An Approach for Downscaling SMAP Soil Moisture by Combining Sentinel-1 SAR and MODIS Data
"> Figure 1
<p>The study area in northern China with the geographical locations of four soil moisture (SM) stations. (<b>a</b>) Location of the study area. (<b>b</b>) Elevation from the shuttle radar topography mission (SRTM) digital surface model (DSM). (<b>c</b>) Land cover map and the 3 km footprints over the four stations: 53676, 53685, 53780, and 53788. Details of the background maps are described in <a href="#sec2dot1dot5-remotesensing-11-02736" class="html-sec">Section 2.1.5</a>.</p> "> Figure 2
<p>Schematic flow of downscaling coarse-resolution SM.</p> "> Figure 3
<p>The variable importance scores.</p> "> Figure 4
<p>Comparison between the 9 km predictive SM data based on the RF1–RF5 models and 9 km SMAP L3_SM_P_E SM data. N is the number of samples.</p> "> Figure 5
<p>Scatter plots of downscaled SM estimates based on RF1–RF5 at 3 km (first row) and 1 km (second row) vs. point-scale in situ SM measurements. The results are shown for each station: 53676 (first column), 53685 (second column), 53780 (third column), and 53788 (fourth column).</p> "> Figure 6
<p>Scatterplots of the SMAP L2_SM_SP products (3 km and 1 km) vs. the in situ SM at the four SM stations.</p> "> Figure 7
<p>Time series of in situ SM, 3 km, and 1 km SM estimates calculated by RF5, 3 km, and 1 km L2_SM_SP<sub>optional</sub> data and daily precipitation at four stations.</p> "> Figure 8
<p>Scatterplots of SM estimates from RF5 and L2_SM_SP<sub>optional</sub> product (3 km and 1 km) vs. in situ SM at the four SM stations.</p> "> Figure 9
<p>The locations of regions A and B in the study area.</p> "> Figure 10
<p>Spatial patterns of 9 km SMAP passive SM data (first column), 1 km L2_SM_SP<sub>optional</sub> data (second column), and 1 km downscaled SM data based on RF1 (third column), RF2 (fourth column) and RF5 (fifth column) in (<b>a</b>) region A (DOY = 2018, 71) and (<b>b</b>) region B (DOY = 2017, 342).</p> "> Figure 11
<p>The quality flag of 1 km disaggregated brightness temperature (TB) data at V polarization for (<b>a</b>) region A (DOY = 2018, 71) and (<b>b</b>) region B (DOY = 2017, 342). (0: disaggregated TB data has acceptable quality. 1: unable to disaggregate TB data into cells; 16: significant levels of RFI were detected, and the TB data was repaired because of the effects of RFI; 17: significant levels of RFI were detected, and unable to disaggregate TB data into cells; 25: significant levels of RFI were detected, unable to disaggregate TB data into cells, and some V polarization TB input used for SM retrieval were questionable or of poor quality.).</p> ">
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Study Area and Data
2.1.1. Study Area and In Situ Soil Moisture (SM) Measurements
2.1.2. Soil Moisture Active Passive (SMAP) SM Products
2.1.3. Sentinel-1 Data
2.1.4. Moderate-resolution Imaging Spectroradiometer (MODIS) Products
2.1.5. Other Geospatial Data
2.2. RF-Based Downscaling Method
3. Results
3.1. Evaluation of the Random Forest (RF) Models at 9 km Resolution
3.2. Evaluation of the Downscaled SM
3.3. Evaluation of SMAP SM Products
3.4. Comparison between the Downscaled SM and SMAP SM
4. Discussion
4.1. Analysis of Input Variables in the RF Models
4.2. Analysis of the Differences between RF Models and L2_SM_SP Products
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ochsner, T.E.; Cosh, M.H.; Cuenca, R.H.; Dorigo, W.A.; Draper, C.S.; Hagimoto, Y.; Kerr, Y.H.; Larson, K.M.; Njoku, E.G.; Small, E.E. State of the Art in Large-Scale Soil Moisture Monitoring. Soil Sci. Soc. Am. J. 2013, 77, 1888–1919. [Google Scholar] [CrossRef]
