Comparing DInSAR and PSI Techniques Employed to Sentinel-1 Data to Monitor Highway Stability: A Case Study of a Massive Dobkovičky Landslide, Czech Republic
"> Figure 1
<p>Area of interest with delineated Master areas footprints of ascending and descending pass.</p> "> Figure 2
<p>(<b>a</b>) Ground instabilities in the area of interest [<a href="#B46-remotesensing-11-02670" class="html-bibr">46</a>], and (<b>b</b>) geological profile, adapted by [<a href="#B44-remotesensing-11-02670" class="html-bibr">44</a>].</p> "> Figure 3
<p>Images of star graphs depicting the temporal and perpendicular baselines of time series (<b>A</b>–<b>D</b>).</p> "> Figure 4
<p>Single-pair DInSAR workflow in SNAP.</p> "> Figure 5
<p>Simplified workflow of PSI Processing in SARPROZ.</p> "> Figure 6
<p>An example of Amplitude Stability Index (ASI) in the area of interest, time series A.</p> "> Figure 7
<p>Temporal coherence of selected PSs of time series (<b>A</b>–<b>D</b>) after graph inversion and APS removal.</p> "> Figure 8
<p>Histogram of vertical displacement dataset during the period from 22 February 2017 to 17 May 2017 complemented by descriptive statistics.</p> "> Figure 9
<p>(<b>a</b>) Overview of the four sites with detected subsidence: 1: Area of highway embankment between Ječky Bridge and Dobkovičky Bridge; 2: Prackovice Bridge; 3: Area between two highway tunnels (“Prackovice” and “Radejčín”); 4: Dobkovičky quarry. (<b>b</b>–<b>e</b>) Cumulative vertical displacement (mm) during the given period from 22 February 2017 to 17 May 2017 and the recalculated subsidence/uplift velocity (mm/year) obtained by using single-pair DInSAR.</p> "> Figure 10
<p>Displacement velocity (in LOS) of all processed time series (<b>A</b>–<b>D</b>).</p> "> Figure 11
<p>Histograms and basic statistics for time series (<b>A</b>) and (<b>C</b>).</p> "> Figure 12
<p>(<b>a</b>) Overview of the four sites with detected subsidence: 1: Area of the highway embankment between Ječky Bridge and Dobkovičky Bridge at km 55,700−56,000; 2: Prackovice Bridge, 57,300–57,500 km; 3: Area between two highway tunnels (“Prackovice” and “Radejčín”) at km 58,400; 4: Dobkovičky quarry. (<b>b</b>–<b>d</b>) Localization of in situ measurements in polygons 1–3: inclinometers (IJ1-3), laser scanning (L1), and geodetic measurements (G, P4).</p> "> Figure 13
<p>Combined outcomes of the methods used for detecting land subsidence/uplift in area No. 1. From the left: the single-pair DInSAR and the PSI results (time series A and C), and a graph of the deformation of selected PS points from time series A, highlighted with white background on maps.</p> "> Figure 14
<p>Subsidence of the “Prague bridge abutment” of the Prackovice overpass at km 57,450, measured in situ by total station in the period between April 2017 and April 2018. The most significant subsidence was 18 and 17 mm at points No. 3 and No. 9 of the geotechnical profile P4.</p> "> Figure 15
<p>Combined outcomes of the methods used for detecting land subsidence/uplift in area no. 3. In order from the left: the single-pair DInSAR and the PSI results (time series A and C) together with a graph of the deformation of selected PS points from time series A, highlighted with white background on maps. Subsidence measured using laser scanning between December 2016 and May 2017 on profile L1 (Fuchs, 2017).</p> "> Figure 16
<p>Combined outcomes of the methods used for detecting land subsidence/uplift in area no. 3. In order from left: the single-pair DInSAR and the PSI results (time series A and C) together with a graph of deformation of selected PS points from time series A, highlighted with a white background on maps.</p> "> Figure 17
<p>Cracks on concrete at the borehole inclinometer IJ3. The picture shows the ground subsidence of the lower part of the column holding the instrument. Photo: Jan Suchý.</p> ">
Abstract
:1. Introduction
2. Study Area
3. Dataset Description
4. Methodology
4.1. Scenario 1: The Single Pair DInSAR
4.2. Scenario 2: The PSI
- It must be acquired under good weather conditions (no rain); and
- It has a suitable position (approximately in the middle) in the image star graph considering the perpendicular and temporal baseline [54].
