
Specfh ∩ Vegett = 0.777 | 0.4878 | 0.7266 | C < A + B; C > A, B | ↑ |
Specfh ∩ Soilt = 0.7665 | 0.4878 | 0.6990 | C < A + B; C > A, B | ↑ |
Elev ∩ Slopd = 0.4185 | 0.1299 | 0.2776 | C > A + B; C > A, B | ↑↑ |
Elev ∩ Slopa = 0.1837 | 0.1299 | 0.1250 | C < A + B; C > A, B | ↑ |
Elev ∩ Curv = 0.2473 | 0.1299 | 0.1250 | C < A + B; C > A, B | ↑ |
Elev ∩ Vegett = 0.7572 | 0.1299 | 0.7266 | C < A + B; C > A, B | ↑ |
Elev ∩ Soilt = 0.7819 | 0.1299 | 0.6990 | C < A + B; C > A, B | ↑ |
Slopd ∩ Slopa = 0.2881 | 0.2776 | 0.1072 | C < A + B; C > A, B | ↑ |
Slopd ∩ Curv = 0.2867 | 0.2776 | 0.1250 | C < A + B; C > A, B | ↑ |
Slopd ∩ Vegett = 0.763 | 0.2776 | 0.7266 | C < A + B; C > A, B | ↑ |
Slopd ∩ Soilt = 0.7556 | 0.2776 | 0.6990 | C < A + B; C > A, B | ↑ |
Slopd ∩ Curv = 0.1686 | 0.1072 | 0.1250 | C < A + B; C > A, B | ↑ |
Slopd ∩ Vegett = 0.7453 | 0.1072 | 0.7266 | C < A + B; C > A, B | ↑ |
Slopd ∩ Soilt = 0.746 | 0.1072 | 0.6990 | C < A + B; C > A, B | ↑ |
Curv ∩ Vegett = 0.7422 | 0.1250 | 0.7266 | C < A + B; C > A, B | ↑ |
Curv ∩ Soilt = 0.746 | 0.1250 | 0.6990 | C < A + B; C > A, B | ↑ |
Vegett ∩ Soilt = 0.8414 | 0.7266 | 0.6990 | C < A + B; C > A, B | ↑ |
Factor | Optimal Range | Mean Value of NDVI |
---|---|---|
Prec (mm) | 331–696 | 0.6811 |
Temp (°C) | −12.5–0 | 0.4903 |
Windv (m/s) | 2.74–3.27 | 0.5591 |
Snowd (mm) | 92–94 | 0.5948 |
Specfh (mg/kg) | 4.51–5.25 | 0.5381 |
Elev (m) | 535–974 | 0.4991 |
Slopd (°) | 4.0–23.8 | 0.5276 |
Slopa (°) | 330–360 | 0.4355 |
Curv | −0.62–0.08 | 0.4909 |
Vegett | Forest | 0.4963 |
Soilt | Pine sandy soil | 0.777 |
Livstq | 128,197–132,676 | 0.6287 |
Factor | Prec | Soilt | Snowd | Temp | Winds | Vegett | Slopd | Specfh | Elev | Cuve | Slopa |
---|---|---|---|---|---|---|---|---|---|---|---|
Prec | / | ||||||||||
Soilt | Y | / | |||||||||
Snowd | Y | Y | / | ||||||||
Temp | Y | Y | N | / | |||||||
Winds | Y | Y | Y | Y | / | ||||||
Vegett | Y | Y | Y | Y | Y | / | |||||
Slopd | Y | Y | Y | Y | N | Y | / | ||||
Specfh | Y | Y | Y | Y | Y | Y | Y | / | |||
Elev | Y | Y | Y | Y | Y | Y | Y | Y | / | ||
Cuve | Y | Y | Y | Y | Y | Y | Y | Y | N | / | |
Slopa | Y | Y | Y | Y | Y | Y | Y | Y | N | N | / |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, X.; Gao, X.; Li, S.; Lei, J. Spatial and Temporal Characteristics of Vegetation NDVI Changes and the Driving Forces in Mongolia during 1982–2015. Remote Sens. 2020, 12, 603. https://doi.org/10.3390/rs12040603
Meng X, Gao X, Li S, Lei J. Spatial and Temporal Characteristics of Vegetation NDVI Changes and the Driving Forces in Mongolia during 1982–2015. Remote Sensing. 2020; 12(4):603. https://doi.org/10.3390/rs12040603
Chicago/Turabian StyleMeng, Xiaoyu, Xin Gao, Shengyu Li, and Jiaqiang Lei. 2020. "Spatial and Temporal Characteristics of Vegetation NDVI Changes and the Driving Forces in Mongolia during 1982–2015" Remote Sensing 12, no. 4: 603. https://doi.org/10.3390/rs12040603