- Sánchez, N.; Ángel, G.-Z.; Martínez-Fernández, J.; Piles, M.; Pablos, M. Integrated remote sensing approach to global agricultural drought monitoring. Agric. For. Meteorol. 2018, 259, 141–153. [Google Scholar] [CrossRef]
- Martinez-Fernandez, J.; Gonzalez-Zamora, A.; Sanchez, N.; Gumuzzio, A.; Herrero-Jimenez, C.M. Satellite soil moisture for agricultural drought monitoring: Assessment of the SMOS derived Soil Water Deficit Index. Remote Sens. Environ. 2016, 177, 277–286. [Google Scholar] [CrossRef]
- Kim, S.; Paik, K.; Johnson, F.M.; Sharma, A. Building a Flood-Warning Framework for Ungauged Locations Using Low Resolution, Open-Access Remotely Sensed Surface Soil Moisture, Precipitation, Soil, and Topographic Information. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 375–387. [Google Scholar] [CrossRef]
- Tekeli, A.E.; Fouli, H. Reducing False Flood Warnings of TRMM Rain Rates Thresholds over Riyadh City, Saudi Arabia by Utilizing AMSR-E Soil Moisture Information. Water Resour. Manag. 2017, 31, 1243–1256. [Google Scholar] [CrossRef]
- Du, J.; Kimball, J.S.; Galantowicz, J.; Kim, S.-B.; Chan, S.K.; Reichle, R.; Jones, L.A.; Watts, J.D. Assessing global surface water inundation dynamics using combined satellite information from SMAP, AMSR2 and Landsat. Remote Sens. Environ. 2018, 213, 1–17. [Google Scholar] [CrossRef]
- Purdy, A.J.; Fisher, J.B.; Goulden, M.L.; Colliander, A.; Halverson, G.; Tu, K.; Famiglietti, J.S. SMAP soil moisture improves global evapotranspiration. Remote Sens. Environ. 2018, 219, 1–14. [Google Scholar] [CrossRef]
- Walker, E.; García, G.A.; Venturini, V. Evapotranspiration estimation using SMAP soil moisture products and bouchet complementary evapotranspiration over Southern Great Plains. J. Arid Environ. 2019, 163, 34–40. [Google Scholar] [CrossRef]
- Martens, B.; Miralles, D.; Lievens, H.; Fernández-Prieto, D.; Verhoest, N.E.C. Improving terrestrial evaporation estimates over continental Australia through assimilation of SMOS soil moisture. Int. J. Appl. Earth Obs. Geoinf. 2016, 48, 146–162. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Waldteufel, P.; Wigneron, J.P.; Delwart, S.; Cabot, F.; Boutin, J.; Escorihuela, M.J.; Font, J.; Reul, N.; Gruhier, C. The SMOS Mission: New Tool for Monitoring Key Elements of the Global Water Cycle. Proc. IEEE 2010, 98, 666–687. [Google Scholar] [CrossRef]
- Koster, R.D.; Crow, W.T.; Reichle, R.H.; Mahanama, S.P. Estimating Basin-Scale Water Budgets with SMAP Soil Moisture Data. Water Resour. Res. 2018, 54, 4228. [Google Scholar] [CrossRef] [PubMed]
- Zawadzki, J.; Kędzior, M. Soil moisture variability over Odra watershed: Comparison between SMOS and GLDAS data. Int. J. Appl. Earth Obs. Geoinf. 2016, 45, 110–124. [Google Scholar] [CrossRef]
- Kędzior, M.; Zawadzki, J. Comparative study of soil moisture estimations from SMOS satellite mission, GLDAS database, and cosmic-ray neutrons measurements at COSMOS station in Eastern Poland. Geoderma 2016, 283, 21–31. [Google Scholar] [CrossRef]
- Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J. The soil moisture active passive (SMAP) mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]
- Piles, M.; Sánchez, N.; Vall-llossera, M.; Camps, A.; Martínez-Fernández, J.; Martínez, J.; González-Gambau, V. A downscaling approach for SMOS land observations: Evaluation of high-resolution soil moisture maps over the Iberian Peninsula. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3845–3857. [Google Scholar] [CrossRef]