5. Results
5.1. Scenario 1: Single Pair DInSAR Results
5.2. Scenario 2: The PSI Results
6. Validation
6.1. Area 1: Highway Embankment Between Ječky Bridge and Dobkovičky Bridge at km 55.700–56.000
6.2. Area 2: Prackovice Bridge, 57,300–57,500 km
6.3. Area 3: Part between Two Highway Tunnels (“Prackovice” and “Radejčín”) at km 58,400
6.4. Area 4: Vertical Changes in the Dobkovičky Quarry
7. Discussion
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chae, B.G.; Park, H.J.; Catani, F.; Simoni, A.; Berti, M. Landslide prediction, monitoring and early warning: A concise review of state-of-the-art. Geosci. J. 2017, 21, 1033–1070. [Google Scholar] [CrossRef]
- Béjar-Pizarro, M.; Notti, D.; Mateos, R.M.; Ezquerro, P.; Centolanza, G.; Herrera, G.; Bru, G.; Sanabria, M.; Solari, L.; Duro, J.; et al. Mapping Vulnerable Urban Areas Affected by Slow-Moving Landslides Using Sentinel-1 InSAR Data. Remote Sens. 2017, 9, 876. [Google Scholar] [CrossRef]
- Stumpf, A.; Malet, J.P.; Delacourt, C. Correlation of satellite image time-series for the detection and monitoring of slow-moving landslides. Remote Sens. Environ. 2017, 189, 40–55. [Google Scholar] [CrossRef]
- Raspini, F.; Ciampalini, A.; Del Conte, S.; Lombardi, L.; Nocentini, M.; Gigli, G.; Ferretti, A.; Casagli, N. Exploitation of Amplitude and Phase of Satellite SAR Images for Landslide Mapping: The Case of Montescaglioso (South Italy). Remote Sens. 2015, 7, 14576–14596. [Google Scholar] [CrossRef]
- Singleton, A.; Li, Z.; Hoey, T.; Muller, J.-P. Evaluating sub-pixel offset techniques as an alternative to D-InSAR for monitoring episodic landslide movements in vegetated terrain. Remote Sens. Environ. 2014, 147, 133–144. [Google Scholar] [CrossRef]
- Scaioni, M.; Longoni, L.; Melillo, V.; Papini, M. Remote Sensing for Landslide Investigations: An Overview of Recent Achievements and Perspectives. Remote Sens. 2014, 6, 9600–9652. [Google Scholar] [CrossRef]
- Casagli, N.; Cigna, F.; Bianchini, S.; Hölbling, D.; Füreder, P.; Righini, G.; Del Conte, S.; Friedl, B.; Schneiderbauer, S.; Iasio, C.; et al. Landslide mapping and monitoring by using radar and optical remote sensing: Examples from the EC-FP7 project SAFER. Remote Sens. Appl. Soc. Environ. 2016, 4, 92–108. [Google Scholar] [CrossRef]
- Gabriel, A.K.; Goldstein, R.M.; Zebker, H.A. Mapping small elevation changes over large areas: Differential radar interferometry. J. Geophys. Res. 1989, 94, 9183–9191. [Google Scholar] [CrossRef]
- Raspini, F.; Bardi, F.; Bianchini, S.; Ciampalini, A.; Del Ventisette, C.; Farina, P.; Ferrigno, F.; Solari, L.; Casagli, N. The contribution of satellite SAR-derived displacement measurements in landslide risk management practices. Nat. Hazards 2017, 86, 327–351. [Google Scholar] [CrossRef]
- Przyłucka, M.; Herrera, G.; Graniczny, M.; Colombo, D.; Béjar-Pizarro, M. Combination of Conventional and Advanced DInSAR to Monitor Very Fast Mining Subsidence with TerraSAR-X Data: Bytom City (Poland). Remote Sens. 2015, 7, 5300–5328. [Google Scholar] [CrossRef]
- Zhao, C.; Lu, Z.; Zhang, Q.; De, J. Large-area landslide detection and monitoring with ALOS / PALSAR imagery data over Northern California and Southern Oregon, USA. Remote Sens. Environ. 2012, 124, 348–359. [Google Scholar] [CrossRef]
- Costantini, M.; Iodice, A.; Magnapane, L.; Pietranera, L. Monitoring terrain movements by means of sparse SAR differential interferometric measurements. In Proceedings of the 20th IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Honolulu, HI, USA, 24–28 July 2000; pp. 3225–3227. [Google Scholar]
- Strozzi, T.; Farina, P.; Corsini, A.; Ambrosi, C.; Thüring, M.; Zilger, J.; Wiesmann, A.; Wegmüller, U.; Werner, C. Survey and monitoring of landslide displacements by means of L-band satellite SAR interferometry. Landslides 2005, 2, 193–201. [Google Scholar] [CrossRef]
- Catani, F.; Farina, P.; Moretti, S.; Nico, G.; Strozzi, T. On the application of SAR interferometry to geomorphological studies: Estimation of landform attributes and mass movements. Geomorphology 2005, 66, 119–131. [Google Scholar] [CrossRef]
- Calabro, M.D.; Schmidt, D.A.; Roering, J.J. An examination of seasonal deformation at the Portuguese Bend landslide, southern California, using radar interferometry. J. Geophys. Res. 2010, 115, F02020. [Google Scholar] [CrossRef]
- Barra, A.; Monserrat, O.; Mazzanti, P.; Esposito, C.; Crosetto, M.; Mugnozza, G.S. First insights on the potential of Sentinel-1 for landslides detection. Geomat. Nat. Hazards Risk 2016, 7, 1874–1883. [Google Scholar] [CrossRef]
- Wasowski, J.; Bovenga, F. Investigating landslides and unstable slopes with satellite multitemporal interferometry: Current issues and future perspectives. Eng. Geol. 2014, 174, 103–138. [Google Scholar] [CrossRef]
- Schlögel, R.; Thiebes, B.; Mulas, M.; Cuozzo, G.; Notarnicola, C.; Schneiderbauer, S.; Crespi, M.; Mazzoni, A.; Mair, V.; Corsini, A. Multi-Temporal X-Band Radar Interferometry Using Corner Reflectors: Application and Validation at the Corvara Landslide (Dolomites, Italy). Remote Sens. 2017, 9, 739. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Mora, O.; Mallorqui, J.J.; Broquetas, A. Linear and Nonlinear Terrain Deformation Maps from a Reduced Set of Interferometric SAR Images. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2243–2253. [Google Scholar] [CrossRef]
- Hooper, A.; Zebker, H.; Segall, P.; Kampes, B. A New Method for Measuring Deformation on Volcanoes and Other Natural Terrains Using Insar Persistent Scatterers. Geophys. Res. Lett. 2004, 31, 1–5. [Google Scholar] [CrossRef]
- Hooper, A.; Segall, P.; Zebker, H. Persistent Scatterer InSAR for Crustal Deformation Analysis, with Application to Volcán Alcedo, Galapagos. J. Geophys. Res. Solid Earth 2007, 112, 1–19. [Google Scholar] [CrossRef]
- Crosetto, M.; Biescas, E.; Duro, J.; Closa, J.; Arnaud, A. Generation of Advanced ERS and Envisat Interferometric SAR Products Using the Stable Point Network Technique. Photogramm. Eng. Remote Sens. 2008, 74, 443–451. [Google Scholar] [CrossRef]
- Perissin, D.; Wang, T. Repeat-pass SAR Interferometry with Partially Coherent Targets. IEEE Trans. Geosci. Remote Sens. 2012, 50, 271–280. [Google Scholar] [CrossRef]
- Lanari, R.; Lundgren, P.; Manzo, M.; Casu, F. Satellite radar interferometry time series analysis of surface deformation for Los Angeles, California. Geophys. Res. Lett. 2004, 31, L23–L613. [Google Scholar] [CrossRef]
- Guzzetti, F.; Manunta, M.; Ardizzone, F.; Pepe, A.; Cardinali, M.; Zeni, G.; Reichenbach, P.; Lanari, R. Analysis of Ground Deformation Detected Using the SBAS-DInSAR Technique in Umbria, Central Italy. Pure Appl. Geophys. 2009, 166, 1425–1459. [Google Scholar] [CrossRef]
- Herrera, G.; Gutiérrez, F.; García-Davalillo, J.C.; Guerrero, J.; Notti, D.; Galve, J.P.; Fernández-Merodo, J.A.; Cooksley, G. Multi-sensor advanced DInSAR monitoring of very slow landslides: the Tena Valley case study (Central Spanish Pyrenees). Remote Sens. Environ. 2013, 128, 31–43. [Google Scholar] [CrossRef]
- Calò, F.; Ardizzone, F.; Castaldo, R.; Lollino, P.; Tizzani, P.; Guzzetti, F.; Lanari, R.; Angeli, M.-C.; Pontoni, F.; Manunta, M. Enhanced landslide investigations through advanced DInSAR techniques: The Ivancich case study, Assisi, Italy. Remote Sens. Environ. 2014, 142, 69–82. [Google Scholar] [CrossRef]