- Ma, H.; Zeng, J.; Chen, N.; Zhang, X.; Cosh, M.H.; Wang, W. Satellite surface soil moisture from SMAP, SMOS, AMSR2 and ESA CCI: A comprehensive assessment using global ground-based observations. Remote Sens. Environ. 2019, 231, 111215. [Google Scholar] [CrossRef]
- Peng, J.; Loew, A.; Merlin, O.; Verhoest, N.E. A review of spatial downscaling of satellite remotely sensed soil moisture. Rev. Geophys. 2017, 55, 341–366. [Google Scholar] [CrossRef]
- Sabaghy, S.; Walker, J.P.; Renzullo, L.J.; Jackson, T.J. Spatially enhanced passive microwave derived soil moisture: Capabilities and opportunities. Remote Sens. Environ. 2018, 209, 551–580. [Google Scholar] [CrossRef]
- Bindlish, R.; Barros, A.P. Subpixel variability of remotely sensed soil moisture: An inter-comparison study of SAR and ESTAR. IEEE Trans. Geosci. Remote Sens. 2002, 40, 326–337. [Google Scholar] [CrossRef]
- Li, J.; Wang, S.; Gunn, G.; Joosse, P.; Russell, H.A.J. A model for downscaling SMOS soil moisture using Sentinel-1 SAR data. Int. J. Appl. Earth Obs. Geoinf. 2018, 72, 109–121. [Google Scholar] [CrossRef]
- Wu, X.; Walker, J.; Rudiger, C.; Panciera, R.; Ying, G. Medium-Resolution Soil Moisture Retrieval Using the Bayesian Merging Method. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6482–6493. [Google Scholar] [CrossRef]
- Lievens, H.; Reichle, R.H.; Liu, Q.; Lannoy, G.J.M.D.; Wagner, W. Joint Sentinel-1 and SMAP data assimilation to improve soil moisture estimates: Sentinel-1 and SMAP soil moisture. Geophys. Res. Lett. 2017, 44, 6145–6153. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Mao, K.; Xu, T.; Guo, J.; Zuo, Z.; Gao, C. A soil moisture estimation framework based on the CART algorithm and its application in China. J. Hydrol. 2018, 563, 65–75. [Google Scholar] [CrossRef]
- Akbar, R.; Moghaddam, M. A Combined Active–Passive Soil Moisture Estimation Algorithm with Adaptive Regularization in Support of SMAP. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3312–3324. [Google Scholar] [CrossRef]
- Das, N.N.; Entekhabi, D.; Dunbar, S.; Kim, S.; Yueh, S.; Colliander, A.; Jackson, T.J.; O’Neill, P.E.; Cosh, M.; Caldwell, T.; et al. Assessment Report for the L2_SM_SP Beta Release Data Products; Jet Propulsion Laboratory: Pasadena, CA, USA, 2017. [Google Scholar]
- He, L.; Hong, Y.; Wu, X.; Ye, N.; Walker, J.P.; Chen, X. Investigation of SMAP Active–Passive Downscaling Algorithms Using Combined Sentinel-1 SAR and SMAP Radiometer Data. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4906–4918. [Google Scholar] [CrossRef]
- Jagdhuber, T.; Baur, M.; Akbar, R.; Das, N.N.; Link, M.; He, L.; Entekhabi, D. Estimation of active-passive microwave covariation using SMAP and Sentinel-1 data. Remote Sens. Environ. 2019, 225, 458–468. [Google Scholar] [CrossRef]
- Montzka, C.; Jagdhuber, T.; Horn, R.; Bogena, H.R.; Hajnsek, I.; Reigber, A.; Vereecken, H. Investigation of SMAP fusion algorithms with airborne active and passive L-band microwave remote sensing. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3878–3889. [Google Scholar] [CrossRef]
- Hosseini, M.; McNairn, H. Using multi-polarization C- and L-band synthetic aperture radar to estimate biomass and soil moisture of wheat fields. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 50–64. [Google Scholar] [CrossRef]
- Das, N.N.; Entekhabi, D.; Njoku, E.G.; Shi, J.J.C.; Johnson, J.T.; Colliander, A. Tests of the SMAP Combined Radar and Radiometer Algorithm Using Airborne Field Campaign Observations and Simulated Data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2018–2028. [Google Scholar] [CrossRef]
- Santi, E.; Paloscia, S.; Pettinato, S.; Brocca, L.; Ciabatta, L.; Entekhabi, D. Integration of microwave data from SMAP and AMSR2 for soil moisture monitoring in Italy. Remote Sens. Environ. 2018, 212, 21–30. [Google Scholar] [CrossRef]
- Santi, E.; Paloscia, S.; Pettinato, S.; Brocca, L.; Ciabatta, L.; Entekhabi, D. On the synergy of SMAP, AMSR2 AND SENTINEL-1 for retrieving soil moisture. Int. J. Appl. Earth Obs. Geoinf. 2018, 65, 114–123. [Google Scholar] [CrossRef]
- Santi, E. An application of the SFIM technique to enhance the spatial resolution of spaceborne microwave radiometers. Int. J. Remote Sens. 2010, 31, 2419–2428. [Google Scholar] [CrossRef]
- Millard, K.; Richardson, M. Quantifying the relative contributions of vegetation and soil moisture conditions to polarimetric C-Band SAR response in a temperate peatland. Remote Sens. Environ. 2018, 206, 123–138. [Google Scholar] [CrossRef]
- Piles, M.; McColl, K.A.; Entekhabi, D.; Das, N.; Pablos, M. Sensitivity of Aquarius Active and Passive Measurements Temporal Covariability to Land Surface Characteristics. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4700–4711. [Google Scholar] [CrossRef] [Green Version]
- Piles, M.; Camps, A.; Vall-Llossera, M.; Corbella, I.; Panciera, R.; Rudiger, C.; Kerr, Y.H.; Walker, J. Downscaling SMOS-derived soil moisture using MODIS visible/infrared data. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3156–3166. [Google Scholar] [CrossRef]
- Piles, M.; Petropoulos, G.P.; Sánchez, N.; González-Zamora, Á.; Ireland, G. Towards improved spatio-temporal resolution soil moisture retrievals from the synergy of SMOS and MSG SEVIRI spaceborne observations. Remote Sens. Environ. 2016, 180, 403–417. [Google Scholar] [CrossRef] [Green Version]
- Alemohammad, S.H.; Kolassa, J.; Prigent, C.; Aires, F.; Gentine, P. Global Downscaling of Remotely-Sensed Soil Moisture using Neural Networks. Hydrol. Earth Syst. Sci. Discuss. 2018, 22, 5341–5356. [Google Scholar] [CrossRef] [Green Version]
- Im, J.; Park, S.; Rhee, J.; Baik, J.; Choi, M. Downscaling of AMSR-E soil moisture with MODIS products using machine learning approaches. Environ. Earth Sci. 2016, 75, 1120. [Google Scholar] [CrossRef]
- Peng, J.; Niesel, J.; Loew, A.; Zhang, S.; Wang, J. Evaluation of Satellite and Reanalysis Soil Moisture Products over Southwest China Using Ground-Based Measurements. Remote Sens. 2015, 7, 15729–15747. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Loew, A.; Zhang, S.; Wang, J.; Niesel, J. Spatial downscaling of satellite soil moisture data using a vegetation temperature condition index. IEEE Trans. Geosci. Remote Sens. 2016, 54, 558–566. [Google Scholar] [CrossRef]
- Kim, J.; Hogue, T.S. Improving spatial soil moisture representation through integration of AMSR-E and MODIS products. IEEE Trans. Geosci. Remote Sens. 2012, 50, 446–460. [Google Scholar] [CrossRef]
- Merlin, O.; Chehbouni, A.; Walker, J.P.; Panciera, R.; Kerr, Y.H. A simple method to disaggregate passive microwave-based soil moisture. IEEE Trans. Geosci. Remote Sens. 2008, 46, 786–796. [Google Scholar] [CrossRef] [Green Version]
- Merlin, O.; Rudiger, C.; Bitar, A.A.; Richaume, P.; Kerr, Y.H. Disaggregation of SMOS Soil Moisture in Southeastern Australia. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1556–1571. [Google Scholar] [CrossRef] [Green Version]
- Malbéteau, Y.; Merlin, O.; Molero, B.; Rüdiger, C.; Bacon, S. DisPATCh as a tool to evaluate coarse-scale remotely sensed soil moisture using localized in situ measurements: Application to SMOS and AMSR-E data in Southeastern Australia. Int. J. Appl. Earth Obs. Geoinf. 2016, 45, 221–234. [Google Scholar] [CrossRef]