- Dai, K.; Li, Z.; Tomás, R.; Liu, G.; Yu, B.; Wang, X.; Cheng, H.; Chen, J.; Stockamp, J. Monitoring activity at the Daguangbao mega-landslide (China) using Sentinel-1 TOPS time series interferometry. Remote Sens. Environ. 2016, 186, 501–513. [Google Scholar] [CrossRef]
- Crosetto, M.; Monserrat, O.; Devanthery, N.; Cuevas-Gonzalez, M.; Barra, A.; Crippa, B. Persistent Scatterer Interferometry Using Sentinel-1 Data. In Proceedings of the XXIII ISPRS Congress International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Prague, Czech Republic, 12–19 July 2016; Volume XLI-B7. [Google Scholar] [CrossRef]
- Canuti, P.; Casagli, N.; Ermini, L.; Fanti, R.; Farina, P. Landslide activity as a geoindicator in Italy: Significance and new perspectives from remote sensing. Environ Geol. 2004, 45, 907–919. [Google Scholar] [CrossRef]
- Colesanti, C.; Wasowski, J. Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry. Eng. Geol. 2006, 88, 173–199. [Google Scholar] [CrossRef]
- Bovenga, F.; Wasowski, J.; Nitti, D.O.; Nutricato, R.; Chiaradia, M.T. Using COSMO/SkyMed X-band and ENVISAT C-band SAR interferometry for landslides analysis. Remote Sens. Environ. 2012, 119, 272–285. [Google Scholar] [CrossRef]
- Tofani, V.; Raspini, F.; Catani, F.; Casagli, N. Persistent Scatterer Interferometry (PSI) Technique for Landslide Characterization and Monitoring. Remote Sens. 2013, 5, 1045–1065. [Google Scholar] [CrossRef] [Green Version]
- Del Ventisette, C.; Righini, G.; Moretti, S.; Casagli, N. Multitemporal landslides inventory map updating using spaceborne SAR analysis. Int. J. Appl. Earth Obs. Geoinf. 2014, 30, 238–246. [Google Scholar] [CrossRef] [Green Version]
- Crosetto, M.; Monserrat, O. Persistent scatterer interferometry: Potentials and limits. In Proceedings of the ISPRS Hannover Workshop: High-Resolution Earth Imaging for Geospatial Information, Hannover, Germany, 2–5 June 2009. [Google Scholar]
- Czikhardt, R.; Papco, J.; Bakon, M.; Liscak, P.; Ondrejka, P.; Zlocha, M. Ground Stability Monitoring of Undermined and Landslide Prone Areas by Means of Sentinel-1 Multi-Temporal InSAR, Case Study from Slovakia. Geosciences 2017, 7, 87. [Google Scholar] [CrossRef] [Green Version]
- Barra, A.; Solari, L.; Béjar-Pizarro, M.; Monserrat, O.; Bianchini, S.; Herrera, G.; Crosetto, M.; Sarro, R.; González-Alonso, E.; Mateos, R.M.; et al. A Methodology to Detect and Update Active Deformation Areas Based on Sentinel-1 SAR Images. Remote Sens. 2017, 9, 1002. [Google Scholar] [CrossRef] [Green Version]
- Del Soldato, M.; Farolfi, G.; Rosi, A.; Raspini, F.; Casagli, N. Subsidence Evolution of the Firenze–Prato–Pistoia Plain (Central Italy) Combining PSI and GNSS Data. Remote Sens. 2018, 10, 1146. [Google Scholar] [CrossRef] [Green Version]
- Strozzi, T.; Klimeš, J.; Frey, H.; Caduff, R.; Huggel, C.; Wegmüller, U.; Rapre, A.C. Satellite SAR interferometry for the improved assessment of the state of activity of landslides: A case study from the Cordilleras of Peru. Remote Sens. Environ. 2018, 217, 111–125. [Google Scholar] [CrossRef] [Green Version]
- Raspini, F.; Bianchini, S.; Ciampalini, A.; Del Soldato, M.; Solari, L.; Novali, F.; Del Conte, S.; Rucci, A.; Ferretti, A.; Casagli, N. Continuous, semi-automatic monitoring of ground deformation using Sentinel-1 satellites. Sci. Rep. 2018, 8, 7253. [Google Scholar] [CrossRef] [Green Version]
- Perissin, D.; Wang, Z.; Wang, T. SARPROZ InSAR Tool for Urban Subsidence/manmade Structure Stability Monitoring in China. Proc. of ISRSE 2011, Sydney (Australia). Available online: http://www.isprs:proceedings/2011/ISRSE-34/211104015Final00632.pdf (accessed on 9 January 2019).
- Roháč, J.; Scaringi, G.; Boháč, J.; Kycl, P.; Najser, J. Revisiting strength concepts and correlations with soil index properties: insights from the Dobkovičky landslide in Czech Republic. Landslides 2019, 1–18. [Google Scholar] [CrossRef]
- Pasek, J.; Janek, J. Engineering Geological Survey of D8 Motorway in part Chotiměř –Radejčín, km 62.2–67.8., I. stage. In Final Report of Geological Institute of Czechoslovak Academy of Sciences; Geological Institude: Prague, Czech Republic, 1972. (In Czech) [Google Scholar]
- Ground Instabilities Map. Praha, Czech Geological Survey. Available online: https://mapy.geology.cz/svahove_nestability/ (accessed on 10 September 2018).
- Lisec, M.; Kycl, P.; Rapprich, V. Landslide on D8 highway at Dobkovičky–the animation. Czech Geological Survey, 2018 (in Czech). Available online: https://youtu.be/S9hyHsatu18?list=PLaDi6UUdmA3TlddYfbmochSYerTUxa_Py (accessed on 20 January 2019).
- ESA Sentinel Online. Available online: https://sentinel.esa.int/ (accessed on 11 November 2018).
- Hanssen, R.F. Radar Interferometry: Data Interpretation and Error Analysis. Kluwer Academic; Springer: Dordrecht, The Netherlands, 2001. [Google Scholar] [CrossRef] [Green Version]
- Walter, D. Surface subsidence monitoring with NEST. SAR-EDU Tutorial ID 3102. Available online: https://eo-college:resources/insar_deformation/ (accessed on 5 December 2018).
- Crosetto, M.; Devanthery, N.; Cuevas-Gonzalez, M.; Monserrat, O.; Crippa, B. Exploitation of the full potential of PSI data for subsidence monitoring. Proc. IAHS 2015, 372, 311–314. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.; Perissin, D. Monitoring Ground Subsidence in Hong Kong via Spaceborne Radar: Experiments and Validation. Remote Sens. 2015, 7, 10715–10736. [Google Scholar] [CrossRef] [Green Version]
- Ferretti, A.; Prati, C.; Rocca, F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2202–2212. [Google Scholar] [CrossRef] [Green Version]
- Zebker, H.A.; Villasenor, J. Decorrelation in Interferometric Radar Echoes. IEEE Trans. Geosci. Remote Sens. 1992, 30, 950–959. [Google Scholar] [CrossRef] [Green Version]
- Perissin, D.; Rocca, F. High Accuracy Urban DEM Using Permanent Scatterers. IEEE Trans. Geosci. Remote Sens. 2006, 44, 3338–3347. [Google Scholar] [CrossRef]
- Colesanti, C.; Ferretti, A.; Novali, F.; Prati, C.; Rocca, F. SAR monitoring of progressive and seasonal ground deformation using the permanent scatterers technique. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1685–1701. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Li, Z.W.; Ding, X.L.; Zhu, J.J.; Zhang, L.; Sun, Q. Resolving three-dimensional surface displacements from InSAR measurements: A review. Earth Sci. Rev. 2014, 133, 1–17. [Google Scholar] [CrossRef]
- Fuchs, J. Geodetic protocol No. 2.Trimble DiNi, D0805 km 57.250–57.450. RIDGES s. r. o. 2017. [Google Scholar]
- SG Geotechnika. Available online: https://www.barab.eu (accessed on 10 January 2019).
- Automatic Sensing. Available online: https://app.automaticsensing.com (accessed on 28 October 2018).