- Senanayake, I.P.; Yeo, I.Y.; Tangdamrongsub, N.; Willgoose, G.R.; Hancock, G.R.; Wells, T.; Fang, B.; Lakshmi, V.; Walker, J.P. An in-situ data based model to downscale radiometric satellite soil moisture products in the Upper Hunter Region of NSW, Australia. J. Hydrol. 2019, 572, 820–838. [Google Scholar] [CrossRef]
- Peng, J.; Niesel, J.; Loew, A. Evaluation of soil moisture downscaling using a simple thermal based proxy the REMEDHUS network (Spain) example. Hydrol. Earth Syst. Sci. 2015, 9, 8505–8551. [Google Scholar] [CrossRef] [Green Version]
- Carlson, T.N.; Gillies, R.R.; Perry, E.M. A Method to Make Use of Thermal Infrared Temperature and NDVI measurements to Infer Surface Soil Water Content and Fractional Vegetation Cover. Remote Sens. Rev. 1994, 9, 161–173. [Google Scholar] [CrossRef]
- Carlson, T. An Overview of the “Triangle Method” for Estimating Surface Evapotranspiration and Soil Moisture from Satellite Imagery. Sensors 2007, 7, 1612–1629. [Google Scholar] [CrossRef] [Green Version]
- Mu, Q.; Heinsch, F.A.; Zhao, M.; Running, S.W. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ. 2007, 111, 519–536. [Google Scholar] [CrossRef]
- Zhao, W.; Li, A. A comparison study on empirical microwave soil moisture downscaling methods based on the integration of microwave-optical/IR data on the Tibetan Plateau. Int. J. Remote Sens. 2015, 36, 4986–5002. [Google Scholar] [CrossRef]
- Zhao, W.; Li, A.; Jin, H.; Zhang, Z.; Bian, J.; Yin, G. Performance evaluation of the triangle-based empirical soil moisture relationship models based on landsat-5 TM data and in situ measurements. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2632–2645. [Google Scholar] [CrossRef]
- Zhao, W.; Sanchez, N.; Lu, H.; Li, A. A spatial downscaling approach for the SMAP passive surface soil moisture product using random forest regression. J. Hydrol. 2018, 563, 1009–1024. [Google Scholar] [CrossRef]
- Paloscia, S.; Pettinato, S.; Santi, E.; Notarnicola, C.; Pasolli, L.; Reppucci, A. Soil moisture mapping using Sentinel-1 images: Algorithm and preliminary validation. Remote Sens. Environ. 2013, 134, 234–248. [Google Scholar] [CrossRef]
- Holtgrave, A.-K.; Förster, M.; Greifeneder, F.; Notarnicola, C.; Kleinschmit, B. Estimation of Soil Moisture in Vegetation-Covered Floodplains with Sentinel-1 SAR Data Using Support Vector Regression. PFG J. Photogramm. Remote Sens. Geoinf. Sci. 2018, 86, 85–101. [Google Scholar] [CrossRef]
- El Hajj, M.; Baghdadi, N.; Zribi, M.; Bazzi, H. Synergic Use of Sentinel-1 and Sentinel-2 Images for Operational Soil Moisture Mapping at High Spatial Resolution over Agricultural Areas. Remote Sens. 2017, 9, 1292. [Google Scholar] [CrossRef] [Green Version]
- Qiu, J.; Crow, W.T.; Wagner, W.; Zhao, T. Effect of vegetation index choice on soil moisture retrievals via the synergistic use of synthetic aperture radar and optical remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 47–57. [Google Scholar] [CrossRef]
- Amazirh, A.; Merlin, O.; Erraki, S. Including Sentinel-1 radar data to improve the disaggregation of MODIS land surface temperature data. ISPRS J. Photogramm. Remote Sens. 2019, 150, 11–26. [Google Scholar] [CrossRef]
- Xiang, D.; Liu, L.; Wang, Q.; Yang, N.; Han, T. Evaluation of data quality and drought monitoring capability of FY-3A MERSI data. Adv. Artif. Intell. 2010, 2010, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Yan, G.; Ren, H.; Li, A. A modified vegetation index based algorithm for thermal imagery sharpening. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; pp. 2444–2447. [Google Scholar]
- Piles, M.; Entekhabi, D.; Camps, A. A change detection algorithm for retrieving high-resolution soil moisture from SMAP radar and radiometer observations. IEEE Trans. Geosci. Remote Sens. 2009, 47, 4125–4131. [Google Scholar] [CrossRef]
- Das, N.N.; Entekhabi, D.; Njoku, E.G. An algorithm for merging SMAP radiometer and radar data for high-resolution soil-moisture retrieval. IEEE Trans. Geosci. Remote Sens. 2010, 49, 1504–1512. [Google Scholar] [CrossRef]
- Sun, Y.; Huang, S.; Ma, J.; Li, J.; Li, X.; Wang, H.; Chen, S.; Zang, W. Preliminary Evaluation of the SMAP Radiometer Soil Moisture Product over China Using In Situ Data. Remote Sens. 2017, 9, 292. [Google Scholar] [CrossRef] [Green Version]
- Bai, J.; Cui, Q.; Chen, D.; Yu, H.; Mao, X.; Meng, L.; Cai, Y. Assessment of the SMAP-Derived Soil Water Deficit Index (SWDI-SMAP) as an Agricultural Drought Index in China. Remote Sens. 2018, 10, 1302. [Google Scholar] [CrossRef] [Green Version]
- Chan, S.K.; Bindlish, R.; O’Neill, P.; Jackson, T.; Njoku, E.; Dunbar, S.; Chaubell, J.; Piepmeier, J.; Yueh, S.; Entekhabi, D.; et al. Development and assessment of the SMAP enhanced passive soil moisture product. Remote Sens. Environ. 2018, 204, 931–941. [Google Scholar] [CrossRef] [Green Version]
- Das, N.; Entekhabi, D.; Dunbar, R.S.; Kim, S.; Yueh, S.; Colliander, A. SMAP/Sentinel-1 L2 Radiometer/Radar 30-Second Scene 3 km EASE-Grid Soil Moisture, Version 2; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2018. [Google Scholar]
- NASA’s Earth Observing System Data and Information System (EOSDIS). Available online: https://search.earthdata.nasa.gov/search (accessed on 19 November 2019).
- European Space Agency’s Copernicus Open Access Hub. Available online: https://scihub.copernicus.eu (accessed on 19 November 2019).
- Lee, J.S.; Grunes, M.R.; Grandi, G.D. Polarimetric SAR speckle filtering and its implication for classification. IEEE Trans. Geosci. Remote Sens. 2002, 37, 2363–2373. [Google Scholar]
- Choi, M.; Hur, Y. A microwave-optical/infrared disaggregation for improving spatial representation of soil moisture using AMSR-E and MODIS products. Remote Sens. Environ. 2012, 124, 259–269. [Google Scholar] [CrossRef]
- Liang, S. Narrowband to broadband conversions of land surface albedo I algorithms. Remote Sens. Environ. 2001, 76, 213–238. [Google Scholar] [CrossRef]
- Lucht, W.; Roujean, J.L. Considerations in the parametric modeling of BRDF and albedo from multiangular satellite sensor observations. Remote Sens. Rev. 2000, 18, 343–379. [Google Scholar] [CrossRef]
- Gao, B.-C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Pablos, M.; Piles, M.; Sánchez, N.; Vall-llossera, M.; Martínez-Fernández, J.; Camps, A. Impact of day/night time land surface temperature in soil moisture disaggregation algorithms. Eur. J. Remote Sens. 2016, 49, 899–916. [Google Scholar] [CrossRef] [Green Version]
- United States Geological Survey (USGS) Earth Explorer. Available online: https://earthexplorer.usgs.gov (accessed on 19 November 2019).
- Ran, Y.; Li, X.; Lu, L. Evaluation of four remote sensing based land cover products over China. Int. J. Remote Sens. 2010, 31, 391–401. [Google Scholar] [CrossRef]
- Ran, Y.; Li, X.; Lu, L. Land Cover Products of China; Cold and Arid Regions Science Data Center at Lanzhou: Lanzhou, China, 2010; Available online: http://westdc.westgis.ac.cn (accessed on 19 November 2019).
- NASA’s Precipitation Measurement Missions. Available online: https://pmm.nasa.gov (accessed on 19 November 2019).