- Kyriou, A.; Nikolakopoulos, K. Assessing the suitability of Sentinel-1 data for landslide mapping. Eur. J. Remote Sens. 2018, 51, 402–411. [Google Scholar] [CrossRef] [Green Version]
- Massonnet, D.; Feigl, K.L. Radar interferometry and its application to changes in the Earth’s surface. Rev. Geophys. 1998, 36, 441–500. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, R. Atmospheric limitations to repeat-track interferometry. Geophys. Res. Lett. 1995, 22, 2517–2520. [Google Scholar] [CrossRef] [Green Version]
- Stevens, N.F.; Wadge, G. Towards Operational Repeat-Pass SAR Interferometry at Active Volcanoes. Nat. Hazards 2004, 33, 47–76. [Google Scholar] [CrossRef]
- Cascini, L.; Fornaro, G.; Peduto, D. Analysis at medium scale of low-resolution DInSAR data in slow-moving landslide-affected areas. ISPRS J. Photogramm. Remote Sens. 2009, 64, 598–611. [Google Scholar] [CrossRef]
- Delgado Blasco, J.M.; Foumelis, M.; Stewart, C.; Hooper, A. Measuring Urban Subsidence in the Rome Metropolitan Area (Italy) with Sentinel-1 SNAP-StaMPS Persistent Scatterer Interferometry. Remote Sens. 2019, 11, 129. [Google Scholar] [CrossRef] [Green Version]
Time Series | Period (yyyy-mm-dd) | Days | Master Scene Acquisition Date (yyyy-mm-dd) | Track | Pass | Images Nr. S-1 (S1A + S1B) |
---|---|---|---|---|---|---|
A | 2017-04-05 to 2018-03-13 | 348 | 2017-09-08 | 95 | descending | 55 (29 + 26) |
B | 2017-04-05 to 2017-10-20 | 198 | 2017-07-28 | 95 | descending | 32 (15 + 17) |
C | 2017-04-02 to 2018-04-15 | 378 | 2017-09-17 | 146 | descending | 64 (32 + 32) |
D | 2017-04-02 to 2017-10-17 | 198 | 2017-07-19 | 146 | descending | 33 (17 + 16) |
Classification | PSI Values (mm/Year) | PSI Values (mm/Year) |
---|---|---|
<−2.5 Std. Dev. | <−11.7 | Subsidence |
−2.5 to −1.5 Std. Dev. | −11.7 to −8.0 | Subsidence |
−1.5 to 0.5 Std. Dev. | −7.9 to −4.2 | Subsidence |
−0.5 to 0.5 Std. Dev. | −4.1 to −0.4 | No movement |
0.5 to 1.5 Std. Dev. | −0.3 to 3.4 | No movement |
1.5 to 2.5 Std. Dev. | 3.3 to 7.2 | Uplift |
>2.5 Std. Dev. | >7.2 | Uplift |
Classification | PSI Values (mm/Year) | PSI Values (mm/Year) |
---|---|---|
<−2.5 Std. Dev. | <−14.4 | Subsidence |
−2.5 to −1.5 Std. Dev. | −14.3 to −10.2 | Subsidence |
−1.5 to 0.5 Std. Dev. | −10.1 to −6.0 | Subsidence |
−0.5 to 0.5 Std. Dev. | −5.9 to −1.8 | No movement |
0.5 to 1.5 Std. Dev. | −1.7 to 2.4 | No movement |
>1.5 Std. Dev. | >2.5 | Uplift |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fárová, K.; Jelének, J.; Kopačková-Strnadová, V.; Kycl, P. Comparing DInSAR and PSI Techniques Employed to Sentinel-1 Data to Monitor Highway Stability: A Case Study of a Massive Dobkovičky Landslide, Czech Republic. Remote Sens. 2019, 11, 2670. https://doi.org/10.3390/rs11222670
Fárová K, Jelének J, Kopačková-Strnadová V, Kycl P. Comparing DInSAR and PSI Techniques Employed to Sentinel-1 Data to Monitor Highway Stability: A Case Study of a Massive Dobkovičky Landslide, Czech Republic. Remote Sensing. 2019; 11(22):2670. https://doi.org/10.3390/rs11222670
Chicago/Turabian StyleFárová, Kateřina, Jan Jelének, Veronika Kopačková-Strnadová, and Petr Kycl. 2019. "Comparing DInSAR and PSI Techniques Employed to Sentinel-1 Data to Monitor Highway Stability: A Case Study of a Massive Dobkovičky Landslide, Czech Republic" Remote Sensing 11, no. 22: 2670. https://doi.org/10.3390/rs11222670
APA StyleFárová, K., Jelének, J., Kopačková-Strnadová, V., & Kycl, P. (2019). Comparing DInSAR and PSI Techniques Employed to Sentinel-1 Data to Monitor Highway Stability: A Case Study of a Massive Dobkovičky Landslide, Czech Republic. Remote Sensing, 11(22), 2670. https://doi.org/10.3390/rs11222670