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Lu, H.; Yang, K.; Han, M.; Wright, J.; Chen, Y.; Yu, L.; Xu, S.; Huang, X.; Gong, W. The Evaluation of SMAP Enhanced Soil Moisture Products Using High-Resolution Model Simulations and In-Situ Observations on the Tibetan Plateau. Remote Sens. 2018, 10, 535. [Google Scholar] [CrossRef] [Green Version]
- Colliander, A.; Jackson, T.J.; Chan, S.K.; O’Neill, P.; Bindlish, R.; Cosh, M.H.; Caldwell, T.; Walker, J.P.; Berg, A.; McNairn, H. An assessment of the differences between spatial resolution and grid size for the SMAP enhanced soil moisture product over homogeneous sites. Remote Sens. Environ. 2018, 207, 65–70. [Google Scholar] [CrossRef]
- Zhang, R.; Kim, S.; Sharma, A. A comprehensive validation of the SMAP Enhanced Level-3 Soil Moisture product using ground measurements over varied climates and landscapes. Remote Sens. Environ. 2019, 223, 82–94. [Google Scholar] [CrossRef]
- Owe, M.; Griend, A.A.V. Comparison of soil moisture penetration depths for several bare soils at two microwave frequencies and implications for remote sensing. Water Resour. Res. 1998, 34, 2319–2327. [Google Scholar] [CrossRef]
- Wei, Z.; Meng, Y.; Zhang, W.; Peng, J.; Meng, L. Downscaling SMAP soil moisture estimation with gradient boosting decision tree regression over the Tibetan Plateau. Remote Sens. Environ. 2019, 225, 30–44. [Google Scholar] [CrossRef]
- Baghdadi, N.; El Hajj, M.; Zribi, M.; Bousbih, S. Calibration of the water cloud model at C-band for winter crop fields and grasslands. Remote Sens. 2017, 9, 969. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Walker, J.P.; Tsang, L.; Huang, H.; Ye, N.; Rüdiger, C. Soil moisture retrieval from time series multi-angular radar data using a dry down constraint. Remote Sens. Environ. 2019, 231, 111237. [Google Scholar] [CrossRef]
- Wang, X.X.; Wang, X.; Han, Z.; Yang, J.H. Radio frequency interference detection and characteristic analysis based on the L band stokes parameters remote sensing data. Chemosphere 2015, 70, 1699–1706. [Google Scholar]
- Yan, S.; Khazaal, A.; Cabot, F.; Kerr, Y.H. An RFI Index to Quantify the Contamination of SMOS Data by Radio-Frequency Interference. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1577–1589. [Google Scholar]
ID | Latitude & Longitude | Elevation (m) | Land Cover |
---|---|---|---|
53676 | 112°58’32”N, 38°29’42”E | 757 | Dry land |
53685 | 113°02’16”N, 38°06’47”E | 1236 | Dry land |
53780 | 113°09’06”N, 37°54’37”E | 1084 | Dry land |
53788 | 113°12’00”N, 37°07’59”E | 1389 | Shrubland |
ID | RF1 | RF2 | RF3 | RF4 | RF5 | |||||
---|---|---|---|---|---|---|---|---|---|---|
R | ubRMSE (cm3/cm3) | R | ubRMSE (cm3/cm3) | R | ubRMSE (cm3/cm3) | R | ubRMSE (cm3/cm3) | R | ubRMSE (cm3/cm3) | |
53676 | 0.43 | 0.028 | 0.80 | 0.017 | 0.66 | 0.021 | 0.80 | 0.016 | 0.78 | 0.017 |
53685 | 0.53 | 0.029 | 0.59 | 0.024 | 0.53 | 0.030 | 0.67 | 0.021 | 0.81 | 0.016 |
53780 | 0.60 | 0.031 | 0.68 | 0.025 | 0.72 | 0.023 | 0.66 | 0.026 | 0.70 | 0.024 |
53788 | 0.46 | 0.036 | 0.74 | 0.023 | 0.32 | 0.039 | 0.80 | 0.020 | 0.83 | 0.020 |
Avg | 0.50 | 0.031 | 0.70 | 0.022 | 0.59 | 0.028 | 0.72 | 0.021 | 0.78 | 0.019 |
ID | RF1 | RF2 | RF3 | RF4 | RF5 | |||||
---|---|---|---|---|---|---|---|---|---|---|
R | ubRMSE (cm3/cm3) | R | ubRMSE (cm3/cm3) | R | ubRMSE (cm3/cm3) | R | ubRMSE (cm3/cm3) | R | ubRMSE (cm3/cm3) | |
53676 | 0.71 | 0.022 | 0.74 | 0.020 | 0.72 | 0.018 | 0.83 | 0.015 | 0.89 | 0.012 |
53685 | 0.39 | 0.047 | 0.65 | 0.023 | 0.36 | 0.043 | 0.57 | 0.026 | 0.74 | 0.020 |
53780 | 0.46 | 0.035 | 0.59 | 0.029 | 0.64 | 0.027 | 0.64 | 0.027 | 0.67 | 0.025 |
53788 | 0.47 | 0.036 | 0.70 | 0.024 | 0.41 | 0.036 | 0.77 | 0.021 | 0.79 | 0.021 |
Avg | 0.51 | 0.035 | 0.67 | 0.024 | 0.53 | 0.031 | 0.70 | 0.022 | 0.77 | 0.020 |
ID | L2_SM_SPbaseline (3 km) | L2_SM_SPoptional (3 km) | L2_SM_SPbaseline (1 km) | L2_SM_SPoptional (1 km) | ||||
---|---|---|---|---|---|---|---|---|
R | ubRMSE (cm3/cm3) | R | ubRMSE (cm3/cm3) | R | ubRMSE (cm3/cm3) | R | ubRMSE (cm3/cm3) | |
53676 | 0.61 | 0.038 | 0.61 | 0.046 | 0.39 | 0.047 | 0.52 | 0.042 |
53685 | 0.39 | 0.041 | 0.60 | 0.035 | 0.17 | 0.051 | 0.31 | 0.049 |
53780 | 0.62 | 0.037 | 0.78 | 0.025 | 0.54 | 0.035 | 0.51 | 0.042 |
53788 | 0.49 | 0.069 | 0.73 | 0.025 | 0.18 | 0.164 | 0.50 | 0.050 |
Avg | 0.53 | 0.052 | 0.68 | 0.033 | 0.29 | 0.074 | 0.43 | 0.046 |
ID | RF5 (3 km) | L2_SM_SPoptional (3 km) | RF5 (1 km) | L2_SM_SPoptional (1 km) | ||||
---|---|---|---|---|---|---|---|---|
R | ubRMSE (cm3/cm3) | R | ubRMSE (cm3/cm3) | R | ubRMSE (cm3/cm3) | R | ubRMSE (cm3/cm3) | |
53676 | 0.62 | 0.018 | 0.57 | 0.030 | 0.80 | 0.013 | −0.25 | 0.063 |
53685 | 0.75 | 0.016 | 0.79 | 0.017 | 0.73 | 0.016 | −0.19 | 0.056 |
53780 | 0.65 | 0.025 | 0.74 | 0.022 | 0.55 | 0.024 | −0.17 | 0.059 |
53788 | 0.86 | 0.016 | 0.83 | 0.017 | 0.76 | 0.019 | −0.27 | 0.059 |
Avg | 0.72 | 0.019 | 0.73 | 0.022 | 0.71 | 0.018 | −0.22 | 0.059 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, J.; Cui, Q.; Zhang, W.; Meng, L. An Approach for Downscaling SMAP Soil Moisture by Combining Sentinel-1 SAR and MODIS Data. Remote Sens. 2019, 11, 2736. https://doi.org/10.3390/rs11232736
Bai J, Cui Q, Zhang W, Meng L. An Approach for Downscaling SMAP Soil Moisture by Combining Sentinel-1 SAR and MODIS Data. Remote Sensing. 2019; 11(23):2736. https://doi.org/10.3390/rs11232736
Chicago/Turabian StyleBai, Jueying, Qian Cui, Wen Zhang, and Lingkui Meng. 2019. "An Approach for Downscaling SMAP Soil Moisture by Combining Sentinel-1 SAR and MODIS Data" Remote Sensing 11, no. 23: 2736. https://doi.org/10.3390/rs11232736
APA StyleBai, J., Cui, Q., Zhang, W., & Meng, L. (2019). An Approach for Downscaling SMAP Soil Moisture by Combining Sentinel-1 SAR and MODIS Data. Remote Sensing, 11(23), 2736. https://doi.org/10.3390/rs11232736